
 90

BULGARIAN ACADEMY OF SCIENCES

CYBERNETICS AND INFORMATION TECHNOLOGIES Volume 19, No 4

Sofia 2019 Print ISSN: 1311-9702; Online ISSN: 1314-4081

DOI: 10.2478/cait-2019-0038

Availability Modelling of Cluster-Based System with Software

Aging and Optional Rejuvenation Policy

Richa Sharma1, Gireesh Kumar2

1Department of Mathematics, JK Lakshmipat University, Jaipur 302026, India
2Department of Computer Science and Engineering, JK Lakshmipat University, Jaipur 302026, India

E-mails: aligarh.richa@gmail.com gireesh8@gmail.com

Abstract: This investigation deals with modeling and availability analysis of cluster-

based system inflicted with software aging. Software aging is a phenomenon in which

a software system shows performance degradation with time and finally results in

software failures. To cope up with this phenomenon, rejuvenation is an innovative

concept to recover from software failures. As failures occur, server has the option

either to take essential rejuvenation with probability p or may opt for optional

rejuvenation with complementary probability q. To achieve high availability of the

system, the concept of clustering is also taken into consideration. In this study,

restart, reboot and standby concept is used for reducing the downtime cost. The

sensitivity analysis of different parameters on system availability has been examined

numerically. By integrating clustering, software aging and rejuvenation, the

researchers intended to increase the availability and decrease the down time.

Keywords: Software aging, Cluster, Standby, Reboot, Optional rejuvenation,

Availability, Downtime cost.

1. Introduction

In the current era of machines, human dependency on machining system has been

increasing day by day. Moreover, availability of service is a major concern of today’s

business environment. Availability is defined as the probability that a system is

operational and capable to provide the required services [1]. To improve the

availability of services of cluster-based system, an advanced concept as software

rejuvenation for recovering from failures is carried out. Clustered system has been

analysed with rejuvenation under varying workload. To avoid unexpected closure of

individual knots; standard, delayed and mixed rejuvenation was applied in this

study [2].

Software aging is caused by resource depletion and can lead to gradual

degradation of performance or blockage [3]. Software aging [4] phenomenon refers

to all software tendency to fail or the accretion of errors occurring in continuously

running operational software system which leads to performance degradation and

eventually hang on the software system. Different causes of software aging are such

mailto:aligarh.richa@gmail.com

 91

as languidness of operating system resources, storage fragmentation, and

accumulation of errors, etc. Error accumulation usually takes the form of bad resource

management that leads to resource exhaustion, such as memory leaks, unterminated

threads. The accumulation of errors usually takes the form of a poor resource

management, which leads to a depletion of resources, such as memory leaks, data

corruption, etc. Therefore, some rejuvenation policies such as application restart,

rebooting and concept of standby are required. Software rejuvenation is a cost-

effective approach to eliminate the effects of aging and avoid aging-related

failures [5].

Software rejuvenation is an essential proactive fault avoidance technique [6],

which is used to prevent performance degradation, and other failures subject to

system crash due to software aging. Further, software rejuvenation may also employ

fault tolerance to reduce the impact of individual failures on system availability [7].

To achieve rejuvenation, we have applied some most important concepts namely

application restart, reboot and standby unit in our study. Application restart

rejuvenation is a simple process to shut down the application and restart the

application immediately. Various researchers [8, 9] tried to prevent performance

degradation by this technique. Another familiar technique is virtual machine reboot.

We have considered the concept of reboot when the complete virtual machine has

failed. According to this, a shutdown signal is send to the guest operating system and

then restarts virtual machine. These techniques focus on restarting the applications

and system, so as to reduce the downtime cost as much as possible. The most

significant approach is standby rejuvenation that reduces the failed requests. In this

approach, standby virtual machine is always available to take over the active

virtualize machine from the one being rejuvenated [10]. Repairable systems [11-13]

has been investigated by many prominent researchers in different frameworks.

Performance model has been examined for machine repair model with working

breakdown, working vacation and warm standbys [14].

