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Abstract: In this paper, we focus on two major problems in hard real-time embedded 

systems fault tolerance and energy minimization. Fault tolerance is achieved via both 

checkpointing technique and active replication strategy to tolerate multiple transient 

faults, whereas energy minimization is achieved by adapting Dynamic Voltage 

Frequency Scaling (DVFS) technique. First, we introduce an original fault-tolerance 

approach for hard real-time systems on multiprocessor platforms. Based on this 

approach, we then propose DVFS_FTS algorithm for energy-efficient fault-tolerant 

scheduling of precedence-constrained applications. DVFS_FTS is based on a list 

scheduling heuristics, it satisfies real-time constraints and minimizes energy 

consumption even in the presence of faults by exploring the multiprocessor 

architecture. Simulation results reveal that the proposed algorithm can save a 

significant amount of energy while preserving the required fault-tolerance of the 

system and outperforms other related approaches in energy savings. 

Keywords: Fault tolerance, Transient faults, Checkpointing, Active replication, 

Dynamic Voltage Frequency Scaling (DVFS), Energy minimization. 

1. Introduction 

Energy consumption and fault tolerance have attracted a lot of interest in the design 

of modern embedded real-time systems. Fault tolerance is fundamental for these 

systems to satisfy their real-time constraints even in the presence of faults. Transient 

faults are most common, and their number is dramatically increasing due to the high 

complexity, smaller transistors sizes, higher operational frequency, and lowering 

voltages [1-5].  

Dynamic power/energy management is an active area of research and many 

techniques have been proposed to minimize energy consumption under a large 

diversity of system and task models [6, 7]. Dynamic Voltage and Frequency Scaling 

(DVFS) is an energy saving technology enabled on most current processors. It 
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enables a processor to operate at multiple voltages where each corresponds to a 

specific frequency. Because the energy consumption of a processor is proportional to 

voltage squared, the processor’s energy consumption can be considerably reduced by 

lowering CPU voltage and processing speed [8]. 

Addressing energy and fault-tolerance simultaneously is a challenge because 

lowering the voltage to reduce energy consumption has been shown to increase the 

number of transient faults [4, 11, 20]. Furthermore, reducing working frequency 

increases task execution time, which can lead to no guarantee of task deadlines.  

This paper presents first a novel fault-tolerance approach to tolerate a fixed 

number of transient faults. Our approach combines active replication which provides 

space-redundancy and checkpointing with rollback recovery which provides time-

based redundancy. Based on this approach and DVFS technique, we propose a fault-

tolerant DVFS scheduling heuristic, which generates, from a given hard real-time 

application and a given multiprocessor architecture, a task allocation scheme that 

minimizes energy consumption and tolerates k arbitrary transient faults.  

The rest of the paper is organized as follows. An overview of related work is 

provided in Section 2. The system models considered in this work are introduced in 

Section 3. The proposed fault-tolerance approach is explained in Section 4. The 

strategy that utilizes this approach and DVFS technique to minimize energy is 

provided in Section 5. The proposed DVFS_FTS algorithm is presented in Section 6. 

Simulation results are discussed in Section 7, and finally, the conclusion is given in 

Section 8. 

2. Related works 

Several papers have been published that are closely related to our research, these 

researches differ in many aspects, such as task models (dependent or independent 

tasks, hard or soft deadlines, periodic or aperiodic tasks), multiprocessor or 

uniprocessor platforms, online or offline scheduling and the fault-tolerance technique 

adopted. 

Authors in [9] proposed a scheduling heuristic to minimize the schedule length, 

the global system failure rate and the power consumption of the generated schedule. 

Active replication of tasks and data dependencies is used to increase the system 

reliability and dynamic voltage scaling DVS is used for energy minimization. The 

primary-backup (passive replication) approach is used by S a m a l, M a l l  and 

T r i p a t h y  [10] as a fault-tolerant scheduling technique to guarantee real-time task 

constraints in the presence of permanent or transient fault. Authors proposed a 

scheduling algorithm using a hybrid genetic algorithm. G a n  et al. [11] proposed a 

synthesis approach to decide the mapping of hard real-time applications on 

distributed heterogeneous systems, such that multiple transient faults are tolerated, 

and the energy consumed is minimized. For recovery from faults, they used 

replication technique. 

The replication technique is effective to tolerate multiple spatial faults 

(permanent or transient) and it is more preferable for safety-critical systems. 
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However, scheduling multiple replicas of each task on different processors may not 

be affordable due to cost constraints. 

Checkpointing with rollback recovery [7, 12-15] and re-execution [16] are 

classified by Motaghi  and Zarandi  [17] as time based-redundancy methods. These 

methods try to deal with transient faults by serial executions on the same processor 

of the faulty task. 

