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Abstract: The paper presents a hybrid metaheuristic algorithm, including a Particle 

Swarm Optimization (PSO) procedure and elements of Tabu Search (TS) 

metaheuristic. The novel algorithm is designed to solve Flexible Job Shop Scheduling 

Problems (FJSSP). Twelve benchmark test examples from different reference sources 

are experimentaly tested to demonstrate the performance of the algorithm. The 

obtained mean error for the deviation from optimality is 0.044%. The obtained test 

results are compared to the results in the reference sources and to the results by a 

genetic algorithm. The comparison illustrates the good performance of the proposed 

algorithm. Investigations on the base of test examples with a larger dimension will 

be carried out with the aim of further improvement of the algorithm and the quality 

of the test results.  
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1. Introduction 

1.1. Formulation of Job Shop Scheduling Problem (JSSP) 

The classical [44] job shop scheduling problem is formulated as follows: Let us have 

a set of n jobs  J1, ..., Jn, which have to be performed on m machines M1, ... , Mm.  

The operations consequence is given for each job: 

Ji = (Oi1, ..., Oij(i) ), j(i) is the number of operations for the corresponding job,  

i = 1,..., n. 

It strictly determines which operation on which machine should be executed. 

For this model another formulation is:  

Ji = (Mi1, ..., Min ), 

The processing times for each possible operation are known for each machine:  

pik, i = 1, ... , j(i), k = 1, ... , m. 
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The optimal schedule should be found according preliminary given criterion 

(criteria). One criterion could be the minimization of makespan – Cmax for example, 

where Cmax corresponds to the maximal time necessary for completion all jobs. 

This is chronologically the earliest developed model and the most often used – 

see for example [10, 21, 18]. 

1.2. Formulation of Flexible Job Shop Scheduling Problem (FJSSP) 

An extension of classical JSSP taking into account the production flexibility is the 

FJSSP. Each operation Oij in the FJSSP can be processed on one machine Mk from a 

set of several machines Mk  Mij, Mij  M, unlike the classical JSSP where each 

operation is processed on a predefined machine. We have Partial Flexibility of JSSP 

(P-FJSSP), if Mij  M for at least one operation; then we have Total Flexibility of 

JSSP (T-FJSSP), if Mij  M for each operation.  

This model corresponds to real life production situations [37], where the 

machines could perform more than one operation (not at the same time) with 

corresponding different production times, i.e., some or all of the machines are 

multifunctional. B r u k e r  and S c h l i e  [8], are among the first researchers 

suggesting this model. 

The FJSSP is NP-hard [10, 22, 30]. 

If the number of jobs is 2, or if the number of machines is 2 and all jobs have 1 

or 2 operations, or if the number of machines is 2 and all operations have duration 1, 

then the optimal solutions for job shop scheduling can be found in polynomial time. 

In all other cases the FJSSP is NP-hard – [10, 22], i.e., if the problem is obtained by 

incrementing the number of machines, jobs, operations or durations by 1.  

Lists of special polynomially solvable JSSP cases and flexible JSSPs, as well as 

their simplest NP-hard common versions, can be found in [7] and the references 

inside. The author focuses on JSSP and flexible JSSP. Challenges, benchmark tasks, 

exact algorithms to solve them are listed in chronological order, and some surveys 

are mentioned. Author concludes that examples with a size greater than 15×15 should 

be solved through heuristics and offers heuristics with Tabu Search (TS) as the best 

known metaheuristic for JSSP. Real applications are listed to lead to advanced JSSP 

models and concepts for extending the tasks associated with these applications are 

presented. 

Hybrid heuristics have become very popular due to their efficiency. They are 

often based on the use of local search in evolutionary approaches. Such methods are 

sometimes called “memetic algorithms”. For example, they include local search by 

V a e s s e n s, A a r t s  and L e n s t r a  [40], the critical point shift approach by 

A d a m s, B a l a s  and Z a w a c k  [1], making local search with critical points 

shifting approach by B a l a s  and V a z a c o p o u l o s  [3], the limited distribution 

algorithm by B r i n k k ö t t e r  and B r u c k e r  [6], the parallel greedy search 

procedure using random number generation (GRASP) by A i e x, B i n a t o  and 

R e s e n d e  [2] and procedures similar to the mentioned. 

In the last few years, the Particle Swarm Optimization (PSO) has been 

successfully applied in many areas of research and applications. It has been 

demonstrated that PSO generates better results (mainly in terms of convergence of 
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the search process) in a faster and less expensive way than other evolutionary 

methods. 

X i a  and W u  [41] offer a hybrid algorithm combining swarm optimization and 

simulated annealing to solve the task of a flexible production schedule. 

R a h i m i - V a h e d  and M i r g h o r b a n i  [32] developed a multicriterial 

swarm optimization algorithm designed to minimize both the weighted average 

completion time and the weighted average delay in a task for flow shop schedules. 

They conclude that for large-scale tasks, the algorithm developed is more effective 

than a genetic algorithm for the same task. A reference point genetic algorithm for 

multi-criteria FJSSP with good efficiency is proposed by G u l i a s h k i  and 

K i r i l o v  [16]. 

Z h a n g  et al. [42] offer a hybrid algorithm combining swarm optimization and 

taboo search technology to solve the task of a flexible production schedule. 

The original PSO procedure is typically used to solve optimization tasks with 

continuous variables. When discreet decision space is used in the job shop scheduling 

problem, the representation of particles, particle motion, and particle velocity should 

be modified. 