Cluster is a set of virtual machines and other related resources that act like a

single system and provide high availability. These machines (also known as nodes)

are usually identical. If one node fails, another can act as a backup. Therefore, cluster

system can achieve higher availability in comparison to single machine system. Using

a hierarchical approach, system availability of an n-processor VAX cluster has been

determined [15]. Hardware and software reliability of clustered computing systems

have been investigated. The pictorial view of a cluster system is shown in Fig. 1.

Fig. 1. Cluster-based system of active virtual machines with standby virtual machine

 92

Clustering is a technique to achieve high availability of service by redundancy

in hardware as well as software. To improve the availability of a system, redundancy

is a common approach. In case of major failure clustering software immediately starts

the applications on the standby system without any downtime. J a i n and P r e e t i

[16] used the concept of standby cluster system for availability analysis in their study.

There is no doubt that redundancy increases the cost. Availability evaluation was

done for machining system with multiple working vacations and standby [17].

However, if the cost of failure is high then the redundancy may be a smart choice

[18]. Common mode failure associated with redundant systems wherein a failure can

occur due to the installation faults, application errors, design errors and many more.

This failure is one in which a single failure or condition affects the operation of

multiple devices. Availability analysis of cluster-based system has been investigated

by H o n g, W a n g and S h i [19]. Multi-layer cluster based system has been

investigated by S a n k a r and S r i n i v a s a n [20]. In our study, we consider Cluster-

based System (CS) having one Active Virtual Machine (AVM) and one Standby

Virtual Machine (SVM). Initially, the CS is in working or healthy state. During aging

ascertain process, administrator identify the number of faults occur to the considered

CS which is marked as in unstable state or degradation mode. In rejuvenation state,

the system administrator has a choice to use any of the three steps for reducing the

down time, which are mentioned below:

 At rejuvenation state in AVM, administrator has a choice either to opt

essential rejuvenation as first step or may go for optional rejuvenation service as

second step. In the first step, we provide rejuvenation repair namely application

restart as an essential rejuvenation. In the second step, we provide reboot to the

system as an optional rejuvenation to reduce the downtime cost. Some researchers

[21] have tried to reduce the downtime using reboot concept in their study.

 In the third step, he/she may decide to replace AVM with SVM. If one virtual

machine has completely failed then another virtual machine is available to the system

as a standby unit that can take over its workload. In SVM, administrator has again

the choice to opt essential as first step or optional rejuvenation service as second step.

Fig. 2 shows the proposed CS having one AVM and one SVM wherein all above

mentioned three steps are visualized.

From the literature survey, it has been noticed that the interest in studying the

cluster system has mainly been focused on the system’s behaviour depending upon

its failure and repair characteristics without considering the concept of optional

rejuvenation. We have not found any research work on cluster-based system with

optional rejuvenation. Therefore, it is important to consider such system and advice

to system developers how they can increase the system availability with the help of

optional rejuvenation. If an error occurs in the cluster system, the system

administrator can choose essential or optional rejuvenation. The main objective of

the present investigation is to increase the availability of cluster system having

standby machine. The rest of the paper is structured as follows. Section 2 describes

assumptions and notations for the devolving cluster-based system. In Section 3, we

develop the governing equations for considered system. Further, analysis has been

done for obtaining the probability results in terms of availability. In Section 4, various

 93

results are obtained for analysing the CS. To examine the effect of various parameters

on the cluster system, numerical results are suggested in Section 5. Finally,

concluding remarks are given in Section 6.

Fig. 2. Proposed system tectonics

2. Model description

To offer high level of availability for the server, we consider a CS having one AVM

and SVM under the consideration optional software rejuvenation. To analyze cluster

system, Markov modelling technique enables us to account for combinations of

component failures sequence dependent consequences and also helps to identify the

system performance characteristics that may need improvement for the optimization

of the system. The AVM and SVM are subject to failure and repair. Once an AVM

fails, SVM replaces it; the failure characteristic of the SVM becomes same as that of

the AVM. For developing mathematical model of CS, we have provided various

assumptions and notations.