D j o s i c  and J e v t i c  [1] developed a fault-tolerant DVFS algorithm for real-

time application of independent tasks. This algorithm combines DVFS for optimizing 

energy consumption and re-execution recovery for fault tolerance, but their scope is 

restricted to single processor systems. In [18], authors introduced an efficient method 

to determine the checkpointing scheme that can tolerate k transient faults on a single 

processor. They also proposed a task allocation scheme to reduce energy 

consumption. 

The combination of replication and time-based redundancy techniques to 

tolerate multiple transient faults with low overhead in terms of energy consumption 

and total execution time has been studied in few works related to our research  

[19, 20]. 

Authors in [19] have proposed a fault-tolerance policy assignment strategy to 

decide which fault-tolerance technique, for instance checkpointing, active replication 

or their combination, is the best suited for a particular process in the application but 

energy consumption is not studied in their proposition. T a v a n a  et al. [20] have 

proposed a standby-sparing scheme which addressed simultaneously reliability and 

energy consumption. The proposed scheme by employing both hardware redundancy 

(standby-sparing) and time redundancy (re-execution) in some cases, can tolerate 

many transient faults. To reduce energy consumption, they applied two techniques 

DPM (Dynamic Power Management) used by the spare unit and DVS (Dynamic 

Voltage Scaling) used by the primary processor. 

This paper attempts to solve the following problem “Given a set 𝛤 of hard real-

time dependent tasks and a set Ῥ of homogeneous processors which support L 

frequency levels, find the scheduling for all tasks in 𝛤 such that the total energy 

consumption is reduced without any deadline miss while ensuring fault-tolerance 

requirement”. 

The main contributions of this paper are summarized as follows: 

 Tolerating multiple transient fault occurrences with respect to application 

time-constraints. 

 Combine two different policies: checkpointing and active replication to 

propose an efficient fault-tolerance approach that explores hardware resources and 

timing constraints. 

 Extend the proposed fault-tolerance approach to incorporate it with DVFS to 

achieve more energy saving. 

 Efficient fault-tolerant scheduling heuristic DVFS_FTS of precedence-

constrained applications based on the earliest-deadline-first (EDF) algorithm and the 

proposed fault-tolerance approach is presented to minimize the system energy 

consumption while tolerating k transient faults. 
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3. System models 

3.1. Application model 

The real-time application considered in this paper consists of n hard aperiodic 

dependent tasks, denoted as 𝛤 = {𝜏1 , 𝜏2, … , 𝜏𝑛}. Tasks are non-preemptive and 

cannot be interrupted by other tasks. Tasks send their output values in messages, 

when terminated. All required inputs have to arrive before activation of the task. The 

dependence 𝜏𝑖 → 𝜏𝑗 means that 𝜏𝑖 execution precedes 𝜏𝑗 execution. So we say that 𝜏𝑗  

is a successor of 𝜏𝑖 and symmetrically that 𝜏𝑖 is a predecessor of 𝜏𝑗 . Each task 𝜏𝑖  is 

characterised by a tuple (𝐶𝑖, 𝐷𝑖), where 𝐶𝑖 is the worst case execution time of the task 

at the maximum frequency/voltage in a fault free condition and  𝐷𝑖  is the deadline of 

the task. The utilization of task 𝜏𝑖 is  

(1)   𝑈𝑖 =
𝐶𝑖

𝐷𝑖
,       where  0 ≤ 𝑈𝑖 ≤ 1.      

The system utilization is therefore calculated according to next equation: 

(2)   𝑈 = ∑ 𝑈𝑖
𝑛
𝑖=1 . 

We model an application A as a Directed Acyclic Graph (DAG). Each node 

represents one task. An edge eij indicates data-dependency between two tasks 𝜏𝑖  
and 𝜏𝑗.  
 

 

Fig. 1. Hard real time application example 

An example of an application A1 composed of five dependant tasks 
{𝜏1 , 𝜏2, … , 𝜏5}  is represented as a DAG G1 shown in Fig. 1.  

3.2. Hardware model 

The architecture is considered as a set of m homogeneous processors denoted as:  

Ῥ = {P1, P2, …, Pm}. Each processor is connected with the others through 

communication links. As so, our architecture is homogeneous and fully connected.  

3.3. Fault model 

During the execution of an application, faults may be hard to avoid due to different 

reasons, such as hardware failure, software errors, devices exposed to intense 

temperatures, and external impacts [22]. As a result, transient faults are more frequent 

A1: G1 
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𝞽2 𝞽3 
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C2 = 40ms    

D2= 200ms 

C4 = 40ms    
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D1 = 160ms 

C3= 60ms 
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C5 = 50ms    

D5 = 240ms 
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than permanent ones. Hence, authors in this paper are interested in tolerating transient 

faults as the number of these faults has been dramatically higher.  

