
 45

BULGARIAN ACADEMY OF SCIENCES

CYBERNETICS AND INFORMATION TECHNOLOGIES Volume 19, No 4

Sofia 2019 Print ISSN: 1311-9702; Online ISSN: 1314-4081

DOI: 10.2478/cait-2019-0035

An Efficient Fault-Tolerant Scheduling Approach with Energy

Minimization for Hard Real-Time Embedded Systems

Barkahoum Kada1, Hamoudi Kalla2
1Computer Science Department, University Batna 2, Batna 05000, Algeria
2Department of Computer Science, University Batna 2, Batna 05000, Algeria

E-mails: b.kada@univ-batna2.dz Hamoudi.kalla@ univ-batna2.dz

Abstract: In this paper, we focus on two major problems in hard real-time embedded

systems fault tolerance and energy minimization. Fault tolerance is achieved via both

checkpointing technique and active replication strategy to tolerate multiple transient

faults, whereas energy minimization is achieved by adapting Dynamic Voltage

Frequency Scaling (DVFS) technique. First, we introduce an original fault-tolerance

approach for hard real-time systems on multiprocessor platforms. Based on this

approach, we then propose DVFS_FTS algorithm for energy-efficient fault-tolerant

scheduling of precedence-constrained applications. DVFS_FTS is based on a list

scheduling heuristics, it satisfies real-time constraints and minimizes energy

consumption even in the presence of faults by exploring the multiprocessor

architecture. Simulation results reveal that the proposed algorithm can save a

significant amount of energy while preserving the required fault-tolerance of the

system and outperforms other related approaches in energy savings.

Keywords: Fault tolerance, Transient faults, Checkpointing, Active replication,

Dynamic Voltage Frequency Scaling (DVFS), Energy minimization.

1. Introduction

Energy consumption and fault tolerance have attracted a lot of interest in the design

of modern embedded real-time systems. Fault tolerance is fundamental for these

systems to satisfy their real-time constraints even in the presence of faults. Transient

faults are most common, and their number is dramatically increasing due to the high

complexity, smaller transistors sizes, higher operational frequency, and lowering

voltages [1-5].

Dynamic power/energy management is an active area of research and many

techniques have been proposed to minimize energy consumption under a large

diversity of system and task models [6, 7]. Dynamic Voltage and Frequency Scaling

(DVFS) is an energy saving technology enabled on most current processors. It

 46

enables a processor to operate at multiple voltages where each corresponds to a

specific frequency. Because the energy consumption of a processor is proportional to

voltage squared, the processor’s energy consumption can be considerably reduced by

lowering CPU voltage and processing speed [8].

Addressing energy and fault-tolerance simultaneously is a challenge because

lowering the voltage to reduce energy consumption has been shown to increase the

number of transient faults [4, 11, 20]. Furthermore, reducing working frequency

increases task execution time, which can lead to no guarantee of task deadlines.

This paper presents first a novel fault-tolerance approach to tolerate a fixed

number of transient faults. Our approach combines active replication which provides

space-redundancy and checkpointing with rollback recovery which provides time-

based redundancy. Based on this approach and DVFS technique, we propose a fault-

tolerant DVFS scheduling heuristic, which generates, from a given hard real-time

application and a given multiprocessor architecture, a task allocation scheme that

minimizes energy consumption and tolerates k arbitrary transient faults.

The rest of the paper is organized as follows. An overview of related work is

provided in Section 2. The system models considered in this work are introduced in

Section 3. The proposed fault-tolerance approach is explained in Section 4. The

strategy that utilizes this approach and DVFS technique to minimize energy is

provided in Section 5. The proposed DVFS_FTS algorithm is presented in Section 6.

Simulation results are discussed in Section 7, and finally, the conclusion is given in

Section 8.

2. Related works

Several papers have been published that are closely related to our research, these

researches differ in many aspects, such as task models (dependent or independent

tasks, hard or soft deadlines, periodic or aperiodic tasks), multiprocessor or

uniprocessor platforms, online or offline scheduling and the fault-tolerance technique

adopted.

Authors in [9] proposed a scheduling heuristic to minimize the schedule length,

the global system failure rate and the power consumption of the generated schedule.

Active replication of tasks and data dependencies is used to increase the system

reliability and dynamic voltage scaling DVS is used for energy minimization. The

primary-backup (passive replication) approach is used by S a m a l, M a l l and

T r i p a t h y [10] as a fault-tolerant scheduling technique to guarantee real-time task

constraints in the presence of permanent or transient fault. Authors proposed a

scheduling algorithm using a hybrid genetic algorithm. G a n et al. [11] proposed a

synthesis approach to decide the mapping of hard real-time applications on

distributed heterogeneous systems, such that multiple transient faults are tolerated,

and the energy consumed is minimized. For recovery from faults, they used

replication technique.

The replication technique is effective to tolerate multiple spatial faults

(permanent or transient) and it is more preferable for safety-critical systems.

 47

However, scheduling multiple replicas of each task on different processors may not

be affordable due to cost constraints.

Checkpointing with rollback recovery [7, 12-15] and re-execution [16] are

classified by Motaghi and Zarandi [17] as time based-redundancy methods. These

methods try to deal with transient faults by serial executions on the same processor

of the faulty task.

D j o s i c and J e v t i c [1] developed a fault-tolerant DVFS algorithm for real-

time application of independent tasks. This algorithm combines DVFS for optimizing

energy consumption and re-execution recovery for fault tolerance, but their scope is

restricted to single processor systems. In [18], authors introduced an efficient method

to determine the checkpointing scheme that can tolerate k transient faults on a single

processor. They also proposed a task allocation scheme to reduce energy

consumption.

The combination of replication and time-based redundancy techniques to

tolerate multiple transient faults with low overhead in terms of energy consumption

and total execution time has been studied in few works related to our research

[19, 20].