Assumptions

 We consider a CS having AVM and SVM both in healthy state. The state of

CS denotes by m (m=Hi, Ui, Ri, Oi, i=1, 2, and F, where i=1 represents the AVM and

i=2 represents the SVM) which are given as

𝑚 =

{

 𝐻𝑖, 𝑖 = 1, 2, Healthy State of

AVM

SVM
,

𝑈𝑖 , 𝑖 = 1, 2, Unstable State of
AVM

SVM
,

𝑅𝑖 , 𝑖 = 1, 2, Essential Rejuventation State of
AVM

SVM
,

𝑂𝑖, 𝑖 = 1, 2, Optional Rejuventation State of
AVM

SVM
,

 𝐹, Failed State of CS.

 94

 As time goes on, AVM eventually transfer to unstable state. In unstable state,

CS is in operational state but works under degraded mode. If any error occurs then

the system goes under rejuvenation state. At this state, operator decides to take

essential rejuvenation with probability p or opt optional rejuvenation with

complementary probability q = 1 – p. On the other hand, if there is a major fault

during unstable state then it is immediately replaced by SVM. If CS has suffered

unplanned failure then the system is under failure state.

 In CS, the rate by which AVM transfer to unstable state is 𝑖 ∗ 𝜆𝑢. From

unstable state, the rate by which AVM transfer to rejuvenation state is 𝑖 ∗ 𝜆𝑟 and to

SVM is 𝑖 ∗ 𝜆𝑠. The rate by which SVM transfer to failed state is 𝜆.

 The switch over times from failure to repair, from repair to standby and from

standby to operating states are negligible.

 The life-time and repair time of CS follow the exponential distribution with

mean 1/ and 1/

 As unplanned failure occurs, CS stops working completely and can be

restored by the reboot. After rebooting, the CS works with the same efficiency as

before failure occurs.

Some notations are used for modelling purpose.

Notations

PH1
: steady state probability that AVM is in Healthy state, i.e., fully working

state.

PU1
: steady state probability that AVM is in Unstable state, i.e., Degradation

state.

PR1
: steady state probability that AVM is in Essential Rejuvenation state.

PO1
: steady state probability that AVM is in Optional Rejuvenation state.

PH2
: steady state probability that SVM is in Healthy state, i.e., Fully Working

state.

PU2
: steady state probability that SVM is in Unstable state, i.e., Degradation

state.

PR2
: steady state probability that SVM is in Essential Rejuvenation state.

PO2
: steady state probability that SVM is in Optional Rejuvenation state.

PF: steady state probability that CS is in Completely Failed state.

u: transition rate from Healthy state to Unstable state due to the effect of

software aging.

r: transition rate from Unstable state to Rejuvenation state.

s: transition rate from transferring AVM to SVM.

: failure rate of CS.

r: rejuvenation rate.

o: optional rejuvenation rate.

: repair rate of CS.

 95

3. Governing equations and analysis

The software aging models are being generally used to predict the system availability

and other reliability indices. In our study, we use Markov analysis for devolving state

transition model of a CS. For this purpose, we have provided governing equations of

the model being concerned, which is depicted in Fig. 3.

Fig. 3. State transition diagram for CS having AVM and SVM

(1) 𝜆𝑢𝑃𝐻1 = 𝑝𝜇𝑟𝑃𝑅1 + 𝜇𝑟𝑃𝑂1 + 𝜇𝑃𝐹,

(2) (𝜆𝑠 + 𝜆𝑟)𝑃𝑈1 = 𝜆𝑢𝑃𝐻1 ,

(3) 2𝜆𝑢𝑃𝐻2 = 𝜆𝑠𝑃𝑈1 + 𝑝𝜇𝑟𝑃𝑅2 + 𝜇𝑟𝑃𝑂2,

(4) (𝜆 + 𝜆𝑟)𝑃𝑈2 = 𝜆𝑢𝑃𝐻2,

(5) 𝜇𝑃𝐹 = 2𝜆𝑃𝑈2,

(6) 𝜇𝑟𝑃𝑅𝑖 = 𝑖𝜆𝑟𝑃𝑈𝑖, 𝑖 = 1, 2,

(7) 𝜇𝑜𝑃𝑂𝑖 = 𝑞𝜇𝑟𝑃𝑅𝑖, 𝑖 = 1, 2,

Normalizing condition

(8) ∑ 𝑃𝐻𝑖 +
2
𝑖=1 ∑ 𝑃𝑈𝑖 +

2
𝑖=1 ∑ 𝑃𝑅𝑖 +

2
𝑖=1 ∑ 𝑃𝑂𝑖 = 1

2
𝑖=1 .