3.4. Energy model 

We assume that there are m processors, each of them is DVFS enabled with a set of 

L operating frequencies. We denote with 𝐹 = {𝑓1, 𝑓2, … , 𝑓𝐿} with 0 ≤ 𝑓𝐿 ≤ 𝑓𝐿−1 ≤
⋯ ≤ 𝑓1 = 𝑓max. We assume the frequency values are normalized with respect to 

𝑓max, i.e., 𝑓max = 1. 

The energy model used in this work is the same to the one, used in the literature 

[1, 6, 9, 22], where the power consumption P of a system is given by  

(3)   𝑃s+h( 𝑃ind +𝐶ef 𝑉
2𝑓 ),     𝑃 = 𝑃s+h(𝑃ind + 𝑃d) , 

where 𝑃s is the static power, 𝑃ind  is the frequency-independent power and 𝑃d is the 

frequency-dependent power. The parameter h = 1 when the system is in the working 

state. Otherwise, when the system is in the standby state, h = 0. 𝐶ef is the effective 

loading capacitance, 𝑓 is the operating frequency and V is the supply voltage. The 

static power can be removed only by turning off the whole system, 𝑃ind  is a constant 

independent of operating frequency. As the energy consumption due to frequency 

scaling is independent of 𝑃s, we take into account only the frequency-dependent 

power 𝑃d and we set 𝑃s = 0. Hence, the power consumption P can be written as: 

(4)   𝑃 = 𝐶ef 𝑉
2𝑓. 

Since 𝑓 ∝ 𝑉, and according to (4), the dynamic power 𝑃 can be expressed as a 

polynomial of frequency of degree 𝛼, where 𝛼 has been set to 3 in most of the 

published papers on energy consumption [22, 23]. Hence, we reformulate 𝑃 in (5) as 

(5)   𝑃 = 𝐶ef𝑓
3. 

The energy consumed by task 𝜏𝑖 is  

(6)   𝐸𝑖(𝑓𝑖) = 𝐶ef 𝐶𝑖 𝑓𝑖
2, 

where 𝐶𝑖 𝑖𝑠 the execution time of task 𝜏𝑖 under frequency 𝑓𝑖. The total energy 

𝐸total consumed by processors during the execution of a task set is  

(7)   𝐸total = ∑ 𝐸𝑖(𝑓𝑖)
𝑛
𝑖=1 . 

In this study, we consider only processor energy consumption. 

4. The proposed fault-tolerance approach 

We propose a mixed fault-tolerance approach, which combines software replication 

and time-based redundancy for tolerating k transient faults. We use these two 

techniques in order to meet time constraints and to increase the reliability of hard 

real-time applications even in the presence of faults. 

As time-based redundancy, we use uniform checkpointing with rollbacks. Once 

a fault is detected, the application rolls back to the last saved checkpoint and re-

executes the faulty interval [19]. Inserting one checkpoint to task 𝜏𝑖 refers to save its 

current state in memory for recovery. As software replication, we use active 

replication in case that checkpointing with rollbacks cannot satisfy task deadline.  
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4.1. Uniform Checkpointing with Rollback Recovery 

The time overhead for re-execution can be reduced with more complex techniques 

such as rollback recovery with checkpointing [15]. By using this technique, once a 

fault is detected during the execution of the task 𝜏𝑖, it needs to restore the saved state 

to continue task execution. We consider the following assumptions: 

 The checkpointing is uniform (checkpoint intervals are equal for the same 

task). 

 Faults are detected as soon as they occur. 

 The checkpoint saving and rollback recovery are themselves fault-tolerant. 

The fault-free execution time of task 𝜏𝑖 using uniform checkpointing is a 

function of the number of checkpoints 𝑚𝑖 and is formulated as 

(8)   ∁𝑖(𝑚𝑖) = ∁𝑖 +𝑚𝑖𝑂𝑖, 
where 𝑂𝑖 is the time overhead for saving one checkpoint. 

The recovery time of 𝜏𝑖 with 𝑚𝑖 checkpoints under a single failure is formulated 

as 

(9)   𝑅𝑖(𝑚𝑖) = 𝑟𝑖 +
∁𝑖

𝑚𝑖
, 

where 𝑟𝑖 is the time overhead to rollback to the latest checkpoint. 

