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Abstract: Efficiently provisioning the resources in a large computing domain like 

cloud is challenging due to uncertainty in resource demands and computation ability 

of the cloud resources. Inefficient provisioning of the resources leads to several 

issues in terms of the drop in Quality of Service (QoS), violation of Service Level 

Agreement (SLA), over-provisioning of resources, under-provisioning of resources 

and so on. The main objective of the paper is to formulate optimal resource 

provisioning policies by efficiently handling the uncertainties in the jobs and 

resources with the application of Neutrosophic Soft-Set (NSS) and Fuzzy 

Neutrosophic Soft-Set (FNSS). The performance of the proposed work compared to 

the existing fuzzy auto scaling work achieves the throughput of 80% with the learning 

rate of 75% on homogeneous and heterogeneous workloads by considering the 

RUBiS, RUBBoS, and Olio benchmark applications. 

Keywords: SARSA (State-Action Reward-State-Action), Resource provisioning, 
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1. Introduction  

The cloud resource demands of the complex computational applications in the area 

of engineering, economics, environmental science, and so on, are highly fluctuating 

in nature and consist of data that are uncertain and imprecise, elastic resource 

provisioning becomes one of the critical requirements of such applications. The 

elastic resource provisioning mechanism allows the user to scale up or down the 

resources dynamically at run-time, this feature reduces infrastructure cost and then 

models the application to attain high Quality of Service (QoS) requirement by 

meeting the Service Level Agreements (SLAs). The existing resource provisioning 

approaches can be classified into two types i.e., reactive or proactive, reactive 

approaches take resource provisioning decisions when the load on the system 

resources are high, whereas the proactive approaches estimate the probable load on 
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the system resources and then lease the resources in advance [1-3]. The elastic 

resource provisioning in cloud involves several challenges in terms of existence of 

heterogeneous hardware, maintenance of virtual machine compatibility table, 

periodic updating of states of the virtual machines, frequent failures of nodes during 

scaling, long-term irregular workload parameters, sudden changes in processing 

capability of the resources, frequent violation of SLA, and so on [4-10]. 

Methodologies based on thresholds, time series analysis, queuing theory and control 

theory have failed to provide satisfactory solutions to resource provisioning problem 

as those solutions are affected by the undetermined and erratic changes in the 

processing requirements of jobs and unstable processing behavior exhibited by the 

resources [11-13]. Hence there is a necessity to handle uncertainty in the job and 

resource parameters before taking resource provisioning decisions. 

Many mathematical models are available to handle uncertainty like probability 

theory, interval mathematics, and fuzzy sets. But these techniques have several 

limitations like probability theory is suitable only for stochastically stable phenomena 

and usually takes more trials to provide a solution; interval mathematics fails to 

handle uneven changing in the workload parameters; in the fuzzy set computing 

membership function is tedious as it is not general and is individual specific which 

cannot handle the dynamics of large state space. These drawbacks motivated towards 

soft-set which is parameterized family of a set and does not put any restriction on the 

approximate description as it puts soft boundary depending on the parameters. The 

conventional reinforcement learning techniques draw policies with the assumption 

that the underlying environment is static and do not consider the changing dynamics 

into account but this assumption fails in a highly dynamic environment like cloud, 

this motivated to use soft-set enabled reinforcement learning [14-17]. 

The objectives of the paper are as follows. 

Identify the uncertainty in the jobs and resources by representing their states in 

the form of Partially Observable Markov Decision Process model (POMDP) and 

Hidden Markov Model (HMM) model. 

Handle the uncertainties of the jobs and resources using NSS and FNSS as they 

provide practical frameworks to measure the truth, indeterminacy, and falsehood of 

the data associated with the resource provisioning decisions.  

Design expected 3-SARSA (State-Action Reward-State-Action) learning agent 

empowered with the NSS and FNSS model, which controls the exploration during 

action selection state.  

Evaluate the resource provisioning policies with respect to successful job 

completion rate and learning rate, as SARSA agent updates the resource provisioning 

policies by considering three adjacent expected action-value pairs, which increases 

the learning stability of the agent and even increases the successful job completion 

rate. 

The remaining part of the paper is organized as follows, Section 2 deals with 

related work; Section 3 briefs about the system model; Section 4 gives the high-level 

view of the proposed work; Section 5 does interval-valued NSS analysis of the 

proposed work; and Section 6 deals with result and discussion; and finally Section 7 

draws the conclusion. 
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2. Related works 

The [19] proposed a resource allocation scheme under job uncertainty. Here the 

execution delay of the incoming jobs is predicted using a self-similar long tail 

process, where the similar properties are repeated at different time scales. Then the 

Pareto fractal flow prediction model is used for resource allocation purpose. However 

the basis for allocating the resources is on the assumption that the jobs exhibit similar 

properties but the complex computational jobs are highly random in nature and 

always exhibit an uneven pattern of workload, so the efficiency of the resource 

allocation is found to be below average. 

In [20], a deep reinforcement learning based resource provisioning scheme is 

proposed to minimize the energy consumption of the data centers. Here deep 

reinforcement learning is employed using multiple layers of computational nodes, 

which tries to learn from changing cloud environment to draw optimal resource 

provisioning policies. The scheme is found to be good with respect to energy 

reduction in the large data centers as it effectively handles the sudden burst of the 

workload but the time by the network to convergence is high as it takes too long time 

to balance between exploration and exploitation. 

A reinforcement learning based auto resource scaling system is proposed in 

[21], here multiple reinforcements learning agents with parallel learning policy is 

used to allocate the resources. Each agent has different learning experience and every 

agent share the information learned from the other agents. The parallel learning 

process is found to be good with respect to the rate of learning and Q-Value table 

updating. However, this increases the interaction rate between the agents as huge state 

space need to be considered while deciding the actions, which in turn increases the 

response time of the agents and leads to improper utilization of the resources. 

The [22] proposes a new predictive resource scaling approach for cloud systems. 

The approach extracts the fine-grained pattern from the workload demands and then 

adjusts the resources accordingly. To extract the pattern, signal processing, and 

statistical methods are used. Here the workload patterns are analyzed as it is, i.e., 

uncertainty is not handled, so there was the drop in prediction accuracy, which 

resulted in the increased rejection rate of the jobs.  

An analytical model based auto scaling mechanism is used in [23]. Here an 

analytical model is developed to characterize the workload and to analyze its impact 

on the efficiency of the scale-out or scale-in decisions in the cloud. An inference is 

drawn that scale up is suitable when SLA is strict and scale down is suitable when 

the workload is high. The Kalman filtering-based auto-scaling solution is applied for 

scaling of infrastructure services, as its topology is available. But the model does not 

fit for scaling of software applications as they lack fixed topology.  

A comparison of fuzzy SARSA and fuzzy Q-Learning towards auto-scaling of 

resources in the cloud environment is given in [24]. Both approaches are used to 

efficiently scale the resources under varieties of workload and even maximize the 

resource utilization rate. However the performance of the fuzzy Q-Learning is low 

with respect to learning rate as it always try to compare the actual state with the best 

possible next state while taking actions using fuzzy rule base and the performance of 

the fuzzy SARSA learning is low with respect to adaptability towards heterogeneous 
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workload as the policy formed after the learning phase is not optimized further to 

adapt to uneven pattern in the workload. 