S h a  and L i n  [36] construct a Particle Swarm Optimization Algorithm  

(PSO Algorithm) for multicriteria JSSP. Criteria used in this case are: the makespan, 

the total delay, and the total standby time of the machines. 

Since the best known heuristic algorithms for JSSP and FJSSP are based on TS 

and PSO naturally arises the idea for a development of a combined PSO&TS 

technique for this class of optimization problems. A new hybrid PSO&TS algorithm 

is presented in this paper and its performance is illustrated on a sample of 12 

benchmark test examples. 

The paper is organized as follows. In Section 2 a PSO-based sub-procedure is 

presented. Section 3 is devoted to Tabu Search metaheuristic and some useful  

TS-elements which are included in the hybrid algorithm. The new hybrid algorithm 

developed is presented in Section 4. Test results and their analysis are considered in 

Section 5. Some conclusions are drawn in Section 6. Directions for further research 

are outlined. 

2. Particle Swarm Optimization (PSO) 

PSO is based on a population-based stochastic optimization technique that is 

produced by the movement of bird flocks, passages of fishes and swarms of insects. 

PSO has many common features with evolutionary optimization techniques such as 

Genetic Algorithms (GA) [25]. The system is initialized with a random population 

and looking for optimum by renewing generations. Unlike GA, PSOs have no 

evolutionary operators such as crossovers and mutations. In PSOs R a m a s e v y c h  

and L o v e i k i n  [33], potential solutions, called particles, fly in the feasible domain 

of the problem, following the current optimal particle. Each particle saves its 

coordinates in the feasible domain. Also the coordinates of the best solution (with 

best fitness value) achieved so far are saved. This value is called pbest. Another 

“best” value used in the particle swarm optimization is the best value obtained so far 
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by each particle in the neighborhood of the concrete particle. This location is denoted 

by lbest. If the whole population is considered as a neighborhood of the particle, its 

best value is the global one and it is called gbest. 

The concept of particle swarm optimization [34] consists in changing at each 

time step the velocity of every particle to its pbest and lbest (the local version of the 

PSO) locations. When determining the final step to the new localization, the particle 

inertia is also involved, i.e., its current speed is also taken into account. In PSO, each 

solution is one point in the search space and it can be considered as one particle. The 

original set of particles is generated randomly in the feasible domain/the search space. 

In their movement the particles have memory and each particle regulates its position 

based on its experience, as well as on the experience of the particles gbest and lbest. 

The previous best position of the particle is denoted as pbest (local best). At each 

iteration, the velocity and the position of each particle should be updated on the base 

of lbest and gbest values.  

Suppose the space of the search is d and the position of the i-th particle in the  

t-th iteration as 1 2( , ,..., )t t t t

i i i iDX x x x  is shown. Velocity of the i-th particle of the  

t-th iteration is 1 2( , ,..., )t t t t

i i i iDV v v v . The best position of the i-th particle on the t-th is 

1 2( , ,..., )t t t t

i i i iDP p p p . The best position of the whole swarm is 1 2( , ,..., )t t t

D

t
G g g g  on 

the t-th iteration. The rapidity and the position of the whits in the standard PSO should 

change with the equations 

(1)   
1

1 2rand() ( ) rand() ( ),t t t t t t

i i i i i idv v c p x c g x            

(2)   1 1,t t t

i i ix x v    

where: 
t

ix  and 
t

iv
 
are the position and the velocity of the n-th component of one 

particle on the n-th iteration, respectively. ω is an inert burden designed to balance 

global and local capabilities, and rand() is randomly chosen from the normal 

distribution in the range [0, 1]. c1 and c2 are acceleration constants that must limit the 

rate of acceleration that applies to all parts of pbest and gbest, respectively. The 

changing shape strengthens the particles that move toward the clustering vector of 

local and global optimal solutions. That is why the particles’ possibility to reach an 

optimal solution is growing. 

The optimization through swarm particles have some advantages and 

disadvantages. 

1) Advantages are: 

 Swarm optimization is based on intelligence. It can be used for research and 

engineering. 

 Swarm particle optimization has no overlapping and mutational computation. 

The test is carried out by the particle velocity. During the development of different 

generations, only the most optimistic particle can exchange information with other 

particles, so the speed of exploration is very high. 

 Calculation in optimization by swarm particles is very simple. Compared to 

other developed calculations, it has greater optimization capability and can be easily 

completed. 
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 Optimization through a swarm of particles adapts a real number code, and it 

is solved directly through the solution. The magnitude of the dimension is directly 

determined by the decision constant. 

2) Disadvantages are: 

 The method is easily dependent on partial optimism, which causes less 

accuracy of its speed and direction regulation. 

 The method cannot have a solution for spreading and optimization. 

 The method cannot have a solution when there is no coordinate system as a 

solution in an energy field and any movement of the particle rules in an energy field. 

The Current state of the optimization (algorithm) by swarm particles. The 

swarm optimization is based on the intelligence of swarm particles. The research is 

still in its early stages. Unlike genetic algorithms and simulated annealing, the 

metaheuristic have not still a mathematical basis and a systematic computational 

method. 

The mathematical foundation includes the mechanics of movement itself, the 

proof of their convergence, the resistance, and so on. 

Applied research involves the continuation of its advantages, the overcoming of 

its disadvantages and the development of its scope. 