In general, in the presence of k faults, the Worst-Case Response Time WCRT𝑖 of 

task 𝜏𝑖  using uniform checkpointing with rollback recovery is given by: 

(10)   WCRT𝑖(𝑚𝑖) = ∁𝑖(𝑚𝑖) + 𝑘𝑅𝑖(𝑚𝑖). 
P o p  et al. [19] showed that the optimal number of checkpoints  𝑚𝑖

∗ to minimize 

the worst case response time WCRT𝑖 considering k faults can be calculated as: 

(11)    𝑚𝑖
∗ =

{
 

 𝑚𝑖
− = ⌊√

𝑘∁𝑖

𝑂𝑖
⌋   if  ∁𝑖 ≤  𝑚𝑖

−(𝑚𝑖
− + 1)

𝑂𝑖

𝑘
,

 𝑚𝑖
+ = ⌈√

𝑘∁𝑖

𝑂𝑖
⌉   if  ∁𝑖 >  𝑚𝑖

−(𝑚𝑖
− + 1)

𝑂𝑖

𝑘
,

 

where 𝑂𝑖 is the time overhead for saving one checkpoint and C𝑖 is the worst case 

execution time of task 𝜏𝑖. As the number of checkpoints is an integer, thus we use 

𝑚𝑖
− (the floor) or  𝑚𝑖

+(the ceiling) as a value. If ∁𝑖  ≤  𝑚𝑖
−(𝑚𝑖

− + 1)
𝑂𝑖

𝑘
 , we use the 

floor value. Otherwise, the ceiling value is used. 

For the sake of easy presentation,  𝑚𝑖
∗ is simply denoted by (12)  

(12)    𝑚𝑖
∗ = ‖√

𝑘∁𝑖

𝑂𝑖
‖. 

An example of uniform checkpointing with rollback recovery is presented in 

Fig. 2.  

We consider task 𝜏1 with worst execution time ∁1= 60 ms in Fig. 2a. In Fig. 2b 

two equidistant checkpoints are inserted. Thus, task 𝜏1 is composed of two execution 

intervals 𝜏1(1) and 𝜏1(2). In Fig. 2c, a fault affects the second execution interval 𝜏1(2). 

This faulty interval is re-executed again starting from the second checkpoint.  
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Fig. 2. Uniform checkpointing with rollback recovery 

4.2. Collaborative active replication 

Uniform checkpointing with rollback recovery technique cannot explore the available 

processors in the architecture to reduce the schedule length [24]. If the task 

experiences a fault, then it has to recover on the same processor. In contrast, software 

replication techniques (active and passive replication) can utilize the spare capacity 

of the other processors. Software replication has the ability to execute task replicas 

simultaneously on different processors. With active replication, all the task replicas 

are executed independent of fault occurrences [25]. However, with passive 

replication, backup replicas are executed only if the primary replica is faulty [29, 30]. 

In our work, we are interested in active replication. If there is enough time to 

rollback to the last saved checkpoint in the presence of faults, we use active 

replication to guarantee and respect task 𝜏𝑖 deadline. The task 𝜏𝑖  is replicated on two 

collaborative replicas; 𝜏𝑖
1 and 𝜏𝑖

2, both of which are be executed on different 

processors at the same time. We also introduce collaboration between replicas to 

tolerate multiple faults and respect task 𝜏𝑖 deadline. 

For the sake of uniformity and clarity, we will consider the original task 𝜏𝑖 as 

the primary replica 𝜏𝑖
1 and its replica as the backup replica τi

2. We consider the 

following assumptions: 

 All checkpoints are assumed to be fault-free, i.e., no faults can occur during 

checkpoint saving. 

 Each task’s primary copy and backup copy must not be assigned to the same 

processor. 

 Each task’s primary copy and backup copy cannot be faulty at the same time. 

 Faults are detected as soon as they occur, and the recovery will be with the 

no faulty replica. 

Our goal is to tolerate k faults with respect to task 𝜏𝑖 deadline. To achieve this 

goal, we use active replication technique. However, it is possible that both primary 

and backup replicas are faulty due to multiple fault occurrence. Therefore, our goal 

will be missed, and active replication alone will be infeasible. This is the case in the 

work presented in [17].  

As a solution, we introduce collaboration between replicas to tolerate each 

coming fault in the primary or the backup replicas (𝜏𝑖
1,  𝜏𝑖

2)  to achieve the feasibility 

of our approach. For computation purpose, we add an extra virtual processor to the 

architecture, noted P#. 

b) 𝞽1(1) 𝞽1(2) 

 
  

c) 

𝞽1 a) 

 𝞽1(1) 𝞽1(2) 

 
 𝞽1(2) 

 
 

C1=60ms 

 Checkpoint overhead 𝑂𝑖  

  Recovery overhead 𝑟𝑖 

        Fault k =1 
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Once the active replication approach is decided for a task 𝜏𝑖, we execute the 

following steps: 

Step1.  𝜏𝑖 has to be scheduled on virtual processor P# (𝞽i#) at Start Time ST𝑖 as 

illustrated in Fig. 3a; 

Step2. We insert in (𝞽i#) the appropriate  𝑚𝑖
∗ checkpoints obtained with (12); 

Step3.  τi is replicated, which will result in two replicas 𝜏𝑖
1 and 𝜏𝑖

2 which must 

be scheduled on two different processors;  

Step4. The initial checkpoints of the task 𝞽i# are projected onto 𝜏𝑖
1 and 𝜏𝑖

2 

alternatively, as illustrated in Fig. 3b.  