Authors in [19] have proposed a fault-tolerance policy assignment strategy to

decide which fault-tolerance technique, for instance checkpointing, active replication

or their combination, is the best suited for a particular process in the application but

energy consumption is not studied in their proposition. T a v a n a et al. [20] have

proposed a standby-sparing scheme which addressed simultaneously reliability and

energy consumption. The proposed scheme by employing both hardware redundancy

(standby-sparing) and time redundancy (re-execution) in some cases, can tolerate

many transient faults. To reduce energy consumption, they applied two techniques

DPM (Dynamic Power Management) used by the spare unit and DVS (Dynamic

Voltage Scaling) used by the primary processor.

This paper attempts to solve the following problem “Given a set 𝛤 of hard real-

time dependent tasks and a set Ῥ of homogeneous processors which support L

frequency levels, find the scheduling for all tasks in 𝛤 such that the total energy

consumption is reduced without any deadline miss while ensuring fault-tolerance

requirement”.

The main contributions of this paper are summarized as follows:

 Tolerating multiple transient fault occurrences with respect to application

time-constraints.

 Combine two different policies: checkpointing and active replication to

propose an efficient fault-tolerance approach that explores hardware resources and

timing constraints.

 Extend the proposed fault-tolerance approach to incorporate it with DVFS to

achieve more energy saving.

 Efficient fault-tolerant scheduling heuristic DVFS_FTS of precedence-

constrained applications based on the earliest-deadline-first (EDF) algorithm and the

proposed fault-tolerance approach is presented to minimize the system energy

consumption while tolerating k transient faults.

 48

3. System models

3.1. Application model

The real-time application considered in this paper consists of n hard aperiodic

dependent tasks, denoted as 𝛤 = {𝜏1 , 𝜏2, … , 𝜏𝑛}. Tasks are non-preemptive and

cannot be interrupted by other tasks. Tasks send their output values in messages,

when terminated. All required inputs have to arrive before activation of the task. The

dependence 𝜏𝑖 → 𝜏𝑗 means that 𝜏𝑖 execution precedes 𝜏𝑗 execution. So we say that 𝜏𝑗

is a successor of 𝜏𝑖 and symmetrically that 𝜏𝑖 is a predecessor of 𝜏𝑗 . Each task 𝜏𝑖 is

characterised by a tuple (𝐶𝑖, 𝐷𝑖), where 𝐶𝑖 is the worst case execution time of the task

at the maximum frequency/voltage in a fault free condition and 𝐷𝑖 is the deadline of

the task. The utilization of task 𝜏𝑖 is

(1) 𝑈𝑖 =
𝐶𝑖

𝐷𝑖
, where 0 ≤ 𝑈𝑖 ≤ 1.

The system utilization is therefore calculated according to next equation:

(2) 𝑈 = ∑ 𝑈𝑖
𝑛
𝑖=1 .

We model an application A as a Directed Acyclic Graph (DAG). Each node

represents one task. An edge eij indicates data-dependency between two tasks 𝜏𝑖
and 𝜏𝑗.

Fig. 1. Hard real time application example

An example of an application A1 composed of five dependant tasks
{𝜏1 , 𝜏2, … , 𝜏5} is represented as a DAG G1 shown in Fig. 1.

3.2. Hardware model

The architecture is considered as a set of m homogeneous processors denoted as:

Ῥ = {P1, P2, …, Pm}. Each processor is connected with the others through

communication links. As so, our architecture is homogeneous and fully connected.

3.3. Fault model

During the execution of an application, faults may be hard to avoid due to different

reasons, such as hardware failure, software errors, devices exposed to intense

temperatures, and external impacts [22]. As a result, transient faults are more frequent

A1: G1

𝞽4

𝞽2 𝞽3

𝞽1

𝞽5

C2 = 40ms

D2= 200ms

C4 = 40ms

D4 = 240ms

C1 = 30ms

D1 = 160ms

C3= 60ms

D3 = 200ms

C5 = 50ms

D5 = 240ms

 49

than permanent ones. Hence, authors in this paper are interested in tolerating transient

faults as the number of these faults has been dramatically higher.

3.4. Energy model

We assume that there are m processors, each of them is DVFS enabled with a set of

L operating frequencies. We denote with 𝐹 = {𝑓1, 𝑓2, … , 𝑓𝐿} with 0 ≤ 𝑓𝐿 ≤ 𝑓𝐿−1 ≤
⋯ ≤ 𝑓1 = 𝑓max. We assume the frequency values are normalized with respect to

𝑓max, i.e., 𝑓max = 1.

The energy model used in this work is the same to the one, used in the literature

[1, 6, 9, 22], where the power consumption P of a system is given by

(3) 𝑃s+h(𝑃ind +𝐶ef 𝑉
2𝑓), 𝑃 = 𝑃s+h(𝑃ind + 𝑃d) ,

where 𝑃s is the static power, 𝑃ind is the frequency-independent power and 𝑃d is the

frequency-dependent power. The parameter h = 1 when the system is in the working

state. Otherwise, when the system is in the standby state, h = 0. 𝐶ef is the effective

loading capacitance, 𝑓 is the operating frequency and V is the supply voltage. The

static power can be removed only by turning off the whole system, 𝑃ind is a constant

independent of operating frequency. As the energy consumption due to frequency

scaling is independent of 𝑃s, we take into account only the frequency-dependent

power 𝑃d and we set 𝑃s = 0. Hence, the power consumption P can be written as:

(4) 𝑃 = 𝐶ef 𝑉
2𝑓.