The [25] proposes a self-managed virtual machine scheduling technique for the 

cloud environment. The placement of virtual machines in cloud is one of the 

computation intensive activities, so in this approach, the history of the virtual 

machine’s resource (CPU, memory, hard disk, RAM, network and so on) utilization 

ratio is taken into account to predict the resource utilization level then the decisions 

about virtual machines placement is made. However, the state of virtual machines 

inside the physical machines is not directly visible and it consists of several hidden 

states; as a result, the accuracy of the predicted resource utilization level using various 

machine learning models is less, this resulted in improper placement of virtual 

machines inside the physical machines which leads to a drop in physical machine 

throughput. 

In [26] the heuristic approach is used to schedule the tasks through proper 

distribution of the resources. In this approach every incoming task is processed using 

modified analytic hierarchy process then the resources are scheduled using 

differential evolution algorithm. The analytic hierarchy process ranks the tasks based 

on the requirements of the tasks, however it is not possible to directly rank the tasks 

in the cloud environment as the jobs are usually malleable they start with very few 

resource requirements and then gradually expand to higher resource requirements. As 

a result the application of analytic hierarchy process to malleable jobs leads to 

improper ranking of jobs and the chances of pre-empting the higher priority jobs are 

more which leads to improper utilization of resources.  

The [27] discusses machine learning based resource provisioning techniques for 

the cloud environment. Automated self-learning enabled resource provisioning is 

most important to deliver elastic services to customers by satisfying their needs. Here 

the time series forecasting technique is to predict the number of resources to be 

sanctioned for the incoming client requests and support vector regression model is 

used to forecast the processing capability of the servers. The use of time series model 

in combination with support vector machine is one of the biggest limitations of the 

approach as it fails to capture the chaotic and non-deterministic behaviors of the 

servers and client requests due to the use quadratic programming approach.  

In [28], a deep learning based elastic resource provisioning scheme is proposed 

for the cloud environment. Here three different approaches of deep reinforcement 

learning techniques, i.e. simple deep Q-Learning, full deep Q-Learning and double 

deep Q-Learning are proposed to achieve elasticity in resource provisioning which is 

trained to converge to optimal elasticity policies. All three deep reinforcement-

learning techniques are capable of learning in a large state space environment and are 

able to collect a sufficient amount of rewards. However, the training of the models is 

computationally expensive and accuracy of the elastic resource provisioning policies 

formed is weak as it operates directly on the partial information exhibited by the jobs 

and resources without the use of any membership functions to handle uncertainties in 

the nested layers of the deep reinforcement techniques.  

A survey of prediction models based resource provisioning techniques available 

for cloud environment is discussed in [29]. Resource provisioning is one of the key 
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issues in the cloud environment as the behavior pattern of workloads keeps varying 

which leads to frequent violations of service level agreements. Various prediction 

models like a neural network, fuzzy logic, linear regression, Bayesian theory model, 

support vector machine, and reinforcement learning are used to estimate the future 

demands of resources. The pros and cons of each of these models are discussed and 

the performance of reinforcement learning technique enriched with the fuzzy logic 

model is good in terms of speed and accuracy of the resource mapping as it is 

proactive in nature and exactly mines the correlation among the variety of resources. 

A reinforcement-enabled technique for energy efficient resource provisioning is 

discussed in [30] to achieve maximum revenue. Here based on the read user 

requirements, the virtual machines and physical machines are hosted in the cloud. 

The resource allocation policy is updated based on the reward collected for energy 

utilization factor of every virtual machine and physical machine in the data center. 

However, in this technique, while predicting the future resource demands, the 

resource like CPU utilization, amount of memory, system availability and system 

performance are assumed to static and transparent in nature which becomes the major 

limiting factor. 

The approach of load balancing among the virtual machines in the cloud data 

center using the Pareto principle is mentioned in [31]. As the computation 

requirement of the applications keeps varying, there is a necessity to scale up and 

scale down the virtual machines so Pareto based genetic algorithm is used to generate 

a large number of solutions and then select one of the solutions as the best one. Here 

the workload requirement of the user is taken directly for analysis without any pre-

processing; hence there will be an influence of uncertainty over the load balancing 

solutions formed. Moreover, the stringent nature of the genetic algorithm increases 

the time taken to convergence towards an optimal solution and even it fails to arrive 

at the global optimum solution. 

In [32], fuzzy logic based hybrid bio-inspired techniques like Ant-colony, and 

Firefly is developed for placement of the virtual machines within the data center and 

to consolidate the server. Here the basic principle used for server consolidation is to 

pack as many virtual machines as possible within the data center, this works fine on 

steady-state workloads but during the heavy burst of the workloads, it leads to over-

utilization of the resources.  The uncertainty factor is handled through the use of 

fuzzy membership functions inside ant-colony and firefly algorithms but to achieve 

more accuracy there will be an exponential increase in the fuzzy rules and these 

algorithms are old enough and their performance is weak compared to the recent bio-

inspired techniques like a whale, crow, squirrel, and raven roosting. 

By considering the demand uncertainty, dynamic resource allocation for cloud 

environment is discussed in [33]. The cloud providers allocate resources on the 

reservation basis or on-demand basis, reservation-based allocation of resources are 

carried out on long-term duration which involves lower uncertainty, whereas on-

demand based allocation of resources is carried out on short-term or long-term 

duration which involves higher uncertainty. In this work the uncertainty in user 

demands are modelled as random variables using stochastic optimization approach 

and an algorithm with two phases is developed, the first phase does the reservation 



 99 

for the resources and the second phase does the dynamic allocation of the resources. 

However, modelling the demand uncertainty using random variables is very difficult 

as it does not possess exact stopping criteria and the uncertainty involved in the 

processing capability of the resources is also ignored which leads to under-utilization 

or over-utilization of the resources.  

To summarize most of the existing works exhibits the following drawbacks. 

 Unable to determine the uncertainty involved in the job processing 

requirement. 

 Unable to determine the uncertainty involved in the resource computation 

ability. 

 Drop in prediction accuracy due to the failure in determining the exact pattern 

in processing requirement in the malleable jobs. 

 By ignoring the hidden states and partially observable states while making 

resource provisioning decisions; the chances of over-provisioning or under-

provisioning of the resources is high. 

 The conventional reinforcement learning algorithms fail to form robust 

resource provisioning policies, as it cannot capture the chaotic behaviours of the 

servers and client using a deterministic approach. 

 Lack of proactiveness while taking resource provisioning decisions leads to 

a decrease in accuracy and speed to learning. 

 The bio-inspired algorithms fail to arrive at a global optimum solution, and 

even the convergence rate is high due to their harsh approach involved in workload 

analysis. 

3. System model 

This section provides mathematical modeling of the system under consideration. A 

cloud is assumed to be ∞ collection of pool of resources, 

(1)   𝐶 = { 𝑅𝑖}𝑖=0
𝑖=𝑘 . 