The alternative checkpointing idea of the two replicas 𝜏𝑖
1 and 𝜏𝑖

2 is to ensure the 

collaboration between replicas and to minimize the number of checkpoints of the 

original task 𝜏𝑖. In this case, we can meet the task deadline even in the presence of 

faults.  

In Fig. 3b, ∆ represents the difference between the start times of the two replicas 

𝜏𝑖
1 and 𝜏𝑖

2 (the start time of each replica depends on the availability of processors). It 

can be written as 

(13)   ∆= ST(𝜏𝑖
1) − ST(𝜏𝑖

2).  

To ensure the success of our alternative checkpointing idea, ∆ should be less or 

equal than the checkpointing interval, so we have 

(14)   0 ≤ ∆ ≤
∁𝑖

𝑚𝑖
. 

With this approach the start time STi of a task 𝜏𝑖 can be given by   

(15)   ST𝑖 = min
1≤𝑗≤2

(ST(𝜏𝑖
𝑗
)) ,     

where ST(𝜏𝑖
𝑗
) is the start time of the replica 𝜏𝑖

𝑗
.  

Consequently, the actual Finish Time FT𝑖 of task 𝜏𝑖
𝑗
  is given by 

(16)   FT𝑖 = ST𝑖 +WCRT𝑖. 
In case of fault occurrence in the execution of one of the replicas (𝜏𝑖

1 or 𝜏𝑖
2), the 

results produced by the no faulty replica must be sent to the faulty replica at 

checkpoint with Send/Receive communication to continue the execution. As shown 

in Fig. 3c, when fault affects the first execution interval 𝜏𝑖
1(1), the no faulty replica 

𝜏𝑖
2 sends at checkpoint the correct state to the faulty task via communication step. 

With alternative checkpointing scheme, the number of checkpoints in each 

replica is equal to ⌊
𝑚𝑖

2
⌋ or ⌈

𝑚𝑖

2
⌉. Hence, in the fault free condition (𝑘 = 0), the worst-

case response time WCRT𝑖  of the task  𝜏𝑖 is given by the term (𝐶𝑖 + ⌊
𝑚𝑖

2
⌋𝑂𝑖). Where 

𝑂𝑖 is the time overhead for saving one checkpoint. 

In case of fault occurrence, the recovery from fault is provided with 

communication step between the replicas 𝜏𝑖
1 and 𝜏𝑖

2. We denote the communication 

overhead by com(𝜏𝑖
1, 𝜏𝑖

2). 
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Fig. 3. Illustration of different steps of collaborative active replication 

In general, in the presence of k faults, the worst case response time WCRT𝑖  of 

the task 𝜏𝑖 using the new active replication with checkpointing is formulated in next 

equation: 

(17)   WCRT𝑖 =

{
 
 

 
 

 

   C𝑖 + ⌊
𝑚𝑖

2
⌋ 𝑂𝑖                if    𝑘 = 0,

    

C𝑖 + ⌈
𝑚𝑖

2
⌉ 𝑂𝑖 + 𝑘com(𝜏𝑖

1, 𝜏𝑖
2)

C𝑖 + ⌊
𝑚𝑖

2
⌋ 𝑂𝑖 + 𝑘com(𝜏𝑖

1, 𝜏𝑖
2).

, otherwise, or  

The best response time WCRTbest of the task  𝜏𝑖  can be written as: 

(18)   WCRTbest(𝜏𝑖) = min1≤𝑗≤2WCRT(𝜏𝑖
𝑗
),   

where WCRT(𝜏𝑖
𝑗
) is the worst case response time of the replica 𝜏𝑖

𝑗
 and is calculated 

with (17). 