Research on PSOs should focus on the following: 1) Put some new technologies 

in the PSO; 2) PSO can be combined with other optimization techniques to describe 

optimization problems and solve them; 3) PSO can be led to run the research in 

spraying systems, optimistic systems, and non-coordinate systems to develop applied 

PSO fields. 

Metaheuristic optimization through swarm particles generally should contain 

the following elements: an initial solution, the best personal (particle) solution, the 

best global (swarm) solution, a formula on which to calculate particle speed and 

position, braking criteria. 

Improving meta-optimization through swarm particles must include: 

1) The introduction of inert weights; 

2) Increasing the convergence factor; 

3) Entering the selection; 

4) The basic process in swarm particle optimization depends on the basic 

algorithm set in the PSO. 

The future development of PSOs must contain: 

1) Development of the mathematical foundations of the algorithm; 

2) Development of the topography of the swarm particles; 

3) Combining PSO with other metaheuristics using the good sides of each; 

4) Extension of the field of metaheuristics application. 

Algorithm for metaheuristic optimization through swarm particles 

For each particle i = 1, ..., S make: 

Initialize the position of the particle with a random vector: xi ~ tk
ij, where tk

ij is 

randomly selected process time of operation k for machine i and operation j in the 

search space. 

Initialize the best known position of the particle with its initial position: pi ← xi 

If (f(pi)<f(g)) update the best known position of the swarm: g ← pi 
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Initialize particle velocity using the formula: 

(3)   vid ~ int [ωvid + c1r1dis(pid – xid) + c2r2dis(pgd – xid)]. 

As long as the end criterion meets (the number of iterations performed is reached 

or an adequate target function value is found), repeat: 

For each particle i = 1, ..., S make: 

       For each dimension d = 1, ..., n, make: 

              Generate random numbers r1, r2 ~ U(0, 1) 

Update the particle velocity with: 

(4)   vid ← int [ωvid + c1r1dis (pid – xid) + c2r2dis (pgd – xid)], 

update the position of the particle: xi ← xi + vi 

(The operation to be moved, we assign it to the first position. 

The current operation we are looking at is put on the first free machine than can 

run it for the least time.) 

If (f(xi) <f(p)) do: 

Upgrade the best known particle position: pi ← xi 

If (f(pi) <f(g)), update the best known position of the swarm: g ← pi. 

Now g contains the best solution found. 

Algorithm for binary optimization by swarm particles for a flexible 

production schedule 

i. Finding initial solutions  𝑋ℎ
0, h = 1, 2, ..., Np, where Np is the number of 

particles in the population. 

The initial population is calculated as follows: the current schedule is compiled 

on the basis of generated random numbers r  (0, 1). The interval (0, 1) is divided 

into n parts corresponding to each job. Each random number defines the current work 

from which an operation is taken to be included in the schedule. Taking the current 

operation from the selected operation, the strict order of operations is strictly 

observed. Operations are set on machines according to the rule for the first free 

machine, and if there are several free machines at the same time, the machine with 

the smallest index is selected. In case the current job is completed (i.e., all of its 

operations are included in the graph), it continues with unfulfilled work that has the 

smallest index until the works are exhausted. 

Let O be the number of operations for the task under consideration. Follow the 

following algorithm: 

If 1 ≤ O ≤ 25, then Np = 5; 

If 25 < O ≤ 50, then Np = 10; 

If 50 < O ≤ 75, then Np = 15; 

If 75 < O ≤ 100, then Np = 20; 

If 100 < O, then Np = 30. 

ii. Applying at the start moment of the particle velocity 𝑉ℎ𝑖𝑗
0  = 0, i = 1, 2, ..., O 

(i is the operation number); j = 1, 2, ..., M, where M is the number of machines, (j is 

the machine number). 𝑋ℎ𝑖𝑗
0  and  𝑉ℎ𝑖𝑗

0  are the elements of 𝑋ℎ
0 and  𝑉ℎ

0, respectively. 

iii. Finding the binary matrix 𝐵ℎ𝑖𝑗
0 , 𝐵ℎ𝑖𝑗

0   {0, 1}, where is unit 1, there 𝑋ℎ𝑖𝑗
0  has 

a number different from zero 0. In a particular timetable, an unit in 𝐵ℎ𝑖𝑗
0  can have 
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only one column on the i-th line, so only one machine can handle a given operation. 

The other places have zero 0. 

iv. Finding the speed  𝑉ℎ𝑖𝑗
𝑘  (h is the particle number in the population, i is the 

operation number, j is the machine number, and k is the current iteration) by the 

formula 

(5)   𝑉ℎ𝑖𝑗
𝑘  = ω* 𝑉ℎ𝑖𝑗

𝑘−1+ r1*c1*dist(𝑃ℎ𝑖𝑗
𝑘−1, 𝑋ℎ𝑖𝑗

𝑘−1) + r2*c2*dist(𝐺ℎ𝑖𝑗
𝑘−1, 𝑋ℎ𝑖𝑗

𝑘−1), 

where ω, c1, c2 are coefficients determined by the decision maker and they control 

the behavior of the particle PSO, ω = 1, c1 = 1.8, c2 = 2.2, r1 and r2 are two random 

numbers generated with an uniform distribution, r1, r2  [0, 1], 𝑃ℎ
𝑘 is the locally best 

position in the vicinity of the  𝑋ℎ
𝑘 particle, and Gk is the globally best position for the 

X population. 