Every  𝑅𝑖 consists of unlimited set of heterogeneous resources, 

(2)   𝑅𝑖 = { 𝑟𝑖}𝑖=0
𝑖=𝑘 . 

The capacity of every resource is subset of resource pool  𝑅+, 

(3)   𝐶(𝑟𝑖)ϵ𝑅+. 
The price associated with every resource is subset of price pool  𝑃+,  

(4)   𝑃(𝑟𝑖) ∈ 𝑃+. 
The resources 𝑟𝑖 and 𝑟𝑗 of cloud are connected through a network with link 𝐿 𝑟𝑖, 𝑟𝑗

 

and the rental time of each resource to process the incoming jobs is limited.  

The jobs are classified into various categories according to their resource 

requirements, i.e., low (l), medium (m), and high (h), 

(5)   𝐽 = {𝐽𝑖 ← {𝑅𝑖(𝑙),  𝑅𝑖(𝑚), … ,  𝑅𝑖(ℎ) } … 𝐽𝑘 ← {𝑅𝑘(𝑙), 𝑅𝑘(𝑚),  𝑅𝑘(ℎ) }}. 
The jobs and resources are associated with uncertainties in terms of their 

resource requirements and processing capabilities, which dynamically vary within 

the given time frame 𝑇(𝐽𝑚
𝑛 ) , 

(6)   𝑇(𝐽𝑚
𝑛 ) = 𝑇(𝐽𝑖

0), . . . , 𝑇(𝐽𝑝
𝑘), and 𝑇(𝑅𝑖) = 𝑇(𝑅𝑖

0), . . . , 𝑇(𝑅𝑝
𝑘). 
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The uncertainties of the resources are handled using Neutrosophic Soft-Set 

(NSS) theory and the uncertainties of the jobs are handled using Fuzzy Neutrosophic 

Soft-Set (FNSS) theory.  

Let NSS be the neutrosophic soft-set on the universe of discourse U and E is the 

set of parameters:  

(7)   NSS = {𝑢, 𝑇NSS (𝑢), 𝐼NSS (𝑢), 𝐹NSS (𝑢)𝑢 ∈ 𝑈}, 

where T, I, F are Truth value, Indeterminate value and False value, and T, I, F →

]− 0, 1+ [  and 0− 𝑇NSS (𝑢) +  𝐼NSS (𝑢) + 𝐹NSS (𝑢) ≤ 3+, and 𝐸 = {𝐸1,
𝐸1, . . . , 𝐸𝑘} then the collection (F, NSS) is referred as neutrosophic soft-set of 

resources over U. 

Let FNSS be the fuzzy neutrosophic soft-set on the universe of discourse U and 

E is the set of parameters: 

(8)   FNSS = {𝑢, 𝑇FNSS (𝑢), 𝐼FNSS (𝑢), 𝐹FNSS (𝑢), 𝑢 ∈ 𝑈}, 
where 𝑇, 𝐼, 𝐹 → [0, 1] and 0 ≤ 𝑇FNSS (𝑢) +  𝐼FNSS (𝑢) + 𝐹FNSS (𝑢) ≤ 3 then the 

collection (𝐹, FNSS) is referred as fuzzy neutrosophic soft-set of jobs over U.  

Later resource provisioning decisions for the jobs are taken using expected  

3-SARSA model, 

(9)   (𝐹, NSS), (𝐹, FNSS) ∝ {𝑄𝐴(𝑆𝑡, 𝐴𝑡), 𝑄𝐵(𝑆𝑡, 𝐴𝑡), 𝑄𝐶(𝑆𝑡, 𝐴𝑡)}, 
where  

𝑄𝐴(𝑆𝑡, 𝐴𝑡)+ = 𝛼[𝑟𝑡 + [𝑟𝑡−1  ∗ 𝑄𝐵(𝑆𝑡−1, 𝐴𝑡−1) − 𝑟𝑡−2 ∗ 𝑄𝐶(𝑆𝑡−2, 𝐴𝑡−2)]],  in 

which 𝑟𝑡,   𝑟𝑡−1, and 𝑟𝑡−2   are the reward obtained at states 𝑆𝑡,  𝑆𝑡−1, and 𝑆𝑡−2 

and 𝐴𝑡,  𝐴𝑡−1, and 𝐴𝑡−2 are the action taken at the states 𝑆𝑡,  𝑆𝑡−1, and  𝑆𝑡−2.  

3.1. Resources model 

The state of the resources in cloud is dependent on the hidden state of the virtual 

machines mounted on top of every physical machine in the cloud resource pool. 

Hence the resources are modeled using HMM, 

(10)   HMM(𝑅𝑖) = (𝑆(𝑅𝑖), 𝑉(𝑅𝑖), 𝐵(𝑅𝑖), 𝐴(𝑅𝑖), 𝐼(𝑅𝑖)), 

where: 𝑆(𝑅𝑖) = {𝑆1(𝑅𝑖),  𝑆2(𝑅𝑖), … , 𝑆𝑛(𝑅𝑖)} represent the states of the resource;  

𝑉(𝑅𝑖) = {𝑉1 (𝑅𝑖), 𝑉2 (𝑅𝑖), . . . , 𝑉𝑛 (𝑅𝑖)} is the value symbols associated with the 

resource; 

𝐵(𝑅𝑖) = {𝑏(𝑉𝑖 (𝑅𝑖))} indicates the output state probability, where 

∑ 𝑏(𝑉𝑖 (𝑅𝑖) = 1;𝑖=𝑚
𝑖=1   

𝐴(𝑅𝑖) = {𝑎𝑖𝑗} is the probability of transition from state i to state j, where 

∑ 𝑎𝑖𝑗
𝑖,𝑗=𝑛
𝑖,𝑗=1 =1,  𝑖 ≥ 1 and 𝑗 ≤ 𝑛; 

𝐼(𝑅𝑖) = {𝐼1(𝑅𝑖), 𝐼2(𝑅𝑖), … , 𝐼𝑛(𝑅𝑖)} is the initial probability states of the 

resource, where ∑ 𝐼𝑖(𝑅𝑖)𝑖=𝑛
𝑖=1 =1.  