   (b) Replicate 𝜏𝑖  on two replicas 𝜏𝑖
1 and 𝜏𝑖

𝟐 which are checkpointed alternatively 

P# Virtual processor 

       Transient fault 

Communication       

overhead 

        Checkpoint projection 

     Checkpoint overhead 

(c)  Fault occurrence scenario 

   𝜏𝑖
1(1)        𝜏𝑖

1(2)  

𝜏𝑖
2(1)   𝜏𝑖

2(2)          𝜏𝑖
2(3) 

𝑫𝒊 

 

P2 

P1 

𝑆𝑇𝑖  
 

𝐹𝑇𝑖  
 

𝝉𝒊
𝟏Finished 

∁𝒊(𝒎𝒊) 

 ∆ 

    𝜏𝑖
1(1)     𝜏𝑖

1(2)  

𝜏𝑖
2(1)   𝜏𝑖

2(2)              𝜏𝑖
2(3) 

𝑫𝒊
⬚ 

 

P2 

P1 

    𝜏𝑖
1(1)         𝜏𝑖

1(2)  

𝜏𝑖
2(1)    𝜏𝑖

2(2)             𝜏𝑖
2(3) 

   𝞽i#(1)   𝞽i#(2)     𝞽i#(3)    

𝞽i#(4) 

𝑫𝒊
⬚ 

 P# 

P2 

P1 

(a) Scheduling of 𝜏i# on virtual processor P# 

 

𝞽i# 
𝑫𝒊
⬚ 

P# 

P2 

P1 

𝑆𝑇𝑖  𝐹𝑇𝑖  

Ci 
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5. DVFS Based Fault-Tolerance Approach 

The DVFS technique can assign different frequencies to each task, which gives us a 

useful way to minimize energy consumption of applications [26]. We extend the 

proposed fault-tolerance approach to incorporate it with DVFS to exploit the released 

slack time to achieve more energy saving.  

According to the proposed fault-tolerance approach, we adopt active replication 

to meet timing constraints and provide high reliability even when deadlines are tight. 

However, task replicas must be performed at the maximum frequency given the 

probability of failure is low. We assume that DVFS is used during uniform 

checkpointing with rollback technique. 

Similar to [18], we assume that checkpointing is not affected by processor 

frequency. We focus on the fault-free execution and like [2] and [27], we aim to 

reduce the fault-free energy consumption because recovery executions have a small 

probability of being performed, and for this reason their energy consumption is a 

negligible fraction of the total energy consumption. The recovery time of a faulty task 

is always performed at the maximum frequency to preserve its original reliability. 

5.1. Optimal frequency assignments 

In this section, we search the optimal frequency assignments assuming all tasks their 

deadlines. In the existence of precedence constraints, a task may have to complete 

well before its deadline to ensure that all its successor tasks can finish in time. 

Therefore, as in [21], we can define the effective deadline of a task 𝜏𝑖 as follows: 

(19)   𝐷𝑖
ef = {

𝐷𝑖 ,                             succ(𝜏𝑖) = ∅,

min(𝐷𝑖, 𝐷𝑗
ef − C𝑗) , 𝜏𝑗 ∈ succ(𝜏𝑖),

     

where succ(𝜏𝑖) is the set of successor tasks of 𝜏𝑖. 

The frequency 𝑓𝑖
opt

 that allows task 𝜏𝑖 to successfully complete execution 

before its deadline 𝐷𝑖
ef while minimizing energy consumption and tolerating k faults 

with checkpointing with rollback should satisfy the following: 

(20)   ST𝑖 +
∁𝑖(𝑚𝑖)

𝑓𝑖
opt + 𝑘𝑅𝑖(𝑚𝑖)  ≤ 𝐷𝑖

ef, 

where ST𝑖 and 
∁𝑖(𝑚𝑖)

𝑓𝑖
opt  are respectively the start time and the fault-free execution time 

of task 𝜏𝑖 with 𝑚𝑖 checkpoints performed at frequency 𝑓𝑖
opt

. 𝑅𝑖(𝑚𝑖) is the recovery 

time of 𝜏𝑖 under a single failure performed at the maximum frequency 𝑓max (∁𝑖(𝑚𝑖) 
and 𝑅(𝑚𝑖) were defined with (7) and (8) respectively).  

After evaluation of (20), we obtain the following solution: 

(21)   𝑓𝑖
opt

≥
∁𝑖(𝑚𝑖)

𝐷𝑖
ef− ST𝑖−𝑘𝑅𝑖(𝑚𝑖)

 

If  𝑓𝑖
opt
 ∄ 𝐹, we choose neighboring frequencies 𝑓𝐿 < 𝑓𝑖

opt
< 𝑓𝐿−1 and 𝑓𝐿−1, 𝑓𝐿 ∈ 𝐹. 

Hence, the minimized energy consumed during the execution of task 𝜏𝑖 is given by: 

(22)   𝐸𝑖(𝑓𝑖
opt
) = Cef

∁𝑖(𝑚𝑖)

𝑓𝑖
opt  𝑓𝑖

opt2
= Cef∁𝑖(𝑚𝑖) 𝑓𝑖

opt
= Cef

∁𝑖(𝑚𝑖)
2

𝐷𝑖
ef−ST𝑖−𝑘𝑅𝑖(𝑚𝑖)

. 
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6. The proposed DVFS fault-tolerant scheduling algorithm  

Our DVFS fault-tolerant schedule is presented in DVFS_FTS Algorithm. The 

algorithm takes as input the application A, the number k of transient faults that have 

to be tolerated, the architecture Ῥ, the set of frequency levels 𝐹 and the real-time 

constraints.  
 