To obtain the closed-form solution of above equations (1)-(8), we apply product

type method. The normalizing condition is combined with equations (1)-(8) and

solving simultaneously, we have

(9) 𝑃𝑈1 =
𝜆𝑢

(𝜆𝑠+𝜆𝑟)
𝑃𝐻1,

(10) 𝑃𝑈2 =
𝜆𝑢𝜆𝑠

2𝜆(𝜆𝑠+𝜆𝑟)
𝑃𝐻1,

(11) 𝑃𝑅1 =
𝜆𝑟𝜆𝑢

𝜇𝑟(𝜆𝑠+𝜆𝑟)
𝑃𝐻1,

(12) 𝑃𝑅2 =
𝜆𝑟𝜆𝑢𝜆𝑠

𝜆𝜇𝑟(𝜆𝑠+𝜆𝑟)
𝑃𝐻1,

(13) 𝑃𝑂1 =
𝑞𝜆𝑟𝜆𝑢

𝜇𝑜(𝜆𝑠+𝜆𝑟)
𝑃𝐻1,

(14) 𝑃𝑂2 =
𝑞𝜆𝑟𝜆𝑢𝜆𝑠

𝜆𝜇𝑜(𝜆𝑠+𝜆𝑟)
𝑃𝐻1,

(15) 𝑃𝐻2 =
𝜆𝑠(𝜆+𝜆𝑟)

2𝜆(𝜆𝑠+𝜆𝑟)
𝑃𝐻1,

 96

(16) 𝑃𝐹 =
𝜆𝑢𝜆𝑠

𝜇(𝜆𝑠+𝜆𝑟)
𝑃𝐻1,

where

𝑃𝐻1 = [1 + 𝑎 {
𝑏

2𝜆𝜆𝑟
+

𝑐

𝜆𝑠
+

𝑞

𝜆𝜇𝑜
}]
−1

,

and

𝑎 =
𝜆𝑟𝜆𝑢𝜆𝑠

(𝜆𝑠+𝜆𝑟)
, 𝑏 = [

(𝜆+𝜆𝑟)

𝜆𝑢
+ 3], 𝑐 = (

1

𝜆𝑟
+

1

𝜇𝑟
+

𝑞

𝜇𝑜
).

4. Performance measures

To analyze the CS having AVM and SVM, the steady state probabilities of developed

model are evaluated using product type method. It is very important to predict the

performance of the CS in terms of steady state. Therefore, we have derived various

performance measures that are mentioned below:

 Availability of the system: Availability (AV) models capture failure and

repair behavior of CS, i.e., the cluster system is not available during rejuvenation and

reboots states. Therefore, the availability of the CS is given by

(17) AV = 1 − (∑ 𝑃𝑅𝑖 +
2
𝑖=1 ∑ 𝑃𝑂𝑖 + 𝑃𝐹

2
𝑖=1).

 Long run probabilities of cluster system: The long run probabilities of the

system is given by when the CS is in essential rejuvenation state (P(R)) and optional

rejuvenation state (P(O)), respectively as

(18) 𝑃(𝑅) = ∑ 𝑃𝑅𝑖
2
𝑖=1 ,

(19) 𝑃(𝑂) = ∑ 𝑃𝑂𝑖
2
𝑖=1 .

 Downtime cost: The downTime Cost (TC) of CS can be calculated using

unavailable states of cluster system in terms of corresponding cost element

(20) TC = [𝐶1 × ∑ 𝑃𝑅𝑖 + 𝐶2 × ∑ 𝑃𝑂𝑖 + 𝐶𝐹 × 𝑃𝐹
2
𝑖=1

2
𝑖=1] × 𝑇,

where

T is the operational time,

C1 is the unit cost of the essential rejuvenation state of CS,

C2 is the unit cost of the optional rejuvenation state of CS,

CF is the unit cost of the reboot of CS.