A sample MDP model of resources is shown in Fig. 1. The hidden states of the 

resources are handled using NSS as it characterizes every hidden state of the 

resources while processing the job requests by perceiving all information of the 

unobserved hidden states to optimally switch between exploration and exploitation 

dilemma of the resources while processing jobs requirements using neutrosophic 

truth, indeterminate, and falsehood membership function. 
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Fig. 1. A sample HMM model of resources 

3.2. Jobs model 

Based on the elasticity of resource usage, the jobs are broadly classified into two 

types; they are evolving, and malleable. Evolving jobs operate on the inflatable range 

of computing nodes and the malleable jobs starts with the available fewer nodes and 

gradually expands to more number of nodes. Only partial information is available 

about the resource requirement of the jobs. Hence the jobs are modelled using 

POMDP, 

(11)   POMDP(𝐽𝑖) = (𝑆(𝐽𝑖), 𝐴(𝐽𝑖), 𝑃(𝐽𝑖), 𝑅(𝐽𝑖), Ω(𝐽𝑖), 𝑂(𝐽𝑖)), 
where:  

𝑆(𝐽𝑖) = {𝑆1(𝐽𝑖), 𝑆2(𝐽𝑖), . . . , 𝑆𝑛(𝐽𝑖)} represent the states of the job; 

𝐴(𝐽𝑖) = {𝐴1(𝐽𝑖), 𝐴2(𝐽𝑖), . . . , 𝐴𝑛(𝐽𝑖)} represent finite set of actions; 

𝑃(𝐽𝑖) = {𝑎𝑖𝑗} is the probability of transition from state i to state j, where 

∑ 𝑎𝑖𝑗
𝑖,𝑗=𝑛
𝑖,𝑗=1 =1,  i1, and j≤n;  

𝑅(𝐽𝑖) = 𝑅(𝑆𝑖(𝐽𝑖), 𝐴𝑖(𝐽𝑖)) is the reward model of the jobs; 

Ω(𝐽𝑖) = {Ω1(𝐽𝑖), Ω2(𝐽𝑖), . . . , Ω𝑛(𝐽𝑖)} is the finite set of observations; 

𝑂(𝐽𝑖) = 𝑂 (
𝑜

(𝑆𝑖(𝐽𝑖),𝐴𝑖(𝐽𝑖))
) is the observation model of the jobs.  

 

 
Fig. 2. A sample POMDP model of jobs 

A sample POMDP model of jobs is shown in Fig. 2. The partial state of the jobs 

are handled using FNSS as it characterizes every partial state of the jobs by giving 

equal importance to varying resource requirements of the jobs and precisely solves 
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hugely intractable uncertainties in the partial states of the jobs using fuzzy 

neutrosophic truth, indeterminate, and falsehood membership function. 

4. Proposed work 

The proposed NSS and FNSS model based expected 3-SARSA learning resource 

provisioning framework is shown in Fig. 3.  
 

 
Fig. 3. Proposed NSS enabled expected 3-SARSA learning Resource provisioning framework 

 

 
Fig. 4. Flowchart of the proposed framework 

It is composed of three modules; one is Resource Neutrosophic Soft-Set Uncertainty 

Reducer (R-NSSUR), Job Neutrosophic Soft-Set Uncertainty Reducer (J-FNSSUR), 

and Expected 3-SARSA learning agent. The R-NSSUR module handles resource 
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uncertainty, J-FNSSUR module handles job related uncertainty, and Expected  

3-SARSA Resource provisioning Agent (E(3-SARSA)-RPA) forms optimal policies 

for resource provisioning by triple coupling the action-value pair of the agent. Fig. 4 

gives the flowchart representation of the proposed framework. 

4.1. Resource Neutrosophic Soft-Set Uncertainty Reducer (R-NSSUR) 

The R-NSSUR inputs the HMM model of the resource HMM(𝑅𝑖) to construct NSS 

of the HMM model of the resource NSS-HMM(𝑅𝑖) by calculating truth-membership 

function TNSS(𝑅𝑖), indeterminacy function INSS(𝑅𝑖), and falsity membership 

function FNSS(𝑅𝑖) of the resources. The Discernibility matrix is constructed to obtain 

minimal reduct of resources by removing the irrelevant parameters from the hidden 

state of resources D(NSS-HMM(𝑅𝑖, 𝑅𝑗)) then the entries in the matrix are normalized 

using standard minimum of the discernibility matrix. Finally the reduced soft-set of 

HMM model of resource HMM(𝑅𝑖)
rd is produced as output. The working of  

R-NSSUR is shown in Algorithm 1 and satisfies the Theorems 4.1 and 4.2. 

Algorithm 1. Working of R-NSSUR 

Step 1. Begin 

Step 2.  Input: HMM(𝑅𝑖) = (𝑆(𝑅𝑖), 𝑉(𝑅𝑖), 𝐵(𝑅𝑖), 𝐴(𝑅𝑖), 𝐼(𝑅𝑖)) 

Step 3.  Output: HMM(𝑅𝑖)
rd=(S(𝑅𝑖

rd)), V(𝑅𝑖
rd)), B(𝑅𝑖

rd)), A(𝑅𝑖
rd)), I(𝑅𝑖

rd)) 

Step 4.  for every 𝑅𝑖 ∈ 𝑅 do 

Step 5.    Form NSS of HMM(𝑅𝑖), i.e., 

Step 6.              NSS-HMM(𝑅𝑖)=( 𝑅𝑖 , TNSS(𝑅𝑖), INSS(𝑅𝑖), FNSS(𝑅𝑖)) 

Step 7.        Calculate the Discernibility matrix D(NSS-HMM(𝑅𝑖, 𝑅𝑗)), i.e., 

               D(NSS-HMM(𝑅𝑖, 𝑅𝑗))={𝑎 ∈ 𝐴|𝑔(𝑅𝑖, 𝑎) ≠ 𝑔(𝑅𝑗, 𝑎)} 

Φ {a1} {a1, a4} 

... ... ... 

{a1, a3, a4} ... Φ 

Step 8.               Calculate standard minimum ∆∗D(NSS-HMM(𝑅𝑖, 𝑅𝑗)), i.e., 

Step 9.                            ∆∗D(NSS-HMM(𝑅𝑖, 𝑅𝑗))= (𝑎𝑖 ∧ 𝑎𝑗)⋁(𝑎𝑘 ∧ 𝑎𝑙) 

{a1*, a4*} {a3*} Φ 

... ... ... 

{a2*} ... {a2*, a5*} 

Step 10.  End for 

Step 11.  Output all reduced resources in HMM form HMM(𝑅𝑖)
rd 

Step 12.  End 

Theorem 4.1. Let HMM(𝑅𝑖) be the input model of the resource parameters and 

HMM(𝑅𝑖)
rd is the reduced model of the resource parameters, which is obtained by 

eliminating irrelevant parameters 𝛾 from HMM(𝑅𝑖). Then 𝛾 is dispensable in 

HMM(𝑅𝑖) if and only if HMM(𝑅𝑖) – 𝛾 ⟹ HMM(𝑅𝑖)
rd. 

Theorem 4.2. Let (NSS, E) be the input neutrosophic soft-set, where  

𝐸 = {𝑒1, 𝑒2, … , 𝑒𝑗} is the parameter set representing NSS. If there exists irrelevant 

parameters like 𝑒𝑗
0 and 𝑒𝑗

𝑖, they are added into reduced parameters set 𝐸 = {𝑒𝑗
0, 𝑒𝑗

𝑖} 
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to find subset A, i.e., 𝐴 ⊆ 𝐸 then 𝐸 − 𝐴 − 𝐸  produces reduced (NSS, 𝐸 ) excluding 

𝑒𝑗
0 and 𝑒𝑗

𝑖. 