DVFS_FTS Algorithm 

Inputs: 

𝛤 = {𝜏1 , 𝜏2, … 𝜏𝑛} 
Ῥ =   { 𝑃1, 𝑃2, … , 𝑃𝑚} 
𝐹 = {𝑓1, 𝑓2, … , 𝑓𝐿} 

k transient faults for each task 

Real time constraints 

1. TReady = {𝜏𝑖  ∈  𝛤 | pred(𝑡𝑖) = ∅} 
2. Schedulable = True 

3. 𝐸total = 0 

4. While TReady ≠ ∅ do 

5. {  Select 𝜏𝑖  ∈ TReady having the minimum deadline Di 

6. compute WCRT𝑖  with (10) under maximum frequency 

7. compute the start time ST𝑖𝑗 of 𝜏𝑖 on all processor 𝑃𝑗  in Ῥ 

8. ST𝑖 = min
𝑗=1..𝑚

ST𝑖𝑗 

9. If  𝐷𝑖 − ST𝑖 ≥ WCRT𝑖  then 

10. { Schedule 𝜏𝑖 on 𝑃𝑗  at the earliest start time     /* 𝑃𝑗 is the processor with min 

ST𝑖*/ 

11. Apply checkpointing for 𝜏𝑖 

12. compute 𝑓𝑖
opt

 based on (21) 

13. Perform 𝜏𝑖 under 𝑓𝑖
opt

 frequency } 

14. Else 

15. { compute WCRT𝑖  with (17) under maximum frequency 

16. If  𝐷𝑖 − ST𝑖 ≥ WCRT𝑖  then 

17. { Schedule both 𝜏𝑖 on 𝑃𝑗  and its replica on another processor 𝑃𝑘 at the earliest 

start time. 

18. Apply collaborative active replication for 𝜏𝑖 } 

19. Else 

20. { Schedulable = False 

21. break  }} 

22. compute the energy consumption 𝐸𝑖(𝑓𝑖) 
23. 𝐸total = 𝐸total + 𝐸𝑖(𝑓𝑖) 

24. TReady = Tready – {𝜏𝑖} ∪ {𝜏j  ∈  succ(𝜏𝑖)| pred(𝜏𝑗) ∄ TReady} 
25. } End DVFS_FTS 

 

Fig. 4. The proposed DVFS_FTS Algorithm 
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Our scheduling algorithm is a list scheduling based heuristics, which uses the 

concept of ready task and ready list. By ready task 𝜏𝑖, we mean that all 𝜏𝑖‘s 

predecessors have been scheduled. The heuristic initializes the list TReady with tasks 

without predecessors in line 1 and is looping while TReady isn’t empty (line 4-25). 

At first, the ready task 𝜏𝑖 with minimum deadline is selected for placement in the 

schedule (line 5). Then, the maximum response time of the task 𝜏𝑖 will be calculated 

with (10) under maximum frequency (line 6). The checkpointing with rollback policy 

will be applied if the task deadline can be satisfied on the processor 𝑃𝑗 at the earliest 

start time (line 10-13). In this case, the task 𝜏𝑖 will be performed under the frequency 

𝑓𝑖
opt

 calculated based on (21) (line 12-13). Otherwise, the task 𝜏𝑖 will be replicated 

and the proposed new active replication will be applied. In this case, the maximum 

response time of the task 𝜏𝑖 will be calculated with (17) under the maximum 

frequency (line 14-18). After execution of the task 𝜏𝑖, its energy consumption will be 

calculated  and the total energy will be updated in lines 22-23. Finally, the task 𝜏𝑖  will 

be removed from the ready list TReady and all its successors are added to the list in 

line 24.  

7. Performance evaluation 

In this section, we evaluate the performance of the proposed DVFS_FTS algorithm. 

For comparison, we have implemented our algorithm and the following schemes: 

EXH_FTS: Fault tolerant scheduling algorithm with energy minimization using 

exhaustion method. 

DVFS_CH: Fault tolerant scheduling algorithm that uses checkpointing with 

roll back technique for fault tolerance and DVS for reduce energy. This algorithm is 

extended from JFTT scheme [15] for tasks with precedence constraints (application 

DAG). 

The performance is measured in term of normalized total energy saving. We 

formulate the parameter energy saving ES: 

(23)   ES = 100 ×
𝐸FTS−𝐸

𝐸FTS
, 

where 𝐸FTS is the energy consumption of the proposed algorithm with all tasks are 

executed at the highest frequency and 𝐸 is the energy consumption of an algorithm 

being compared with DVFS scheme. 