5. Numerical results

In this this section, we provide numerical results for considered CS having AVM and

SVM to evaluate system availability under the consideration of optional rejuvenation

policy. By taking the numerical illustration, we have illustrated how different system

parameters such as failure rates (rs and) and rejuvenation rates (ro and)

would affect the availability of the system.

We have examined the effect of different parameters on various performance

measures like availability, downtime cost, etc., for one year, i.e., T=1, by setting the

default parameters as =0.5, u=0.4, r=0.2, s=0.3, r=0.8, o=0.9, p=0.5 and q=0.5.

The different cost elements for determining the values for downtime cost of CS are

 97

chosen as C1=$50, C2=$25 and CF=$80. The flow chart of the model being concerned

is depicted in Fig. 4.

Fig. 4. Flow chart of proposed cluster system

In Table 1, we provide the results for AVM which fails completely and we have

replaced it by SVM. It can be easily seen from Table 1 that the values of long run

probabilities in essential (P(R)) and optional (P(O)) rejuvenation state increases

gradually. On the other hand, P(R) increases as we increase the values of p and P(O)

shows the reverse trend.

Table 1. Effect on various performance measures of cluster system by varying s and p

s
p=0.2 p=0.5 p=0.8

P(R) P(O) P(R) P(O) P(R) P(O)

0.1 0.0114 0.0084 0.0118 0.0054 0.0123 0.0022

0.2 0.0201 0.0150 0.0208 0.0097 0.0216 0.0040

0.3 0.0311 0.0237 0.0322 0.0154 0.0335 0.0063

0.4 0.0444 0.0344 0.0460 0.0223 0.0478 0.0092

0.5 0.0600 0.0471 0.0622 0.0305 0.0647 0.0126

0.6 0.0779 0.0618 0.0808 0.0400 0.0840 0.0166

The graphical representation of availability performance and downtime cost of

CS are summarized in Figs 5a-8b. From Figs 5a-b, it is observed that the availability

of the CS shows a sharp decrement for increasing values of r and u. It can be easily

observed form Figs 6a-b that as rejuvenation rates attains the higher values, system

availability show the sharp increment which tally with many real life situations.

Also, from theses Figs, it is observed that AV increases if system opt the essential

rejuvenation.

 98

The combined effect of probability, failure and rejuvenation rates are depicted

in Figs 7a-8b. As the values of p increases, the downtime cost shows the sharp

decrement. Form Figs 7a-b, it can be easily noticed that down time cost increases as

r and u increases. The reverse trend of downtime cost can be observed in

Figs 8a-b for higher values of rejuvenation rates.

(a) (b)

Fig. 5. Effect of (a) r and (b) u on availability by varying p

(a) (b)

Fig. 6. Effect of (a) r and (b) o on availability by varying p

(a) (b)

Fig. 7. Combined effect of (a) r and (b) u on downtime cost by varying p

0.6
0.64
0.68
0.72
0.76
0.8

0.84
0.88
0.92
0.96

0.1 0.2 0.3 0.4 0.5 0.6

A
V

r

p=0.2

p=0.5

p=0.8

0.86

0.88

0.9

0.92

0.94

0.96

0.98

0.1 0.2 0.3 0.4 0.5 0.6
A
V

u

p=0.2

p=0.5

p=0.8

0.9

0.91

0.92

0.93

0.94

0.5 0.6 0.7 0.8 0.9 1

A
V

r

p=0.2

p=0.5

p=0.8 0.89

0.9

0.91

0.92

0.93

0.5 0.6 0.7 0.8 0.9 1

A
V

o

p=0.2

p=0.5

p=0.8

0.1

0.4
0

5

10

15

20

p
=0
.1

p
=0
.2

p
=0
.3

p
=0
.4

p
=0
.5

p
=0
.6

TC

p

r
0.1

0.4
0

2

4

6

p
=0
.1

p
=0
.2

p
=0
.3

p
=0
.4

p
=0
.5

p
=0
.6

TC

p

u

 99

(a) (b)

Fig. 8. Combined effect of (a) r and (b) o on downtime cost by varying p

Finally, it can be judged on overall observation that the cluster system can

achieve higher availability if we provide higher rejuvenation rates at appropriate

time. Moreover, the downtime and downtime cost of CS approach decrease as

rejuvenation rates increases.