4.2. Job Fuzzy Neutrosophic Soft-Set Uncertainty Reducer (J-FNSSUR) 

The J-FNSSUR inputs the POMDP model of the job POMDP(𝐽𝑖) =
(𝑆(𝐽𝑖), 𝐴(𝐽𝑖), 𝑃(𝐽𝑖), 𝑅(𝐽𝑖), 𝛺(𝐽𝑖), 𝑂(𝐽𝑖)) to construct the FNSS of the POMDP model 

of the job FNSS − POMDP(𝐽𝑖) by calculating Truth fuzzy membership 

function 𝑇FNSS (𝐽𝑖), Indeterminacy fuzzy function 𝐼FNSS (𝐽𝑖), and Falsity fuzzy 

membership function 𝐹NSS (𝐽𝑖) of the jobs. The discernibility matrix is constructed to 

obtain minimal residue of resources by removing the irrelevant parameters from the 

hidden state of jobs (NSS − POMDP(𝐽𝑖, 𝐽𝑗)) . Then the entries in the discernibility 

matrix are normalized in three levels, in the first level the fuzzy weighted average of 

discernibility matrix is calculated, in the second level standard minimum of 

discernibility matrix is calculated, and in the third level fuzzy weighted average 

square over standard minimum of discernibility matrix is formulated. Finally the 

reduced soft-set of POMDP model of jobs POMDP(𝐽𝑖)rd is generated as output. The 

working of J-FNSSUR is shown in Algorithm 2 and satisfies the Theorems 4.3  

and 4.4.  

Algorithm 2. Working of J-FNSSUR 

Step 1.  Begin 

Step 2.  Input: POMDP(𝐽𝑖) = (𝑆(𝐽𝑖), 𝐴(𝐽𝑖), 𝑃(𝐽𝑖), 𝑅(𝐽𝑖), 𝛺(𝐽𝑖), 𝑂(𝐽𝑖)) 

Step 3.  Output: POMDP(𝐽𝑖)rd = 

= (𝑆(𝐽𝑖)rd, 𝐴(𝐽𝑖)rd, 𝑃(𝐽𝑖)rd, 𝑅(𝐽𝑖)rd, 𝛺(𝐽𝑖)rd, 𝑂(𝐽𝑖)rd) 

Step 4.  for every 𝐽𝑖 ∈ 𝐽 do 

Step 5.               Form FNSS of POMDP(𝐽𝑖) 

Step 6.               FNSS-POMDP(𝐽𝑖)=( 𝐽𝑖,  𝑇FNSS(𝐽𝑖), 𝐼FNSS(𝐽𝑖), 𝐹NSS(𝐽𝑖)) 

Step 7.               Calculate discernibility matrix D(FNSS-POMDP(𝐽𝑖, 𝐽𝑗)), i.e., 

Step 8.            D(FNSS-POMDP(𝐽𝑖, 𝐽𝑗))={𝜇(𝑎) ∈ 𝐴|𝑔(𝐽𝑖𝑖
, 𝜇(𝑎)) ≠ 𝑔(𝐽𝑗, 𝜇(𝑎))} 

Step 9.                 Compute fuzzy weighted average of discernibility matrix, i.e.,  

             FD = ∑ (𝑤𝑖 ∗ 𝜇(𝑎))𝑖=𝑛
𝑖=1 , where 𝑤𝑖 is weight assigned 

Step 10.                    D(FNSS-POMDP(𝐽𝑖, 𝐽𝑗))= 

Φ {a1/FD} {a1/FD, a4/FD} 

... ... ... 

{a1/FD, a3/FD, a4/FD} ... Φ 

Step 11.               Calculate the standard minimum ∆∗D(FNSS-POMDP(𝐽𝑖, 𝐽𝑗)) 

                      ∆∗D(FNSS-POMDP(𝐽𝑖, 𝐽𝑗))= (𝜇(𝑎𝑖 ) ∧ 𝜇(𝑎𝑗))⋁(𝜇(𝑎𝑘) ∧ 𝜇(𝑎𝑙)) 

{a1*, a6*} {a1*} {a1*, a6*} 

... ... ... 

{a6*} ... {a4*, a7*} 

Step 12.      Calculate the fuzzy weighted average square over standard minimum  

                     of discernibility matrix, i.e., FD2=∑ (𝑤𝑖 ∗ 𝜇(𝑎))𝑖=𝑛
𝑖=1

2, i.e., 

Step 13.                     D(FNSS-POMDP(𝐽𝑖, 𝐽𝑗))= 

{𝑎1 
∗ /FD2, 𝑎6 

∗ /FD2} {𝑎3 
∗ /FD2} {𝛷 

∗/FD2} 
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... ... ... 

{𝑎6 
∗ /FD2} ... {𝑎4 

∗ /FD2, 𝑎7 
∗ /FD2} 

Step 14.  End for 

Step 15.  Output all reduced jobs in POMDP form POMDP(𝐽𝑖)
rd 

Step 16.  End 

Theorem 4.3. Let (FNSS, 𝜇(𝐸)) be the input fuzzy neutrosophic soft-set, where 

𝜇(𝐸) = {𝜇(𝑒1)𝜇(𝑒1), … , 𝜇(𝑒𝑗)} is the membership value of the parameter set 

representing FNSS. If there exists membership values of irrelevant parameters like 

𝜇(𝑒𝑗
0) and 𝜇(𝑒𝑗

𝑖) which exhibits the probability of greater than 0.5, they are added 

into reduced parameters set 𝜇(𝐸) = {𝜇(𝑒𝑗
0), 𝜇(𝑒𝑗

𝑖)} to find subset A, i.e., 𝐴 ⊆ 𝜇(𝐸) 

then 𝜇(𝐸) − 𝐴 − 𝜇(𝐸) produces reduced FNSS excluding 𝜇(𝑒𝑗
0) and 𝜇(𝑒𝑗

𝑖), i.e., 

(FNSS, 𝜇(𝐸)). 

Theorem 4.4. Let f be a function mapping from 𝑓: (𝐽𝑖, 𝐸) → (𝐽𝑘 , 𝐸) then for 

any FNSS, i.e., FNSS(𝐽𝑖, 𝐸) in f the following conditions hold good: 

𝑓(∅) = ∅, 

𝑓(𝐽𝑖, 𝐸) ⊆ 𝑓(𝐽𝑘, 𝐸), 

𝑓((𝐽𝑖 , 𝐸) ∪ (𝐽𝑘, 𝐸)) = 𝑓(𝐽𝑖, 𝐸) ∪ 𝑓(𝐽𝑘 , 𝐸), 

𝑓((𝐽𝑖 , 𝐸) ∩ (𝐽𝑘, 𝐸)) ⊆ 𝑓(𝐽𝑖, 𝐸) ∩ 𝑓(𝐽𝑘 , 𝐸). 

4.3. Expected 3-SARSA resource provisioning agent (E(3-SARSA)-RSA) 

The E(3-SARSA-RSA) model inputs three states among which one is current state 

𝑄𝐴(S, A) and other two are expected states 𝑄𝐵(S, A), and 𝑄𝐶(S, A), the intention 

behind considering three states are it increases the probability of selecting action with 

highest action value. All three states are initialized to null value, an action is chosen 

in the beginning using an arbitrarily generated policy, the value function is computed 

for expected next two states 𝑉𝑆′
𝐵 and 𝑉𝑆′

𝐶  using which agent updates the states and 

actions, which allows the agent to converge at different values and move towards 

goal by maintaining safe distance from cliff. Later rotate operation is performed on 

all the three Q states with probability P to derive optimal policy for resource 

provisioning, this increases speed of learning and convergences to optimal solution. 