7.1. Simulation parameters 

Before presenting our experimental results, we present the simulation parameters as 

follows: The method of generating random graphs is the same as [28]. We have 

generated a set of DAG applications with 10, 20, 30, 40 and 50 tasks. Within a task 

set, the worst-case execution time on maximum operating frequency C𝑖 for each task 

is randomly generated with values uniformly distributed in the range of  

[10 ms, 100 ms]. We assume Cef = 1 and the operating frequencies are set as  

𝐹 = {0.1, 0.2,… ,1}. The parameters and the values used in our simulation are 

summarized in Table 1. 
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Table 1. Parameters for simulation 

Parameter Value(fixed-varied) 

Number of processors 4 

Application size (Number of tasks) (10, 20, 30, 40, 50)  

Execution time (ms)  [10 , 100] 

Normalized frequency [0.1 – 1] with a step of 0.1 

Checkpoint overhead O (1%, 2%, 5%, 10%, 15%, 20%) 

Number of faults k (1, 2, 3, 4, 5) 

7.2. Experiment results  

The first set of experiments compares the energy savings of algorithms with respect 

to number of transient faults (Fig. 5). In this experiments, we set application size  
𝛤 = 10 tasks, the checkpoint overhead O = 2% and vary k from 1 up to 5. As can be 

seen clearly from the figure that the performance on energy saving of DVFS_FTS 

algorithm outperforms both DVFS_CH and EXH_FTS schemes. For instance, when 

the number of transient faults is 5 faults, the ES of DVFS_FTS is greater than 

DVFS_CH and EXH_FTS by 7.17% and 6.34% respectively. Furthermore, we can 

observe that the energy savings of the three algorithms decreases with the increase of 

the number of transient faults. 
 

 

Fig. 5. The impact of number of faults on energy saving 

The second set of experiments is to investigate the performance of the different 

approaches with respect to application size (Fig. 6). In this set of experiments, we set 

the checkpoint overhead O = 2% and k =3 and vary the application size 𝛤 from 10 

tasks to 50 tasks. We can see that the energy saving increases when the number of 

tasks increases. The energy saving of DVFS_FTS is greater than DVFS_CH and 

EXH_FTS schemes by: (6.73%, 6.18%), (6.76%, 5.8%), (7.68%, 6.75%), (8.74%, 

8.45%), (8.61%, 8.8%) for number of tasks of 10, 20, 30, 40 and 50, respectively. 

The results of our proposed algorithm always outperform those of the others, which 

show the efficiency of the DVFS_FTS Algorithm. 
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Fig. 6. The impact of application size on energy saving considering k=3 faults 

In the third set of experiments, we show the impact of checkpointing overhead 

on the performance of algorithms (Fig. 7). In this set of experiments, we set 

application size 𝛤 = 20 tasks, k =3 faults and vary O from 1 up to 20%. As can be 

seen from the figure, the energy saving of the three schemes decreases when O 

increases. However, the ES of DVFS_FTS decreases about 5.87% when O increases 

from 1 up to 20% and less than the ES of DVFS_CH and EXH_FTS decrease about 

6.5% and 6.76%, respectively. 
 

 

Fig. 7. The impact of checkpoint overhead on energy saving considering k=3 faults 

From these experiments, we can resume that the proposed algorithm 

DVFS_FTS outperforms the other two algorithms. 

8. Conclusion 

Fault-tolerance and energy minimization are two major concerns in today’s real-time 

embedded system designs. In this paper, we have studied the trade-off between fault 

tolerance and energy minimization in hard real-time systems running on 

multiprocessor platforms. This trade-off arises from the fact that fault tolerance and 

energy conservation exploit the released slack time to achieve more energy saving 

and to improve reliability, respectively. Thus, we first propose an efficient fault-

tolerance approach that combines uniform checkpointing with rollback policy and 

collaborative active replication to explore hardware resources and timing constraint. 

We then present our fault-tolerant scheduling algorithm DVFS_FTS that exploits 
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DVFS technology to reduce energy consumption and the proposed fault-tolerance 

approach to tolerating K transient faults for applications that can be modeled with a 

DAG (precedence-constrained applications). Simulation results have shown that the 

proposed algorithm achieves a considerable amount of energy saving compared to 

EXH_FTS and DVFS_CH algorithms.  

Our work remains opening to future contributions like extend the proposed 

algorithm to heterogeneous multiprocessor platforms and improve the proposed 

collaborative active replication to achieve more energy saving. Furthermore, we will 

study another checkpointing strategy to minimize the optimal number of checkpoints 

for reducing scheduling length and energy consumption. 
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