The distance is defined as follows: 

(6)   dist(𝑃ℎ𝑖𝑗
𝑘 , 𝑋ℎ𝑖𝑗

𝑘 ) = t*[a*│f(𝑃ℎ𝑖𝑗
𝑘 ) – f(𝑋ℎ𝑖𝑗

𝑘 )│/C+b*(D – S(𝑃ℎ𝑖𝑗
𝑘 , 𝑋ℎ𝑖𝑗

𝑘 ))/D], 

t is a positive integer called accelerating coefficient, a and b are two positive weights 

that can be obtained experimentally and fulfill the condition that their sum equals 1. 

From G e, D u  and Q i a n  [11], t = 1 was taken, a = 0.7 and b = 0.3, f(𝑋ℎ𝑖𝑗
𝑘 ) is a fitness 

function, 0 ≤ f(𝑋ℎ𝑖𝑗
𝑘 ) ≤ C, for the task being considered, this is the makespan. D is the 

size of the space, in this case D = O is the number of operations. 

Let Xi(xi1, xi2, ..., xiO) and Xj(xj1, xj2, ..., xjO) be two particles in the space of 

operations. The following functions are entered: 

(7)   𝑠(𝑚) = {
1,          𝑥𝑖𝑚 = 𝑥𝑗𝑚,

0,          𝑥𝑖𝑚 ≠ 𝑥𝑗𝑚,
 

and the function S(Xi, Xj), which is called function of similarity. S(Xi, Xj)= ∑O
m=1s(m). 

Only those 𝑉ℎ𝑖𝑗
𝑘 s that have 1 are calculated, so if it becomes 0 in a sigmoid 

function calculation, this is reflected in 𝑋ℎ𝑖𝑗
𝑘 , with zero being written in the old 

position and a unit in the alternative position at M = 2; and for M > 2, one of the 

following options is selected: 

1. In the position of the smallest process time for this i-th order; 

2. In the position of the longest processing time for this i-th order; 

3. In the position of the closest to the average process time for this i-th order. 

Let 

(8)   sigma(𝑉ℎ𝑖𝑗
𝑘 ) = 1 / (1 + exp(–𝑉ℎ𝑖𝑗

𝑘 )), 

is the sigmoid function for 𝑉ℎ𝑖𝑗
𝑘 . In order to prevent the excessive approximation of 

sigma(𝑉ℎ𝑖𝑗
𝑘 ) to 0 or 1, a constant Vmax is often taken to limit 𝑉ℎ𝑖𝑗

𝑘 's magnitude. 

Typically, Vmax = 4; 𝑉ℎ𝑖𝑗
𝑘  [–Vmax, Vmax]. After the transformation (8) the sigma(𝑉ℎ𝑖𝑗

𝑘 ) 

is in the range of 0 to 1, i.e., sigma(𝑉ℎ𝑖𝑗
𝑘 )  (0,1). 

Find the result of the change in position using the following rule using the 

probability function: 

(9)   𝐵ℎ𝑖𝑗
𝑘 = {

1         if random < sigma(𝑉ℎ𝑖𝑗
𝑘 );

0                                       otherwise.
 

v. Find the matrix 𝐵ℎ𝑖𝑗
𝑘 , h = 1, 2, ..., Np, i = 1, 2, ..., O, j = 1, 2, ..., M according 

(7); 𝐵ℎ𝑖𝑗
𝑘   {0,1}. 
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vi. Finding a new 𝑋ℎ
𝑘 solution according to the 𝐵ℎ𝑖𝑗

𝑘  matrix, where there is 0, put 

0, and where there is 1, place the process time. 

If f(𝑋ℎ
𝑘) < f(𝑃ℎ

𝑘−1), then 𝑃ℎ
𝑘 = 𝑋ℎ

𝑘, otherwise 𝑃ℎ
𝑘 = 𝑃ℎ

𝑘, h = 1, 2, ..., Np. 

If f(𝑋ℎ
𝑘) < f(Gk–1), then Gk = 𝑃ℎ

𝑘, else Gk = Gk–1, h = 1, 2, ..., Np. 

Let iter_lim be the number of iterations that are pending for execution. 

If the stop criterion is met, i.e.: 

1) reached iter_lim; 

2) there is no improvement of the current iteration of the iteration; 
3) the best makespan in the population is equal to the sum of the optimal times 

for each job  
or 
4) the value of the target function, as desired by the decision maker, 
end, 
otherwise it goes to iv. 

3. Tabu search 

This is one of the most widely used metaheuristics designed mainly to solve 

combinatorial optimization problems, like transport nets control, distribution of 

electro energy, schedules, etc. The main idea of this algorithm was first introduced 

by G l o v e r  [13, 14].  The basic algorithm includes a local search with the greatest 

improvement (best-fit) and a short term memory to avoid the local optima and the 

cycling. The short term memory is applied as a Tabu list, where the last solutions 

considered are stored and the movements directed towards them are forbidden. The 

neighborhood of a current solution includes only decisions, which are not in the Tabu 

list. The set of these solutions is called an allowed set. At each iteration, the best 

solution of this set is chosen as a new current solution. This solution is included in 

the Tabu list and one of the solutions stored in it is removed (usually FIFO order is 

used). In order to avoid the local optimum, movements towards worse neighbor 

solutions are allowed. Another type of memory is also used, called long term 

memory, where information about past search steps is stored, as well as how many 

times a given solution has been chosen and the frequency of changing one concrete 

solution, etc. This memory is used to direct the search to regions of the feasible 

domain, which have still remained unexplored, i.e., its purpose is to realize 

diversification of the search. Usually the search procedure is terminated after 

executing a given limit of iterations or after a given number of consecutive iterations 

without improving the best obtained solution. 