6. Conclusions

This paper investigated a clustered system having active and standby virtual machine

inflicted with software aging. To neutralize the software aging, we have used the

concept of rejuvenation, which is highly effective to increase the availability of CS.

This study proves that optional rejuvenation is a powerful approach in preventing the

failures in the running process of the software executions. With the help of optional

rejuvenation, the downtime cost of CS decreases tremendously. In this study, the CS

having AVM and SVM deals with many concepts simultaneously such as software

aging, software rejuvenation and reboot. The outcome of considered work may be

applicable to many real time applications in which the prevention of the software

failure is recommended for smooth running of the software applications under

techno-economic constraints. It is expected that our study will be helpful for the

system designers for improving the availability of cluster-based systems wherein

software failures cannot be avoided.

R e f e r e n c e s

1. K a u s h i k, M., G. K u m a r, P r e e t i, R. S h a r m a. Availability Analysis for Embedded System

with N-Version Programming Using Fuzzy Approach. – International Journal of Software

Engineering, Technology and Applications, Vol. 1, 2015, No 1, pp. 90-101.

2. W a n g, D., W. X i e, K. S. T r i v e d i. Performability Analysis of Clustered Systems with

Rejuvenation under Varying Workload. – Performance Evaluation, Vol. 64, 2007, No 3,

pp. 247-265.

3. Z h a o, J., Y. W a n g, G. R. N i n g, K. S. T r i v e d i, R. M a t i a s, K. Y. C a i. A Comprehensive

Approach to Optimal Software Rejuvenation. – Performance Evaluation, Vol. 70, 2013,

No 11, pp. 917-933.

0.5

0.84.2

4.4

4.6

4.8

5

TC

p

r
0.5

0.8
4.3

4.4

4.5

4.6

4.7

p
=0
.1

p
=0
.2

p
=0
.3

p
=0
.4

p
=0
.5

p
=0
.6

TC

p

o

http://www.sciencedirect.com/science/article/pii/S0166531613000618
http://www.sciencedirect.com/science/article/pii/S0166531613000618
http://www.sciencedirect.com/science/article/pii/S0166531613000618
http://www.sciencedirect.com/science/article/pii/S0166531613000618
http://www.sciencedirect.com/science/article/pii/S0166531613000618

 100

4. B a o, Y., X. S u n, K. S. T r i v e d i. A Workload-Based Analysis of Software Aging, and

Rejuvenation. – IEEE Transactions on Reliability, Vol. 54, 2005, No 3, pp. 541-548.

5. C o t r i n e o, D., R. N a t e l l a, R. P i e t r a n t u o n o, S. R u s s o. A Survey of Software Aging and

Rejuvenation Studies. – ACM Journal on Emerging Technologies in Computing Systems,

Vol. 10, 2014, No 1, pp. A1-A35.

6. T r i v e d i, K. S., K. V a i d y a n a t h a n, K. G o s e v a-P o p s t o j a n o v a. Modeling and

Analysis of Software Aging and Rejuvenation. – In: Proc. of 33rd Annual Simulation

Symposium, 2000, p. 270.

7. N a g a r a j u, V., V. V. B a s a v a r a j, L. F i o n d e l l a. Software Rejuvenation of a Fault-Tolerant

Server Subject to Correlated Failure. – In: Proc. of Annual Reliability and Maintainability

Symposium, 2016, DOI: 10.1109/RAMS.2016.7448076.

8. G r o t t k e, M., L. L i, K. V a i d y a n a t h a n, K. S. T r i v e d i. Analysis of Software Aging in a

Web Server. – IEEE Transactions on Reliability, Vol. 55, 2006, No 3, pp. 411-420.