Since 𝑓 ∝ 𝑉, and according to (4), the dynamic power 𝑃 can be expressed as a

polynomial of frequency of degree 𝛼, where 𝛼 has been set to 3 in most of the

published papers on energy consumption [22, 23]. Hence, we reformulate 𝑃 in (5) as

(5) 𝑃 = 𝐶ef𝑓
3.

The energy consumed by task 𝜏𝑖 is

(6) 𝐸𝑖(𝑓𝑖) = 𝐶ef 𝐶𝑖 𝑓𝑖
2,

where 𝐶𝑖 𝑖𝑠 the execution time of task 𝜏𝑖 under frequency 𝑓𝑖. The total energy

𝐸total consumed by processors during the execution of a task set is

(7) 𝐸total = ∑ 𝐸𝑖(𝑓𝑖)
𝑛
𝑖=1 .

In this study, we consider only processor energy consumption.

4. The proposed fault-tolerance approach

We propose a mixed fault-tolerance approach, which combines software replication

and time-based redundancy for tolerating k transient faults. We use these two

techniques in order to meet time constraints and to increase the reliability of hard

real-time applications even in the presence of faults.

As time-based redundancy, we use uniform checkpointing with rollbacks. Once

a fault is detected, the application rolls back to the last saved checkpoint and re-

executes the faulty interval [19]. Inserting one checkpoint to task 𝜏𝑖 refers to save its

current state in memory for recovery. As software replication, we use active

replication in case that checkpointing with rollbacks cannot satisfy task deadline.

 50

4.1. Uniform Checkpointing with Rollback Recovery

The time overhead for re-execution can be reduced with more complex techniques

such as rollback recovery with checkpointing [15]. By using this technique, once a

fault is detected during the execution of the task 𝜏𝑖, it needs to restore the saved state

to continue task execution. We consider the following assumptions:

 The checkpointing is uniform (checkpoint intervals are equal for the same

task).

 Faults are detected as soon as they occur.

 The checkpoint saving and rollback recovery are themselves fault-tolerant.

The fault-free execution time of task 𝜏𝑖 using uniform checkpointing is a

function of the number of checkpoints 𝑚𝑖 and is formulated as

(8) ∁𝑖(𝑚𝑖) = ∁𝑖 +𝑚𝑖𝑂𝑖,
where 𝑂𝑖 is the time overhead for saving one checkpoint.

The recovery time of 𝜏𝑖 with 𝑚𝑖 checkpoints under a single failure is formulated

as

(9) 𝑅𝑖(𝑚𝑖) = 𝑟𝑖 +
∁𝑖

𝑚𝑖
,

where 𝑟𝑖 is the time overhead to rollback to the latest checkpoint.

In general, in the presence of k faults, the Worst-Case Response Time WCRT𝑖 of

task 𝜏𝑖 using uniform checkpointing with rollback recovery is given by:

(10) WCRT𝑖(𝑚𝑖) = ∁𝑖(𝑚𝑖) + 𝑘𝑅𝑖(𝑚𝑖).
P o p et al. [19] showed that the optimal number of checkpoints 𝑚𝑖

∗ to minimize

the worst case response time WCRT𝑖 considering k faults can be calculated as:

(11) 𝑚𝑖
∗ =

{

 𝑚𝑖
− = ⌊√

𝑘∁𝑖

𝑂𝑖
⌋ if ∁𝑖 ≤ 𝑚𝑖

−(𝑚𝑖
− + 1)

𝑂𝑖

𝑘
,

 𝑚𝑖
+ = ⌈√

𝑘∁𝑖

𝑂𝑖
⌉ if ∁𝑖 > 𝑚𝑖

−(𝑚𝑖
− + 1)

𝑂𝑖

𝑘
,

where 𝑂𝑖 is the time overhead for saving one checkpoint and C𝑖 is the worst case

execution time of task 𝜏𝑖. As the number of checkpoints is an integer, thus we use

𝑚𝑖
− (the floor) or 𝑚𝑖

+(the ceiling) as a value. If ∁𝑖 ≤ 𝑚𝑖
−(𝑚𝑖

− + 1)
𝑂𝑖

𝑘
 , we use the

floor value. Otherwise, the ceiling value is used.

For the sake of easy presentation, 𝑚𝑖
∗ is simply denoted by (12)

(12) 𝑚𝑖
∗ = ‖√

𝑘∁𝑖

𝑂𝑖
‖.

An example of uniform checkpointing with rollback recovery is presented in

Fig. 2.

We consider task 𝜏1 with worst execution time ∁1= 60 ms in Fig. 2a. In Fig. 2b

two equidistant checkpoints are inserted. Thus, task 𝜏1 is composed of two execution

intervals 𝜏1(1) and 𝜏1(2). In Fig. 2c, a fault affects the second execution interval 𝜏1(2).

This faulty interval is re-executed again starting from the second checkpoint.

 51

Fig. 2. Uniform checkpointing with rollback recovery

4.2. Collaborative active replication

Uniform checkpointing with rollback recovery technique cannot explore the available

processors in the architecture to reduce the schedule length [24]. If the task

experiences a fault, then it has to recover on the same processor. In contrast, software

replication techniques (active and passive replication) can utilize the spare capacity

of the other processors. Software replication has the ability to execute task replicas

simultaneously on different processors. With active replication, all the task replicas

are executed independent of fault occurrences [25]. However, with passive

replication, backup replicas are executed only if the primary replica is faulty [29, 30].

In our work, we are interested in active replication. If there is enough time to

rollback to the last saved checkpoint in the presence of faults, we use active

replication to guarantee and respect task 𝜏𝑖 deadline. The task 𝜏𝑖 is replicated on two

collaborative replicas; 𝜏𝑖
1 and 𝜏𝑖

2, both of which are be executed on different

processors at the same time. We also introduce collaboration between replicas to

tolerate multiple faults and respect task 𝜏𝑖 deadline.