The good performance of the TS approach depends mainly on the balance 

between the intensification and the diversification scheme. 

TS can be applied to virtually any optimization problem [15]. We can present 

each of these issues in the following way, where “optimization” means maximization 

or minimization: 
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Optimize f(x), x  X. 

The function f(x) can be linear, nonlinear or stochastic, and the set X generates 

the constraints on the vector of the variable x. Similarly, the x constraints can be 

linear, non-linear or stochastic inequalities, and may force all or some of the x 

components to obtain discrete values. 

According to G l o v e r, L a g u n a  and M a r t i  [15] for the metaheuristic Tabu 

Search the following principles can be formulated: 

1. Selectivity (including strategic forgetting). 

2. Abstraction and decomposition (by explicit and attributive memory). 

3. Time allocation: 

- a novelty of things; 

- frequency of things; 

- differentiation between short-term and long-term. 

4. Quality and Influence: 

- relative attractiveness of alternative chances; 

- magnitude of change of structure or limiting ratios. 

5. Context: 

- regional interdependence; 

- structural interdependence; 

- seamlessly interdependence. 

6. Responsive Study. 

7. Strategically used constraints and incentives (tabu conditions and aspiration 

levels). 

8. Concentrated focus in good regions and good decisional features 

(intensification processes). 

9. Characterization and exploration of new regions (diversification processes). 

10. Non-monotonous Search Templates (Strategic Oscillation). 

11. Integration and expansion solutions (connecting the paths). 

TS is rapidly becoming [9] a method for describing decisive procedures for 

complex combinatorial tasks. Many practical successes of the method contribute to 

rapid dissemination in the sense of finding extremely high quality. TS methods are 

used to create hybrid procedures with other heuristics and algorithms [9], to offer 

timetables, resource allocation, investment planning, telecommunications and many 

other areas. 

In general, the metaheuristic Tabu Search (TS) should contain the following 

elements [29]: Initialization solution, structure of neighbors, movements, taboo list, 

aspiration criteria, memory structures and end criteria. 

1. Initialization solution. To initiate the TS process, there must be an 

appropriate initialization solution. It can be obtained, for example, by using dispatch 

rules. The good quality of the initial decision often has a decisive impact on the 

process of seeking an optimal solution. Policies are often used, such as the least 

process time, the longest running time, the closest to the average process time, and 

so on. 

In this paper, an initial solution of the Tabu Search algorithm is chosen by taking 

a decision obtained as a result of the work of the swarm optimization algorithm. 
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2. Neighborhood structure [26]. The neighborhood structure is a mechanism 

in which new solutions are made through small modifications of already known 

solutions. Each adjacent (primordial) (S c h m i d t  [35]) solution is derived from an 

already known one through motion. Even if there is no better solution in the 

population of the current xn with V(xn), then we move to the best solution x in V(xn) 

or subunit V'(xn)V(xn), if V(xn) is too large for it to be searched effectively. If the 

area is symmetrical, i.e., xn belongs to the V(xn) of x  V(xn), there is a danger of 

slipping when we examine V(xn) in the next step. 

There is a possibility x to be the best solution in V(xn), which will lead to 

oscillation between x and xn. 

To prevent this situation, we can list in a list (xn–1, ..., xn–L) called the tabu list, 

some L of the last-mentioned solutions. If the solution xn is contained in the tabu list, 

the movement xn → x becomes a tabu. 

Neighborhood Finders are five. 

Neighbor 1. Randomly select two elements e1 and e2 corresponding to different 

operations in the position vector, and then exchange e1 and e2. 

Neighbor 2. Randomly select two elements e1 and e2 corresponding to different 

operations in the position vector, and then insert e2 before e1. 

Neighbor 3. Randomly select two elements e1 and e2 corresponding to different 

operations in the position vector, and then invert the one contained in the positions 

between e1 and e2. 

Neighbor 4. Randomly select an item in the second section of the candidate 

position vector that corresponds to an operation with more than one alternate 

machine. A machine is selected from alternative machines to replace the current one. 

Neighbor 5. Randomly, select an item in the second section of the candidate 

position vector that matches an operation with more than one alternate machine. The 

current machine for the selected operation will be replaced by the one with the 

shortest processing time from alternative machines. 

3. Movement. As a new point of the neighborhood, the best neighbor is chosen 

which is not a taboo or satisfies any aspirational criteria that makes it not a taboo. 

“Best,” in this case, is the neighbor who has the smallest makespan. If a neighbor is 

a taboo or no one meets the aspiration criteria, a new neighborhood point is the oldest 

tabbed neighbor in the list. 

Productivity calculation and critical operations can be determined using a 

simple CPM markup procedure. Such a best estimate makes the special structure of 

the task for planning of the problems particularly effective [1]. 

The routing described above leads to a critical mission and it moves to a possible 

position on an alternate machine. Some obvious limitations, for example, are that the 

relocated operation cannot begin before its predecessor finishes work. Overall, 

however, the choice of possible alternative machine positions is complicated in terms 

of technological constraints. 

Experience confirms that it is important to allow zero value moves that go 

through “flat” areas of the decision space. 
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In more or in general, it would be desirable to link the dynamic preference 

indices to any of their displacement types in order to give an opportunity to prioritize 

the adaptive type of movement when changing the demand. 