9. H u a n g, Y., C. K i n t a l a, N. K o l e t t i s, N. F u l t o n. Software Rejuvenation: Analysis, Module

and Applications. – In: Proc. of 15th International Symposium on Fault-Tolerant Computing,

1995, pp. 381-390.

10. A l o n s o, J., R. M a t i a s, E. V i c e n t e, A. M a r i a, K. S. T r i v e d i. A Comparative

Experimental Study of Software Rejuvenation Overhead. – Performance Evaluation, Vol. 70,

2013, No 3, pp. 231-250.

11. S h a r m a, R., M. K a u s h i k, G. K u m a r. Reliability Analysis of an Embedded System with

Multiple Vacations and Standby. – International Journal of Reliability and Applications,

Vol. 16, 2015, No 1, pp. 35-53.

12. Threshold N-Policy for Machine Interference Problem with Additional Repairman and Spares

under Bernoulli Vacation Schedule. – In: Proc. of 11th International Conference on

Reliability, Maintainability and Safety, IEEE Explore, 2017, pp. 1-5.

DOI:10.1109/ICRMS.2016.8050058.

13. S h a r m a, R. Reliability Analysis for a Repairable System under N-Policy and Imperfect

Coverage. – In: Proc. of International Multi Conference of Engineers and Computer Scientists,

Vol. 2, 2015, pp. 1001-1004.

14. J a i n, M., R. S h a r m a, R. M e e n a. Performance Modeling of Fault Tolerant Machining System

with Working Vacation and Working Breakdown. – Arabian Journal for Science and

Engineering, Vol. 44, 2019, No 3, pp. 2825-2836.

15. I b e, O. C., R. C. H o w e, K. S. T r i v e d i. Approximate Availability Analysis of Vax Cluster

Systems. – IEEE Transactions on Reliability, Vol. 38, 1989, No 1, pp. 146-152.

16. J a i n, M., P r e e t i. Availability Analysis of Software Rejuvenation in Active/Standby Cluster

System. – International Journal of Industrial and Systems Engineering, Vol. 19, 2015, No 1,

pp. 75-93.

17. J a i n, M., S. R a n i. Transient Analysis of Hardware and Software Systems with Warm Standbys

and Switching Failures. – International Journal of Mathematics in Operational Research,

Vol. 6, 2013, No 1, pp. 1-28.

18. S h a r m a, R., G. K u m a r. Availability Improvement for the Successive K-out of-N Machining

System Using Standby with Multiple Working Vacations. – International Journal of Reliability

and Safety, Vol. 11, 2017, No 3/4, pp. 256-267.

19. H o n g, Z., Y. W a n g, M. S h i. Advances in Future Computer and Control Systems. – Advances

in Intelligent and Soft Computing, Berlin, Heidelberg, Springer, 2012, pp. 121-125.

20. S a n k a r, S., P. S r i n i v a s a n. Multi-Layer Cluster Based Energy Aware Routing Protocol for

Internet of Things. – Cybernetics and Information Technologies, Vol. 18, 2018, No 3,

pp. 75-92.

21. Y a m a k i t a, K., H. Y a m a d a, K. K o n o. Phase-Based Reboot: Reusing Operating System

Execution Phases for Cheap Reboot-Based Recovery. – In: Proc. of IEEE/IFIP 41st

International Conference on Dependable Systems & Networks, 2011,

DOI. 10.1109/DSN.2011.5958216.

Received: 26.07.2019; Second Version: 07.10.2019; Accepted: 19.10.2019

https://doi.org/10.1109/RAMS.2016.7448076
https://www.inderscienceonline.com/loi/ijise
https://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=%22First%20Name%22:%22Zhiguo%22&searchWithin=%22Last%20Name%22:%22Hong%22&newsearch=true
https://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=%22First%20Name%22:%22Yongbin%22&searchWithin=%22Last%20Name%22:%22Wang%22&newsearch=true
https://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=%22First%20Name%22:%22Minyong%22&searchWithin=%22Last%20Name%22:%22Shi%22&newsearch=true
https://doi.org/10.1109/DSN.2011.5958216