The working of E(3-SARSA)-RSA is given in Algorithm 3 and satisfies the 

Theorems 4.5, 4.6, and 4.7.  

Algorithm 3. Working of E(3-SARSA)-RSA 

Step 1. Begin 

Step 2. Input: Q(S, A)= 𝑄𝐴(S, A), 𝑄𝐵(S, A), and 𝑄𝐶(S, A) 

Step 3. Output: Optimal Q(S, A)* for every (S, A) pair 

Step 4. for ever do 

Step 5.     Initialize Q(S, A)={Φ} 

Step 6.     Choose A from S using the arbitrary policy derived from Q(S, A) 

Step 7.    for every episode do 

Step 8.   Choose A to observe reward and next state (r, 𝑆′). 

Step 9.  Choose 𝐴′ in 𝑆′ using ∏ derived from 𝑄𝐴(S, A), 𝑄𝐵(S, A), and  𝑄𝐶(S, A). 

Step 10.      Compute value function 𝑉𝑆′
𝐴=𝜎𝐴′𝜋(𝐴′/𝑆′) 𝐴(𝑆′, 𝐴′) 
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Step 11.      Compute value function 𝑉𝑆′
𝐵=𝜎𝐵′𝜋(𝐵′/𝑆′) 𝑄𝐵(𝑆′, 𝐵′) 

Step 12.       Compute value function 𝑉𝑆′
𝐶=𝜎𝐶′𝜋(𝐶′/𝑆′) 𝑄𝐶(𝑆′, 𝐶′) 

Step 13.       Compute 𝑄𝐴(S, A)= 𝑄𝐴(S, A)+α[𝛾 + 𝛾𝑉𝑆′
𝐵 + 𝛾𝑉𝑆′

𝐶 − 𝑄𝐴(S, A)]  

Step 14.      Compute 𝑄𝐵(S, A)= 𝑄𝐵(S, B)+α[𝛾 + 𝛾𝑉𝑆′
𝑐 + 𝛾𝑉𝑆′

𝐴 − 𝑄𝐵(S, A)]  

Step 15.       Compute 𝑄𝐶(S, A)= 𝑄𝐶(S, B)+α[𝛾 + 𝛾𝑉𝑆′
𝐴 + 𝛾𝑉𝑆′

𝐵 − 𝑄𝐶(S, A)]  

Step 16.       Update 𝑆 ← 𝑆′and A← 𝐴′ 

Step 17.       Rotate 𝑄𝐴(S, A), 𝑄𝐵(S, A), and  𝑄𝐶(S, A) with probability P 

Step 18. 

𝑄𝐴1
′
 𝑄𝐴2

′
 𝑄𝐴𝑛

′
 

𝑄𝐵1
′
 𝑄𝐵2

′
 𝑄𝐵𝑛

′
 

𝑄𝐶1
′
 𝑄𝐶2

′
 𝑄𝐶𝑛

′
 

Step 19.    End for 

Step 20. Compute resource provisioning decisions AD𝐴∗
, AD𝐵∗

, and  AD𝐶∗
,  i.e., 

AD𝐴∗
← ∑ [𝑄𝐴𝑖∗

]𝑖=𝑛
𝑖=1 , AD𝐵∗

← ∑ [𝑄𝐵𝑖∗
]𝑖=𝑛

𝑖=1 , and  AD𝐶∗
← ∑ [𝑄𝐶𝑖∗

]𝑖=𝑛
𝑖=1  

Step 21.  End for 

Step 22. Output resource provisioning decisions AD= {AD𝐴∗
, AD𝐵∗

, AD𝐶∗
} 

Step 23.  End 

Theorem 4.5. For any HMM(𝑅𝑖)rd of resources and POMDP(𝐽𝑖)rd of jobs, the 

computed Q(S, A) of E(3-SARSA)-RSA agent is always greater than computed value 

function of the agent at state 𝑆.  
Theorem 4.6. If Q(S, A) is the Q state of single SARSA, 𝑄(𝑆, 𝐴) is the Q state 

of double SARSA and 𝑄(𝑆, 𝐴) is the Q state of triple SARSA then the learning rate 

α of 𝑄(𝑆, 𝐴) ≥ max (𝑄(𝑆, 𝐴), 𝑄(𝑆, 𝐴)).  

Theorem 4.7. The update rule of SARSA does not converge unless the learning 

rate drops to zero and exploration rate tends to zero, i.e., 𝑄(𝑆, 𝐴) = 𝑄(𝑆, 𝐴)𝛼[𝛾 +
𝛾𝑉𝑠 − 𝑄(𝑆, 𝐴)]. Whereas, expected three SARSA does not wait till the next state 

action is performed, it converges as soon as the expected value of next state and action 

is obtained 𝑄𝐴(𝑆, 𝐴) = 𝑄𝐴(𝑆, 𝐴) +  𝛼[𝛾 + 𝛾𝑉𝑠`
𝐵 + 𝛾𝑉𝑆

𝐶 − 𝑄𝐴(𝑆, 𝐴)].  

5. Interval-valued analysis 

The efficiency of the proposed work is analyzed using interval-valued NSS analysis 

method [18]. Assume that the AD = {AD𝐴∗
, AD𝐵∗

, AD𝐶∗
} be the generated 

provisioning decisions under consideration in a real SARSA learning agent and let E 

be the set of parameters describing the quality of AD𝑖
∗ ∈ AD and 𝐸 = {𝑒1 = low,

𝑒2 = medium, and 𝑒3 = high}. The analysis is carried out in following steps. 

 Input the job and resource parameters. 

 Construct n interval valued NSS, i.e., INSS𝑘 consisting of three 

components, i.e., NSS truth membership function 𝑇𝑘, NSS indeterminacy function 

𝐼𝑘 and NSS falsity membership function 𝐹𝑘, which are populated as follows: 

INSS1 = [𝑇𝑘 , 𝐼𝑘, 𝐹𝑘  ] … INSS𝑛 = [𝑇𝑘 , 𝐼𝑘, 𝐹𝑘  ] 
... ... ... 
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INSS𝑚 = [𝑇𝑘 , 𝐼𝑘 , 𝐹𝑘  ] ... INSS𝑛 = [𝑇𝑘 , 𝐼𝑘, 𝐹𝑘  ] 
 Input the threshold of INSS𝑘𝛼, 𝛽, 𝛾 using average decision rules 

 Compute average of INSS𝑘, i.e., INSS𝑘
avg

𝛼, 𝛽, 𝛾 

INSS𝑘
avg

𝛼, 𝛽, 𝛾 = 〈
[𝑇𝑘, 𝐼𝑘, 𝐹𝑘  ]

AD1
∗ , … ,

[𝑇𝑘 , 𝐼𝑘, 𝐹𝑘  ]

AD𝑖
∗ 〉 

 Output the average of INSS𝑘𝛼, 𝛽, 𝛾, i.e., INSS𝑘
avg

  

INSS1
avg

𝛼, 𝛽, 𝛾 … INSS𝑛
avg

𝛼, 𝛽, 𝛾 

... ... ... 