Routing conditions are allowed for flexible problems at the time of problem 

introduction and they remain during the search. The search procedure also has zero-

value control and moves based on a type of motion; however, as noted earlier, zero 

values are allowed at any time in this study. 

To select the best stroke, the move selection procedure handles each active 

move. Enter the order of the switch table by invoking the type of motion assessment 

function. The type of traffic reports a lack of candidates; a type of movement that 

accounts for optimality leads to the cessation of the demand. 

Otherwise, the displacement module reports the best move-type move, either a 

new allowable move or the oldest taboo move. The comparison of the shift selection 

is “strictly less than”. The first type of displacement results in an improvement (that 

is, a movement value) that is usually selected. However, in choosing the best overall 

move, instead of this, a preference is given to a type of move that counts a new move, 

even if it is less improved than the existing old-taboo move. The mere comparison of 

two new movements, or two of the oldest taboo movements, is a preference, based 

on strict improvement. 

4. Taboo list. The meaning of the taboo list is to prevent clogging when running 

the program. Items added to the taboo list are attributes. The taboo list changes after 

every movement until strategic forgetting occurs. 

5. Aspiration criterion. The aim of the aspirational criterion is to change the 

taboo status of a neighbor when it is needed. If the movement gets a better solution 

than the ones previously received, it is done even if it is a taboo. 

6. Memory structure (adaptive memory). TS begins in the same way as a 

local or local search procedure [43], moving from one solution to another until a 

certain termination criterion is met. Each solution x has an associated neighborhood 

N(x) with X, and each solution x is N(x) is obtained by an operation called movement. 

Every simple dwindling method only allows movement to neighborhood 

solutions that improve the value of the target function, and ends when better solutions 

cannot be found. The ultimate x obtained by the declining method is called the local 

optimum, as long as it is as good as any solution in its surroundings or better than it 

is. The obvious drawback of the declining method is that such a local optimum is in 

most cases not a global optimum and it does not minimize f(x) for all x. 

Unlike a simple decreasing method, where the goal is to reduce f(x), TS does 

something else. TS allows movements that degrade the current value of the target 

function but the movements are selected from the modified N*(x) range. Short-term, 

medium and long-term memory structures are responsible for the special composition 

of N*(x). In other words, the modified neighborhood is the result of maintaining a 

selective history of the solutions found during the search. In TS strategies supporting 

short-term memory N*(x) is a subset of N(x) and the taboo classification serves to 

identify elements of N(x) that are not from N*(x). In TS strategies supporting long-

term memory N*(x) there may be an extension that contains solutions not necessarily 

contained in N(x) as solutions found and evaluated in the past search or identified as 
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high-quality neighbors of these past solutions. Characterized in this way, TS can be 

considered as a dynamic surrounding method. This means that the vicinity of x is not 

a static set, but a multiple one that can change according to the history of search. 

The structure of the area in TS differs from that in the local search for the use 

of the types of movements that are used in constructive and destructive processes 

(where the foundations of such movements are referred to as constructive 

environments and destructive environments). Such extended use of the concept of 

surroundings strengthens the fundamental perspective of TS, which is to define 

surroundings in a dynamic manner, which may involve serial or concurrent 

considerations of many types of movements. 

TS uses attribute memory to calculate N*(x). Instead of remembering all 

decisions, attributes are based on the preservation of attributes. This type of memory 

remembers information about the decision properties (attributes) that change from 

one decision to another. The most common attributes are based on recent memory 

and frequency memory. Recentness, as its name itself, is based on attributes that have 

changed over the recent past. Frequency typically consists of a proportion of how 

many times an attribute has changed or not (depending on whether we have a 

transition or a stay of honor). 

Typically, TS based strictly on short-term strategies may allow decision x to be 

visited more than once, but as if the corresponding reduced N*(x) neighborhood 

would then be different at each time. With the introduction of long-term 

considerations, the credibility of repeating a previous neighborhood to obtain an old 

solution and more generally to visit only a small part of the set X, is all but not 

existing. 

Recent memory is the most used memory structure in TS. As its name shows, it 

deals with the attributes of the solution that have changed in the recent past. In order 

to develop such memory, the selected attributes that appear in recently visited 

solutions are marked as taboo-active, and decisions that have taboo-active elements 

or combinations of such elements are those that become taboo. This prevents the 

decisions of the recent past from belonging to N*(x) and the possibility of being re-

visited. Other solutions that also offer such taboo-active attributes, likewise, cannot 

be re-visited. It should be noted that while taboo classification strictly refers to 

decisions that are forbidden to visit, by virtue of having such taboo-active attributes, 

movements that lead to such decisions are often also considered taboo. 

Frequency memory offers a type of information that adds to the recent memory, 

expanding the foundation of the selected recommended moves. Both the recent 

memory and the frequency memory are often divided into subclasses. Also, the 

frequency can be integrated with the recentness to offer a combined structure that 

offers penalties and motives for modifying motion assessment. 

Frequencies typically consist of proportions whose numerator represents sums 

expressed by two different measures: changing measure – the number of iterations in 

which the attribute changes (enter or leaves) the solutions visited on a given 

trajectory; and resident measure – the number of iterations in which the attribute 

belongs to the solutions visited on a given trajectory, or the number of specimens in 

which the attribute belongs to the decisions of a given subset. 
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Denominators usually represent one of three types of variables: (1) The total 

number of occurrences of all numbers represented by the numerators (such as the 

total number of associated iterations), (2) the sum of the numerators, and (3) the 

largest numerator value. In cases where numerators present weighted sums, some of 

which potentially negative, denominator (3) is expressed as an absolute value, and 

denominator (2) is expressed as the sum of absolute values (possibly using a small 

displacement to prevent the zero denominator). Proportions produce variable 

frequencies, which watch how often attributes change, and resonant frequencies, 

which watch how many times attributes become members of the generated solutions. 