For the sake of uniformity and clarity, we will consider the original task 𝜏𝑖 as

the primary replica 𝜏𝑖
1 and its replica as the backup replica τi

2. We consider the

following assumptions:

 All checkpoints are assumed to be fault-free, i.e., no faults can occur during

checkpoint saving.

 Each task’s primary copy and backup copy must not be assigned to the same

processor.

 Each task’s primary copy and backup copy cannot be faulty at the same time.

 Faults are detected as soon as they occur, and the recovery will be with the

no faulty replica.

Our goal is to tolerate k faults with respect to task 𝜏𝑖 deadline. To achieve this

goal, we use active replication technique. However, it is possible that both primary

and backup replicas are faulty due to multiple fault occurrence. Therefore, our goal

will be missed, and active replication alone will be infeasible. This is the case in the

work presented in [17].

As a solution, we introduce collaboration between replicas to tolerate each

coming fault in the primary or the backup replicas (𝜏𝑖
1, 𝜏𝑖

2) to achieve the feasibility

of our approach. For computation purpose, we add an extra virtual processor to the

architecture, noted P#.

b) 𝞽1(1) 𝞽1(2)

c)

𝞽1 a)

 𝞽1(1) 𝞽1(2)

 𝞽1(2)

C1=60ms

 Checkpoint overhead 𝑂𝑖

 Recovery overhead 𝑟𝑖

 Fault k =1

 52

Once the active replication approach is decided for a task 𝜏𝑖, we execute the

following steps:

Step1. 𝜏𝑖 has to be scheduled on virtual processor P# (𝞽i#) at Start Time ST𝑖 as

illustrated in Fig. 3a;

Step2. We insert in (𝞽i#) the appropriate 𝑚𝑖
∗ checkpoints obtained with (12);

Step3. τi is replicated, which will result in two replicas 𝜏𝑖
1 and 𝜏𝑖

2 which must

be scheduled on two different processors;

Step4. The initial checkpoints of the task 𝞽i# are projected onto 𝜏𝑖
1 and 𝜏𝑖

2

alternatively, as illustrated in Fig. 3b.

The alternative checkpointing idea of the two replicas 𝜏𝑖
1 and 𝜏𝑖

2 is to ensure the

collaboration between replicas and to minimize the number of checkpoints of the

original task 𝜏𝑖. In this case, we can meet the task deadline even in the presence of

faults.

In Fig. 3b, ∆ represents the difference between the start times of the two replicas

𝜏𝑖
1 and 𝜏𝑖

2 (the start time of each replica depends on the availability of processors). It

can be written as

(13) ∆= ST(𝜏𝑖
1) − ST(𝜏𝑖

2).

To ensure the success of our alternative checkpointing idea, ∆ should be less or

equal than the checkpointing interval, so we have

(14) 0 ≤ ∆ ≤
∁𝑖

𝑚𝑖
.

With this approach the start time STi of a task 𝜏𝑖 can be given by

(15) ST𝑖 = min
1≤𝑗≤2

(ST(𝜏𝑖
𝑗
)) ,

where ST(𝜏𝑖
𝑗
) is the start time of the replica 𝜏𝑖

𝑗
.

Consequently, the actual Finish Time FT𝑖 of task 𝜏𝑖
𝑗
 is given by

(16) FT𝑖 = ST𝑖 +WCRT𝑖.
In case of fault occurrence in the execution of one of the replicas (𝜏𝑖

1 or 𝜏𝑖
2), the

results produced by the no faulty replica must be sent to the faulty replica at

checkpoint with Send/Receive communication to continue the execution. As shown

in Fig. 3c, when fault affects the first execution interval 𝜏𝑖
1(1), the no faulty replica

𝜏𝑖
2 sends at checkpoint the correct state to the faulty task via communication step.

With alternative checkpointing scheme, the number of checkpoints in each

replica is equal to ⌊
𝑚𝑖

2
⌋ or ⌈

𝑚𝑖

2
⌉. Hence, in the fault free condition (𝑘 = 0), the worst-

case response time WCRT𝑖 of the task 𝜏𝑖 is given by the term (𝐶𝑖 + ⌊
𝑚𝑖

2
⌋𝑂𝑖). Where

𝑂𝑖 is the time overhead for saving one checkpoint.

In case of fault occurrence, the recovery from fault is provided with

communication step between the replicas 𝜏𝑖
1 and 𝜏𝑖

2. We denote the communication

overhead by com(𝜏𝑖
1, 𝜏𝑖

2).

 53

Fig. 3. Illustration of different steps of collaborative active replication

In general, in the presence of k faults, the worst case response time WCRT𝑖 of

the task 𝜏𝑖 using the new active replication with checkpointing is formulated in next

equation:

(17) WCRT𝑖 =

{

 C𝑖 + ⌊
𝑚𝑖

2
⌋ 𝑂𝑖 if 𝑘 = 0,

C𝑖 + ⌈
𝑚𝑖

2
⌉ 𝑂𝑖 + 𝑘com(𝜏𝑖

1, 𝜏𝑖
2)

C𝑖 + ⌊
𝑚𝑖

2
⌋ 𝑂𝑖 + 𝑘com(𝜏𝑖

1, 𝜏𝑖
2).

, otherwise, or

The best response time WCRTbest of the task 𝜏𝑖 can be written as:

(18) WCRTbest(𝜏𝑖) = min1≤𝑗≤2WCRT(𝜏𝑖
𝑗
),

where WCRT(𝜏𝑖
𝑗
) is the worst case response time of the replica 𝜏𝑖

𝑗
 and is calculated

with (17).