INSS𝑚
avg

𝛼, 𝛽, 𝛾 … INSS𝑛
avg

𝛼, 𝛽, 𝛾 
 Compute the optimal choice 𝐶𝑖=max𝐶𝑖∈𝐶{𝐶𝑖} 

Example  

A. Triple SARSA learning 

Input a sample POMDP(𝐽𝑖)rd = {𝐽1(80), 𝐽2(60),  𝐽3(40), 𝐽4(34),  𝐽5(55),
𝐽6(41), 𝐽7(62), 𝐽8(63), 𝐽9(99)} and the HMM(𝑅𝑖)rd ={𝑅1(32), 𝑅2(59), 𝑅3(55), 

𝑅4(61), 𝑅5(83), 𝑅6(99), 𝑅7(67), 𝑅8(76), 𝑅9(80)} 

 Construct 3  INSS𝑘𝛼, 𝛽, 𝛾  
[0.5, 0.4, 0.1] [0.5, 0.3, 0.2] [0.1, 0.1, 0.8] 

[0.4, 0.2, 0.4] [0.3, 0.1, 0.6] [0.1, 0.8, 0.1] 

[0.5, 0.4, 0.1] [0.3, 0.6, 0.1] [0.3, 0.2, 0.5] 

 Compute the threshold of INSS𝑘𝛼, 𝛽, 𝛾+={[0.8, 0.2, 0.0], [0.4, 0.6, 0.0]} 

 Compute the  INSS𝑘
avg

𝛼, 𝛽, 𝛾={AD1
∗ = 0.5, AD2

∗ = 0.8, AD3
∗ = 0.2 } 

 Summarize the computed INSS𝑘
avg

 

0.8 0.5 0.2 

0.1 0.3 0.4 

0.5 0.1 0.9 

Output the optimal choice 𝐶𝑖=0.9 

B. Double SARSA learning 

Input a sample POMDP(𝐽𝑖)
rd = {𝐽1(80), 𝐽2(60),  𝐽3(40), 𝐽4(34),  𝐽5(55),

𝐽6(41), 𝐽7(62), 𝐽8(63), 𝐽9(99)} and the HMM(𝑅𝑖)
rd ={𝑅1(32), 𝑅2(59), 𝑅3(55), 

𝑅4(61), 𝑅5(83), 𝑅6(99), 𝑅7(67), 𝑅8(76), 𝑅9(80)} 

 Construct 3-INSS𝑘𝛼, 𝛽, 𝛾  
[0.5, 0.3, 0.2] [0.6, 0.3, 0.1] [0.0, 0.1, 0.9] 

[0.3, 0.4, 0.3] [0.3, 0.4, 0.3] [0.3, 0.3, 0.4] 

[0.4, 0.2, 0.4] [0.1, 0.5, 0.4] [0.6, 0.0, 0.4] 

 Compute the threshold of INSS𝑘 𝛼, 𝛽, 𝛾+={[0.4,0.2,0.4], [0.5,0.3,0.3]} 

 Compute the INSS𝑘
avg

𝛼, 𝛽, 𝛾={AD1
∗ = 0.1, AD2

∗ = 0.2, and AD3
∗ = 0.6 } 

 Summarize the computed INSS𝑘
avg

 

0.1 0.5 0.3 

0.8 0.6 0.2 

0.4 0.3 0.2 

Output the optimal choice 𝐶𝑖=0.52 
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C. Single SARSA learning 

Input a sample POMDP(𝐽𝑖)
rd = {𝐽1(80), 𝐽2(60),  𝐽3(40), 𝐽4(34),  𝐽5(55),

𝐽6(41), 𝐽7(62), 𝐽8(63), 𝐽9(99)} and the HMM(𝑅𝑖)
rd ={𝑅1(32), 𝑅2(59), 𝑅3(55), 

𝑅4(61), 𝑅5(83), 𝑅6(99), 𝑅7(67), 𝑅8(76), 𝑅9(80)} 

 Construct  INSS𝑘𝛼, 𝛽, 𝛾  
[0.3, 0.2, 0.4] [0.2, 0.2, 0.6] [0.4, 0.2, 0.3] 

[0.4, 0.3, 0.3] [0.3, 0.4, 0.3] [0.3, 0.5, 0.2] 

[0.3, 0.4, 0.3] [0.3, 0.4, 0.2] [0.6, 0.2, 0.2] 

 Compute the threshold of INSS𝑘𝛼, 𝛽, 𝛾+={[0.3,0.3,0.4],[0.5,0.4,0.1]} 

 Compute the INSS𝑘
avg

𝛼, 𝛽, 𝛾={AD1
∗ = 0.1, AD2

∗ = 0.6, and  AD3
∗ = 0.3 } 

 Summarize the computed INSS𝑘
avg

 

0.5 0.5 0.3 

0.0 0.2 0.5 

0.6 0.4 0.8 

Output the optimal choice 𝐶𝑖 =0.2 

The 𝐶𝑖 of proposed expected 3-SARSA is 0.9, 𝐶𝑖 of the double SARSA is 0.5, 

and the 𝐶𝑖 of the single SARSA is 0.2. Hence the  𝐶𝑖 of the expected 3-SARSA is 

higher compared to the 𝐶𝑖 of the double and single SARSA. 

6. Results and discussion 

The performance of the expected 3-SARSA learning in the Proposed Work (PW) is 

compared with the fuzzy SARSA learning in the Existing Work (EW) with respect 

to throughput achieved and rate of learning [24]. The default parameters for the 

SARSA Algorithm are determined by measuring the performance of the jobs running 

on Virtual Machines (VMs) versus resources offered by the VMs. The system-wide 

performance of the jobs running on VMs is evaluated using interactive benchmark 

workloads with varying workload scenarios. 

6.1. Experimental setup 

For experimentation purpose, we used the Xen Hypervisor based paravirtualization 

model, over which more than 100 instances of VM’s have been created. Each of the 

benchmark workloads is deployed on clusters of VM’s, which are enabled with 

Hypertext Preprocessor (PHP) and MySQL accessibility services. To support 

memory-intensive behavior the connections timeout is set to 10 s and to prevent 

bottleneck situations memory consumption limit is not enforced on the applications 

running on VM’s [24]. 

6.2. Benchmark applications 

The typical workloads considered for performance evaluation are RUBiS, RUBBoS, 

and Olio. The RUBiS is a dynamic workload, modeled after the application of 

eBay.com, which consists of the emulator to create client jobs of varying load. The 

RUBBoS is modeled after the application of slashdot on-line news form, which 



 109 

provides both regular and moderate level of access to clients. Olio is a social events 

calendar application used to support Web 2.0 applications with networking functions 

like commenting on posts, posting the reviews, sharing the post, and tagging friends 

in the posts. To verify the efficiency of the proposed work with respect to throughput 

and learning rate, two types of experiments are carried out one is with the 

homogeneous workload and other with the heterogeneous workload. 