In addition to the reference to such frequencies are the numerator thresholds, which 

may be useful in indicating when diversification phases are appropriate. 

7. End criterion. The end criteria can be many and varied. These include, for 

example, the number of iterations reached, finding an unacceptable solution, reaching 

the maximum of unapproved movements, and so on. 

It is follows Intensification and Diversification Scheme. 

The use of recent and frequency memory in TS performs the pre-cyclical 

prevention function in the search process. More generally, the variations of these two 

types of memory are designed to give more resilience and strength to the demand. 

A key element of TS’s adaptive memory is to create a balance between the 

intensification and the demand diversification. Intensification strategies are based on 

modifying rules to get more traffic combinations and solutions that are considered to 

be historically good. They can also trigger a return to attractive regions to be searched 

more fundamentally. Diversification strategies, on the other hand, look for new 

attributes and new attribute combinations that were not included in previous 

solutions, i.e., these strategies start searching in areas where it was not started. It is 

important to remember that intensification and diversification are not the opposite but 

rather reinforce one another. 

Most types of intensification strategies require tools to identify elite solutions 

as the basis for introducing good attributes into newly created solutions. Membership 

in the elite multitude is often determined by setting a threshold that is related to the 

value of the target function of the best solution found during the search. Two common 

options for selecting elite solutions have proven to be quite successful. One 

introduces a diversification measure to ensure that recorded solutions differ to a 

certain extent from one another and then it erases all short memory before 

summarizing the best of the saved solutions. The other keeps a linked list that adds a 

new solution at the end only if it is better than everyone previously seen and keeps 

the short-term memory that accompanies it. 

Diversification is created automatically in TS (to some extent) of short-term 

memory functions, but is particularly enhanced by ordinary forms of long-term 

memory. TS diversification strategies are often based on modified selected rules to 

bring the attributes into a solution that is rarely used. Alternatively, they can introduce 

such attributes by periodically applying methods that collect subsets of such attributes 

in candidate solutions to continue the search, or to partially or fully restart the search 

process. Diverse strategies can be particularly useful when better solutions can only 

be reached by crossing barriers in the decision space. 
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The merging of modified selected rules can be guided by the following criminal 

function: 

(10)   MovementStatus = MovementStudy + d * Penalty. 

This type of criminal function is fundamental to TS where punishment is often 

a function of frequency measures and d is an adjustable diversification parameter. 

Larger d values respond to the desire for greater diversity. 

Sample TS Algorithm 

Step 1. Initialize: 

- applying a Cycle = 1; 

- Placing the TabuCycle = 0. 

Step 2. 

- Generate an initial solution; 

- Put the makespan and the sequence of jobs on each machine as tabu. 

Step 3. Initialize: 

- If Cycle > Maxcycle go to Step 8, otherwise go to Step 4. 

Step 4. Neighbor: 

- Find the critical path for the order of job; 

- Finding the neighbors of the above critical path; 

- Finding the makespan of all neighbors and enter them in the list of neighbors; 

- Sort the makespan with neighbors in the neighboring list in ascending order; 

- Put in as the best a neighbor who has a minimal makespan; 

- Insert the job sequence for each machine as a current job order. 

Step 5. Movement: 

- Check that the best neighbor is in the taboo list. If it is not, go to Step 6 or go 

to check the next neighbor; 

- Check that the next neighbor is in the neighbor list. If so, put a next neighbor 

in the list as the best and go to check for the best neighbor or find the neighbors with 

the smallest cycle; 

- Find neighbors with the minimum cycle in the visit list and delete that neighbor 

in the visit list; 

- Put the top neighbor as the best; 

- Re-enter the job order in the visit list as a current job order and go check for 

best neighbor. 

Step 6. 

- Put the best neighbor, his makespan and his job order in the tabu list; 

- Put the neighbors with their makespan and their job order in the tabu list. 

Step 7. 

- Cycle = Cycle + 1; and go to Step 3. 

Step 8. 

- Find the minimal of the makespan in the tabu list; 

- Put this makespan and his job order as the best. 

Step 9. Exit: 

- The best makespan and the best job order. 
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4. Hybrid Algorithm 

PSO is introduced as an optimization technique in the real space R. The space D of 

the FJSSP is discreet. This necessitates a redefinition of PSO for a discreet binary 

space. The present work uses the presentation by K e n n e d y  and E b e r h a r t  [20]. 

The main idea of the proposed algorithm is as follows: first good solution to be 

found with the help of heuristics PSO. Then, the “critical path” (the sequence of 

machine operations completed by the last one) is assumed to become a “tabu”. Then 

use the TS procedure, trying to improve the gbest generated by the PSO. The phases 

3 (PSO), and 4 (TS) are repeated iteratively until the stop position is fulfilled as it is 

shown in Fig. 1. 
 

 
Fig. 1. Flowchart of the algorithm PSO & TS 

 

Framework of a Hybrid Algorithm. In this paper, a hybrid optimization 

algorithm is used through swarm particles and a tabu search to solve FJSSP. The 

basic framework of a hybrid algorithm is as follows. 