 (b) Replicate 𝜏𝑖 on two replicas 𝜏𝑖
1 and 𝜏𝑖

𝟐 which are checkpointed alternatively

P# Virtual processor

 Transient fault

Communication

overhead

 Checkpoint projection

 Checkpoint overhead

(c) Fault occurrence scenario

 𝜏𝑖
1(1) 𝜏𝑖

1(2)

𝜏𝑖
2(1) 𝜏𝑖

2(2) 𝜏𝑖
2(3)

𝑫𝒊

P2

P1

𝑆𝑇𝑖

𝐹𝑇𝑖

𝝉𝒊
𝟏Finished

∁𝒊(𝒎𝒊)

 ∆

 𝜏𝑖
1(1) 𝜏𝑖

1(2)

𝜏𝑖
2(1) 𝜏𝑖

2(2) 𝜏𝑖
2(3)

𝑫𝒊
⬚

P2

P1

 𝜏𝑖
1(1) 𝜏𝑖

1(2)

𝜏𝑖
2(1) 𝜏𝑖

2(2) 𝜏𝑖
2(3)

 𝞽i#(1) 𝞽i#(2) 𝞽i#(3)

𝞽i#(4)

𝑫𝒊
⬚

 P#

P2

P1

(a) Scheduling of 𝜏i# on virtual processor P#

𝞽i#
𝑫𝒊
⬚

P#

P2

P1

𝑆𝑇𝑖 𝐹𝑇𝑖

Ci

 54

5. DVFS Based Fault-Tolerance Approach

The DVFS technique can assign different frequencies to each task, which gives us a

useful way to minimize energy consumption of applications [26]. We extend the

proposed fault-tolerance approach to incorporate it with DVFS to exploit the released

slack time to achieve more energy saving.

According to the proposed fault-tolerance approach, we adopt active replication

to meet timing constraints and provide high reliability even when deadlines are tight.

However, task replicas must be performed at the maximum frequency given the

probability of failure is low. We assume that DVFS is used during uniform

checkpointing with rollback technique.

Similar to [18], we assume that checkpointing is not affected by processor

frequency. We focus on the fault-free execution and like [2] and [27], we aim to

reduce the fault-free energy consumption because recovery executions have a small

probability of being performed, and for this reason their energy consumption is a

negligible fraction of the total energy consumption. The recovery time of a faulty task

is always performed at the maximum frequency to preserve its original reliability.

5.1. Optimal frequency assignments

In this section, we search the optimal frequency assignments assuming all tasks their

deadlines. In the existence of precedence constraints, a task may have to complete

well before its deadline to ensure that all its successor tasks can finish in time.

Therefore, as in [21], we can define the effective deadline of a task 𝜏𝑖 as follows:

(19) 𝐷𝑖
ef = {

𝐷𝑖 , succ(𝜏𝑖) = ∅,

min(𝐷𝑖, 𝐷𝑗
ef − C𝑗) , 𝜏𝑗 ∈ succ(𝜏𝑖),

where succ(𝜏𝑖) is the set of successor tasks of 𝜏𝑖.

The frequency 𝑓𝑖
opt

 that allows task 𝜏𝑖 to successfully complete execution

before its deadline 𝐷𝑖
ef while minimizing energy consumption and tolerating k faults

with checkpointing with rollback should satisfy the following:

(20) ST𝑖 +
∁𝑖(𝑚𝑖)

𝑓𝑖
opt + 𝑘𝑅𝑖(𝑚𝑖) ≤ 𝐷𝑖

ef,

where ST𝑖 and
∁𝑖(𝑚𝑖)

𝑓𝑖
opt are respectively the start time and the fault-free execution time

of task 𝜏𝑖 with 𝑚𝑖 checkpoints performed at frequency 𝑓𝑖
opt

. 𝑅𝑖(𝑚𝑖) is the recovery

time of 𝜏𝑖 under a single failure performed at the maximum frequency 𝑓max (∁𝑖(𝑚𝑖)
and 𝑅(𝑚𝑖) were defined with (7) and (8) respectively).

After evaluation of (20), we obtain the following solution:

(21) 𝑓𝑖
opt

≥
∁𝑖(𝑚𝑖)

𝐷𝑖
ef− ST𝑖−𝑘𝑅𝑖(𝑚𝑖)

If 𝑓𝑖
opt
 ∄ 𝐹, we choose neighboring frequencies 𝑓𝐿 < 𝑓𝑖

opt
< 𝑓𝐿−1 and 𝑓𝐿−1, 𝑓𝐿 ∈ 𝐹.

Hence, the minimized energy consumed during the execution of task 𝜏𝑖 is given by:

(22) 𝐸𝑖(𝑓𝑖
opt
) = Cef

∁𝑖(𝑚𝑖)

𝑓𝑖
opt 𝑓𝑖

opt2
= Cef∁𝑖(𝑚𝑖) 𝑓𝑖

opt
= Cef

∁𝑖(𝑚𝑖)
2

𝐷𝑖
ef−ST𝑖−𝑘𝑅𝑖(𝑚𝑖)

.

 55

6. The proposed DVFS fault-tolerant scheduling algorithm

Our DVFS fault-tolerant schedule is presented in DVFS_FTS Algorithm. The

algorithm takes as input the application A, the number k of transient faults that have

to be tolerated, the architecture Ῥ, the set of frequency levels 𝐹 and the real-time

constraints.

DVFS_FTS Algorithm

Inputs:

𝛤 = {𝜏1 , 𝜏2, … 𝜏𝑛}
Ῥ = { 𝑃1, 𝑃2, … , 𝑃𝑚}
𝐹 = {𝑓1, 𝑓2, … , 𝑓𝐿}

k transient faults for each task

Real time constraints

1. TReady = {𝜏𝑖 ∈ 𝛤 | pred(𝑡𝑖) = ∅}
2. Schedulable = True

3. 𝐸total = 0

4. While TReady ≠ ∅ do

5. { Select 𝜏𝑖 ∈ TReady having the minimum deadline Di

6. compute WCRT𝑖 with (10) under maximum frequency

7. compute the start time ST𝑖𝑗 of 𝜏𝑖 on all processor 𝑃𝑗 in Ῥ

8. ST𝑖 = min
𝑗=1..𝑚

ST𝑖𝑗

9. If 𝐷𝑖 − ST𝑖 ≥ WCRT𝑖 then

10. { Schedule 𝜏𝑖 on 𝑃𝑗 at the earliest start time /* 𝑃𝑗 is the processor with min

ST𝑖*/

11. Apply checkpointing for 𝜏𝑖

12. compute 𝑓𝑖
opt

 based on (21)

13. Perform 𝜏𝑖 under 𝑓𝑖
opt

 frequency }

14. Else

15. { compute WCRT𝑖 with (17) under maximum frequency

16. If 𝐷𝑖 − ST𝑖 ≥ WCRT𝑖 then

17. { Schedule both 𝜏𝑖 on 𝑃𝑗 and its replica on another processor 𝑃𝑘 at the earliest

start time.

18. Apply collaborative active replication for 𝜏𝑖 }

19. Else

20. { Schedulable = False

21. break }}

22. compute the energy consumption 𝐸𝑖(𝑓𝑖)
23. 𝐸total = 𝐸total + 𝐸𝑖(𝑓𝑖)

24. TReady = Tready – {𝜏𝑖} ∪ {𝜏j ∈ succ(𝜏𝑖)| pred(𝜏𝑗) ∄ TReady}
25. } End DVFS_FTS

Fig. 4. The proposed DVFS_FTS Algorithm

 56

Our scheduling algorithm is a list scheduling based heuristics, which uses the

concept of ready task and ready list. By ready task 𝜏𝑖, we mean that all 𝜏𝑖‘s

predecessors have been scheduled. The heuristic initializes the list TReady with tasks

without predecessors in line 1 and is looping while TReady isn’t empty (line 4-25).

At first, the ready task 𝜏𝑖 with minimum deadline is selected for placement in the

schedule (line 5). Then, the maximum response time of the task 𝜏𝑖 will be calculated

with (10) under maximum frequency (line 6). The checkpointing with rollback policy

will be applied if the task deadline can be satisfied on the processor 𝑃𝑗 at the earliest

start time (line 10-13). In this case, the task 𝜏𝑖 will be performed under the frequency

𝑓𝑖
opt

 calculated based on (21) (line 12-13). Otherwise, the task 𝜏𝑖 will be replicated

and the proposed new active replication will be applied. In this case, the maximum

response time of the task 𝜏𝑖 will be calculated with (17) under the maximum

frequency (line 14-18). After execution of the task 𝜏𝑖, its energy consumption will be

calculated and the total energy will be updated in lines 22-23. Finally, the task 𝜏𝑖 will

be removed from the ready list TReady and all its successors are added to the list in

line 24.

7. Performance evaluation

In this section, we evaluate the performance of the proposed DVFS_FTS algorithm.

For comparison, we have implemented our algorithm and the following schemes:

EXH_FTS: Fault tolerant scheduling algorithm with energy minimization using

exhaustion method.

DVFS_CH: Fault tolerant scheduling algorithm that uses checkpointing with

roll back technique for fault tolerance and DVS for reduce energy. This algorithm is

extended from JFTT scheme [15] for tasks with precedence constraints (application

DAG).

The performance is measured in term of normalized total energy saving. We

formulate the parameter energy saving ES:

(23) ES = 100 ×
𝐸FTS−𝐸

𝐸FTS
,

where 𝐸FTS is the energy consumption of the proposed algorithm with all tasks are

executed at the highest frequency and 𝐸 is the energy consumption of an algorithm

being compared with DVFS scheme.

7.1. Simulation parameters

Before presenting our experimental results, we present the simulation parameters as

follows: The method of generating random graphs is the same as [28]. We have

generated a set of DAG applications with 10, 20, 30, 40 and 50 tasks. Within a task

set, the worst-case execution time on maximum operating frequency C𝑖 for each task

is randomly generated with values uniformly distributed in the range of

[10 ms, 100 ms]. We assume Cef = 1 and the operating frequencies are set as

𝐹 = {0.1, 0.2,… ,1}. The parameters and the values used in our simulation are

summarized in Table 1.

 57

Table 1. Parameters for simulation

Parameter Value(fixed-varied)

Number of processors 4

Application size (Number of tasks) (10, 20, 30, 40, 50)

Execution time (ms) [10 , 100]

Normalized frequency [0.1 – 1] with a step of 0.1

Checkpoint overhead O (1%, 2%, 5%, 10%, 15%, 20%)

Number of faults k (1, 2, 3, 4, 5)

7.2. Experiment results

The first set of experiments compares the energy savings of algorithms with respect

to number of transient faults (Fig. 5). In this experiments, we set application size
𝛤 = 10 tasks, the checkpoint overhead O = 2% and vary k from 1 up to 5. As can be

seen clearly from the figure that the performance on energy saving of DVFS_FTS

algorithm outperforms both DVFS_CH and EXH_FTS schemes. For instance, when

the number of transient faults is 5 faults, the ES of DVFS_FTS is greater than

DVFS_CH and EXH_FTS by 7.17% and 6.34% respectively. Furthermore, we can

observe that the energy savings of the three algorithms decreases with the increase of

the number of transient faults.