Step 1. Initialization. 

Step 1.1. Set the parameters of the hybrid algorithm. 

Step 1.2. Produce a swarm of initial solutions using the initialization rules 

given in Section 2. 

Step 2. Apply the PSO algorithm. 

Step 2.1. Find the best global and best local particle in the swarm. 

Step 2.2. Contemplate the global best particle gbest and the locall best pbest 

for each particle. 

Step 3. Apply the TS algorithm. 

Step 3.1. Find the global best particle gbest in the current swarm. 

Step 3.2. Randomly, select an operation, select another machine for the 

operation, and update the current global best particle gbest. 

Step 3.3. Randomly exchange two operations in the current global best 

particle gbest, and update the current best global particle. 

Step 4. Apply the fitness function. 



 41 

Step 4.1. Apply a fitness function to the global best particle gbest. 

Step 4.2. If the stop criterion is met, show the global best particle gbest; 

otherwise, go to Step 2 to start a new cycle. 

5. Test results 

A set of 12 benchmark test examples are used in this study. The first one is taken 

from paper by G e i g e r [12], the second and the eighth – from source Z h a n g  et al. 

[42], the third – from L o w, Y i p  and W u  [24], the fourth – from H u a n g [17], the 

fifth – from X i a  and W u  [41], the sixth – from M e s g h o u n i, H a m m a d i  and 

B o r n e  [28], the seventh – from U d a i y a k u m a r  and C h a n d r a s e k a r a n  

[39], the ninth – from K a c e m, H a m m a d i  and B o r n e  [19], the tenth and the 

twelfth – from T a n g  et al. [38], and the eleventh – from L i  et al. [23]. The optimal 

solutions of all used test examples are obtained by a genetic algorithm developed by 

P e s a r u  [31], created in MATLAB environment (by means of R2012b MATLAB 

version). Most of the optimal solutions are also published in the corresponding cited 

references sources. The obtained test results of proposed hybrid PSO&TS algorithm 

are presented in Table 1, as follows: 
 

Table 1. Results obtained on the test examples 

No 
Test  

example 

Reference 

source 

Optimal  

Makespan 

Makespan 

by means 

of Hybrid  
PSO &TS 

Runs 
Times 

Achieved 

Makespan 

Absolute  

Error 

Makespan  

by means  

of Genetic  
algorithm 

1 M2J2O4 Geiger 2012 66 66 30 30 0% 66 

2 M3J2O5X Zhang 2009 53 53 30 30 0% 53 

3 M3J2O5L Low 2006 11 11 30 30 0% 11 

4 M3J3O8 Huang 2005 11 11 30 28 0% 11 

5 M3J3O9 Xia 2005 45 45 30 4 0% 45 

6 M3J4O13 Mesqhoini 2004 28 28 30 3 0% 28 

7 M4J3O8 Udaiyakumar 2004 12 12 30 14 0% 12 

8 M5J2O4 Zhang 2009 5 5 30 30 0% 5 

9 M5J3O7 Kasem 2002 11 11 30 30 0% 11 

10 M5J3O8 Tang 2011 5 5 30 1 0% 5 

11 M5J4O12 Li 2010 11 11 30 1 0% 11 

12 M11J3O30 Tang 2011 568 571 30 0 0.52816% 568 

Mean error 0.044% 0% 

 

Using the hybrid PSO-TS algorithm the optimal solution is obtained in 11 cases. 

Only the obtained result for test instance 12 has an error, which is 0.53%. For 

comparison a genetic algorithm developed by P e s a r u  [31] has been run. Analysis 

of the GA performance for optimization of scheduling problems has been done by 

M a t t f e l d  [27]. B i e r w i r t h  and M a t t f e l d  [4] also use of GAs for 

optimization of dynamic scheduling and rescheduling problems. In 10 of 10 runs the 
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genetic algorithm generates the optimal solution. The hybrid PSO&TS algorithm has 

a small deviation from optimality on the example with 30 operations. Nevertheless 

the obtained results are encouraging. It should be mentioned that the genetic 

algorithms must be run several times due to their stochastic nature, in order to obtain 

a minimal deviation from optimality. 

For comparison the PSO&TS algorithm is run on every problem for thirty times. 

In five problem the makespan is reached for thirty times, in M3J3O8 – for twenty 

eight times, in M4J3O8 – for 14 times, in M3J3O9 and M3J4O13 the makespan is 

achieved for 4 and, respectively, 3 times. For two problems (M5J3O8 and M5J4O12) 

the optimal solution has been received for one time and for M11J3O30 – for zero 

times. 

It must be mentioned that with growing of the dimension of the problems 

decrease the times the solution is reached. 

For all cases, the solution is achieved for 15 seconds for one run, only for 

M11J3O30 the approximate solution – for 30 seconds/run. 

6. Conclusion 

A large variety of different real life problems in practice are formulated as FJSSP 

optimization problems. In the current paper a hybrid PSO&TS algorithm, based on 

two popular heuristics, is used to solve the flexible JSSP. The first of them is Particle 

Swarm Optimization and the second is Tabu Search.  

Twelve benchmark examples from the references are used as a test sample. The 

results show that the mean error is 0.044%, which is encouraging. The time for 

becoming the results is very small – a few seconds. The algorithm is coded on Matlab. 

The developed algorithm will be further tested on instances with larger 

dimension and it could be refined, i.e. its performance could be improved. 
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