Fig. 5. The impact of number of faults on energy saving

The second set of experiments is to investigate the performance of the different

approaches with respect to application size (Fig. 6). In this set of experiments, we set

the checkpoint overhead O = 2% and k =3 and vary the application size 𝛤 from 10

tasks to 50 tasks. We can see that the energy saving increases when the number of

tasks increases. The energy saving of DVFS_FTS is greater than DVFS_CH and

EXH_FTS schemes by: (6.73%, 6.18%), (6.76%, 5.8%), (7.68%, 6.75%), (8.74%,

8.45%), (8.61%, 8.8%) for number of tasks of 10, 20, 30, 40 and 50, respectively.

The results of our proposed algorithm always outperform those of the others, which

show the efficiency of the DVFS_FTS Algorithm.

En
e

rg
y

sa
vi

n
g

(%
)

Number of Faults K

EXH_FTS

DVFS_CH

DVFS_FTS

 58

Fig. 6. The impact of application size on energy saving considering k=3 faults

In the third set of experiments, we show the impact of checkpointing overhead

on the performance of algorithms (Fig. 7). In this set of experiments, we set

application size 𝛤 = 20 tasks, k =3 faults and vary O from 1 up to 20%. As can be

seen from the figure, the energy saving of the three schemes decreases when O

increases. However, the ES of DVFS_FTS decreases about 5.87% when O increases

from 1 up to 20% and less than the ES of DVFS_CH and EXH_FTS decrease about

6.5% and 6.76%, respectively.

Fig. 7. The impact of checkpoint overhead on energy saving considering k=3 faults

From these experiments, we can resume that the proposed algorithm

DVFS_FTS outperforms the other two algorithms.

8. Conclusion

Fault-tolerance and energy minimization are two major concerns in today’s real-time

embedded system designs. In this paper, we have studied the trade-off between fault

tolerance and energy minimization in hard real-time systems running on

multiprocessor platforms. This trade-off arises from the fact that fault tolerance and

energy conservation exploit the released slack time to achieve more energy saving

and to improve reliability, respectively. Thus, we first propose an efficient fault-

tolerance approach that combines uniform checkpointing with rollback policy and

collaborative active replication to explore hardware resources and timing constraint.

We then present our fault-tolerant scheduling algorithm DVFS_FTS that exploits

En
e

rg
y

sa
vi

n
g

(%
)

Number of tasks

EXH_FTS

DVFS_CH

DVFS_FTS

En
e

rg
y

sa
vi

n
g

(%
)

Checkpoint overhead (O)

EXH_FTS

DVFS_CH

DVFS_FTS

 59

DVFS technology to reduce energy consumption and the proposed fault-tolerance

approach to tolerating K transient faults for applications that can be modeled with a

DAG (precedence-constrained applications). Simulation results have shown that the

proposed algorithm achieves a considerable amount of energy saving compared to

EXH_FTS and DVFS_CH algorithms.

Our work remains opening to future contributions like extend the proposed

algorithm to heterogeneous multiprocessor platforms and improve the proposed

collaborative active replication to achieve more energy saving. Furthermore, we will

study another checkpointing strategy to minimize the optimal number of checkpoints

for reducing scheduling length and energy consumption.

R e f e r e n c e s

1. D j o s i c, S., M. J e v t i c. Dynamic Voltage and Frequency Scaling Algorithm for Fault Tolerant

Real-Time Systems. – Microelectronics Reliability Journal of Elsevier, Vol. 53, 2013,

pp. 1036-1042.

2. S a l e h i, M., M. K. T a v a n a, S. R e h m e n, M. S h a f i q u e, A. E j l a l i, J. H e n k e l. Two-

State Checkpointing for Energy-Efficient Fault Tolerance in Hard Real-Time Systems. – IEEE

Trans. on Very Large Scale Integration (VLSI) Systems, Vol. 24, 2016, pp. 2426-2437.

3. L i, Z., L. W a n g, S. R e n, G. Q u a n. Energy Minimization for Checkpointing-Based Approach to

Guaranteeing Real-Time Systems Reliability. – In: Proc. of 16th IEEE Int. Symp.

Object/Compon./Service-Oriented Real-Time Distrib. Comput. (ISORC’13), 2013, pp. 1-8.

4. L i, Z., S. R e n, G. Q u a n. Energy Minimization for Reliability-Guaranteed Real-Time

Applications Using DVFS and Checkpointing Techniques. – Journal of Systems Architecture,

Vol. 61, 2015, pp. 71-81.

5. K r i s h n a, C. M. Fault-Tolerant Scheduling in Homogeneous Real-Time Systems. – ACM

Computing Surveys, Vol. 46, March 2014, No 4, Article 48. 34 p.

6. M a h m o o d, A., S. A. K h a n, F. A l b a l o o s h i, N. A w w a d. Energy-Aware Real-Time Task

Scheduling in Multiprocessor Systems Using a Hybrid Genetic Algorithm. – Electronics,

Vol. 6, 2017, No 2. 40 p.

7. W e i, T., P. M i s h r a, K. W u c, J. Z h o u. Quasi-Static Fault Tolerant Schemes for Energy-

Efficient Hard Real-Time Systems. – Systems and Software Journal of Elsevier, Vol. 85, 2012,

pp. 1386-1399.

8. Z h u, X., R. G e, J. S u n c, C. H e. 3E: Energy-Efficient Elastic Scheduling for Independent Tasks

in Heterogeneous Computing Systems. – Systems And Software Journal of Elsevier, Vol. 86,

2013, pp. 302-314.

9. A s s a y a d, I., A. G i r a u l t, H. K a l l a. Scheduling of Real-Time Embedded Systems under

Reliability and Power Constraints. – In: Proc. of International Conference on Complex

Systems (ICCS’12) , IEEE, November 2012.

10. S a m a l, A. K., R. M a l l, C. T r i p a t h y. Fault Tolerant Scheduling of Hard Real-Time Tasks on

Multiprocessor System Using a Hybrid Genetic Algorithm. – Swarm and Evolutionary

Computation Journal of Elsevier, 2013.

11. G a n, J., F. G r u i a n, P. P o p, J. M a d s e n. Energy/Reliability Trade-Offs in Fault-Tolerant

Event-Triggered Distributed Embedded Systems. – In: Proc. of 16th Asia South Pacific Design

Automation Conference ASP-DAC, 2011, pp. 731-736.

12. K u m a r, A., B. A l a m. Improved EDF Algorithm for Fault Tolerance with Energy Minimization.

– In: Proc. of IEEE International Conference on Computational Intelligence & Communication

Technology (CICT’15), Ghaziabad, India, February 2015.

13. H a n, Q., M. F a n, G. Q u a n. Energy Minimization for Fault Tolerant Real-Time Applications on

Multiprocessor Platforms Scheduling Using Checkpointing. – In: IEEE International

Symposium on Low Power Electronics and Design (ISLPED), Beijing, China, September

2013, pp. 76-81.

 60

14. I z o s i m o v, V., P. P o p, P. E l e s, Z. P e n g. Scheduling and Optimization of Fault-Tolerant

Embedded Systems with Transparency/ Performance Trade-Offs. – ACM Trans. Embedded

Computing Systems, Vol. 11, 2012, No 3. 61 p.

15. Z h a n g, Y., K. C h a k r a b a r t y. A Unified Approach for Fault Tolerance and Dynamic Power

Management in Fixed-Priority Real-Time Embedded Systems. – IEEE Trans. Computer-Aided

Design of Integrated Circuits And Systems, Vol. 25, 2006, pp. 111-125.

16. I z o s i m o v, V., P. P o p, P. E l e s, Z. P e n g. Scheduling of Fault Tolerant Embedded Systems

with Soft and Hard Timing Constraints. – In: Proc. of 2008 Design, Automation and Test in

Europe Conference (DATE’08), 2008, pp. 915-920.

17. M o t a g h i, M. H., H. R. Z a r a n d i. DFTS: Dynamic Fault-Tolerant Scheduling for Real-Time

Tasks in Multicore Processors. – Microprocessors and Microsystems Journal of Elsevier,

Vol. 38, 2014, pp. 88-97.

18. H a n, Q., M. F a n, L. N i u, G. Q u a n. Energy Minimization for Fault Tolerant Scheduling of

Periodic Fixed-Priority Applications on Multiprocessor Platforms. – In: Proc. of 2015 Design,

Automation and Test in Europe Conference and Exhibition (DATE’15), 2015, pp. 830-835.

19. P o p, P., V. I z o s i m o v, P. E l e s, Z. P e n g. Design Optimization of Time-and- Cost-Constrained

Fault-Tolerant Embedded Systems with Checkpointing and Replication. – IEEE Trans. Very

Large Scale Integration Systems, Vol. 17, 2009, 389-340.

20. T a v a n a, M. K., N. T e i m o u r i, M. A b d o l l a h i, M. G o u d a r z i. Simultaneous Hardware

and Time Redundancy with Online Task Scheduling for Low Energy Highly Reliable Standby-

Sparing System. – ACM Trans. Embedded Computing Systems, Vol. 13, 2014, No 4. 86 p.

21. Z h a o, B., H. A y d i n, D. Z h u. Shared Recovery for Energy Efficiency and Reliability

Enhancements in Real-Time Applications with Precedence Constraints. – ACM Trans. Des.

Autom. Electron. Syst., Vol. 18, March 2013, No 2, Article 23. 21 p.

22. Z h a n g, L., K. L i, Y. X u, J. M e i, F. Z h a n g, K. L i. Maximizing Reliability with Energy

Conservation for Parallel Task Scheduling in a Heterogeneous Cluster. – Information Sciences,

Vol. 319, 2015, pp. 113-131.

23. Z a h a f, H. E. Energy Efficient Scheduling of Parallel Real-Time Tasks on Heterogeneous

Multicore Systems. Ph.D. Université de Lille 1, Sciences et Technologies, 2016.

24. E l e s, P., V. I z o s i m o v, P. P o p, Z. P e n g. Synthesis of Fault-Tolerant Embedded Systems. –

In: Proc. of 2008 Design, Automation and Test in Europe Conference (DATE’08), 2008,

pp. 1117-1122.

25. G i r a u l t, A., H. K a l l a. A Novel Bicriteria Scheduling Heuristics Providing a Guaranteed Global

System Failure Rate. – IEEE Trans. on Dependable and Secure Computing, Vol. 6, 2009,

pp. 241-254.

26. H u, Y., C. L i u a, K. L i, X. C h e n a, K. Li. Slack Allocation Algorithm for Energy Minimization

in Cluster Systems. – Future Generation Computer Systems, Vol. 74, 2016, pp. 119-131.

27. M e l h e m, R., D. M o s s e, E. E l n o z a h y. The Interplay of Power Management and Fault

Recovery in Real-Time Systems. – IEEE Trans. Comput., Vol. 53, 2004, pp. 217-231.

28. Q a m h i e h, M. Scheduling of Parallel Real-Time DAG Tasks on Multiprocessor Systems. Ph.D.

Paris-Est University, 2015.

29. A r a r, C., M. S. K h i r e d d i n e. An Algorithm Based on Replication and Deallocation Efficient

Fault-Tolerant Multi-Bus Data Scheduling Algorithm Based on Replication and Deallocation.

– Cybernetics and Information Technologies, Vol. 16, 2016, No 2, pp. 69-84.

30. B a c h i r, M., H. K a l l a. A Fault Tolerant Scheduling Heuristics for Distributed Real Time

Embedded Systems. – Cybernetics and Information Technologies, Vol. 18, 2018, No 3,

pp. 48-61.

Received: 14.06.2019; Second Version: 15.11.2019; Accepted: 22.11.2019