6.3. Experiment-1: Homogeneous workload 

For Experiment-1 the following workloads are being considered, i.e., (RUBiS; 

21,000 browsing clients; time 50 s), and (RUBiS; 30,000 bidding clients, time 50 s). 

Table 1 shows the performance comparison of proposed work with existing work on 

homogeneous workload. 

A graph of the number of iterations versus throughput (number of requests 

successfully completed per iteration) is shown in Fig. 5. The successful job 

completion rate of the proposed work considering RUBiS workload increases with 

the increase in the number of iterations for both browsing and bidding clients as the 

expected 3-SARSA Algorithm learns quickly with minimum exploration rate. But 

with respect to existing work, the successful job completion rate is moderate for 

RUBiS workload with bidding clients and it is low for RUBiS workload with 

browsing clients as the exploration rate of Fuzzy SARSA Algorithm is high. 
 

 
Fig. 5. Number of iterations versus throughput 

 

A graph of time versus learning rate is shown in Fig. 6. The learning rate of the 

proposed work for RUBiS workload with browsing clients is found to be high 

between 0.7 and 0.8 and for the RUBiS workload with bidding clients the learning 

rate is moderate between 0.5 and 0.6 as the expected 3-SARSA Algorithm collects 

maximum possible rewards. Whereas the existing work learning rate for RUBiS 

workload with bidding clients is found to be moderate between 0.5 and 0.6 and 

RUBiS workload with browsing clients the learning rate is lower, i.e., between 0.1 

and 0.2 because the Fuzzy SARSA Algorithm collects minimum possible rewards.  
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Fig. 6. Time versus learning rate 

 

Table 1. Performance comparison of proposed work with existing work on homogeneous workload 

Works considered 

for analysis 
Workload type 

Performance metric 

Throughput (3000-9000 jobs) 

Number of iterations (100-1000 iterations) 

Fewer  

iterations 

(100-400) 

Moderate  

iterations 

(400-700) 

Higher 

iterations 

(700-1000) 

Proposed work RUBiS: Browsing 5000-8000 8000-9000 8000-9000 

RUBiS: Bidding 7000-8000 6000-8000 7000-8000 

Existing work RUBiS: Browsing 5000-6000 4000-6000 4000-5000 

RUBiS: Bidding 6000-7000 6000-7000 6000-7000 

Works considered 

for analysis 
Workload type 

Learning rate (0-1) 

Time interval (100-1000 ms) 

Lower  

time interval 

(100-400) 

Moderate  

time interval 

(400-700) 

Higher  

time interval 

(700-1000) 

Proposed work RUBiS: Browsing 0.7-0.75 0.7-0.8 0.7-0.8 

RUBiS: Bidding 0.5-0.6 0.5-0.6 0.5-0.56 

Existing work RUBiS: Browsing 0.5-0.6 0.5-0.55 0.5-0.55 

RUBiS: Bidding 0.2-0.22 0.1-0.2 0.2-0.22 
 

Table 1 compares the performance of the proposed work with the existing work 

concerning performance metrics like throughput and learning rate under the 

homogeneous workload. Concerning RUBiS workload the performance of the 

proposed work is very high towards throughput and is moderate towards learning rate 

whereas the performance of the existing work is moderate towards throughput but is 

weak towards learning rate. 

6.4. Experiment 2: heterogeneous workload 

For Experiment 2 the following workloads are being considered, i.e., (RUBiS; 3,000 

browsing clients, 13,000 selling clients; time 50 s), (RUBBoS; 30,000 bidding 

clients, 12,000 concurrent clients; time 50 s), and (Olio; 30,000 concurrent clients; 

time 50 s). Table 2 shows the performance comparison of proposed work with 

existing work on heterogeneous workload. 
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Table 2. Performance comparison of proposed work with existing work on heterogeneous workload 

Works considered 

for analysis 
Workload type 

Performance metric 

Throughput (3000-9000 jobs) 

Number of iterations (100-1000 iterations) 

Fewer iterations 
(100-400) 

Moderate iterations  
(400-700) 

Higher iterations 
(700-1000) 

Proposed work 
RUBiS: Browsing 6000-9000 7000-9000 7000-8000 

RUBiS: Selling 7000-8000 7000-7500 7200-7500 

Existing work 
RUBiS: Browsing 5000-6000 5000-6000 4000-5000 

RUBiS: Selling 2000-3000 2000-5000 3000-4500 

Works considered  

for analysis 
Workload type 

Learning rate (0-1) 

Time interval (100-1000 ms) 

Lower time interval 

(100-400) 

Moderate time interval 

(400-700) 

Higher time interval 

(700-1000) 

Proposed work 
RUBiS: Browsing 0.7-0.75 0.7-0.8 0.75-0.80 

RUBiS: Selling 0.5-0.7 0.55-0.65 0.65-0.75 

Existing work 
RUBiS: Browsing 0.2-0.4 0.2-0.4 0.2-0.4 

RUBiS: Selling 0.2-0.3 0.1-0.3 0.1-0.2 

Works considered  
for analysis 

Workload type 

Throughput (3000-9000 Jobs) 

Number of iterations (100-1000 iterations) 

Fewer iterations 

(100-400) 

Moderate iterations 

(400-700) 

Higher iterations 

(700-1000) 

Proposed work 
RUBBoS: bidding 6000-9000 7000-9000 7000-7300 

RUBBoS: concurrent 4000-7000 4000-7000 6500-7000 

Existing work 
RUBBoS: bidding 5000-8000 5000-7000 6000-7000 

RUBBoS: concurrent 3000-3500 3500-4000 3000-3200 

Works considered  

for analysis 
Workload type 

Learning rate (0-1) 

Time interval (100-1000 ms) 

Lower time interval 

(100-400) 

Moderate time interval 

(400-700) 

Higher time interval 

(700-1000) 

Proposed  

work 

RUBBoS: bidding 0.7-0.9 0.7-0.9 0.7-0.9 

RUBBoS: concurrent 0.7-0.9 0.5-0.9 0.7-0.72 

Existing work 
RUBBoS: bidding 0.3-0.5 0.5-0.51 0.3-0.4 

RUBBoS: concurrent 0.1-0.5 0.1-0.5 0.3-0.5 

Works considered  
for analysis 

Workload type 

Throughput (3000-9000 jobs) 

Number of iterations (100-1000 iterations) 

Fewer iterations 

(100-400) 

Moderate iterations 

(400-700) 

Higher iterations 

(700-1000) 

Proposed work Olio: concurrent 6000-7000 6000-7500 7000-8000 

Existing work Olio: concurrent 2000-5000 2500-3500 3000-5000 

Works considered  

for analysis 
Workload type 

Learning rate (0-1) 

Time interval (100-1000 ms) 

Lower time interval 

(100-400) 

Moderate time interval 

(400-700) 

Higher time interval 

(700-1000) 

Proposed work Olio: concurrent 0.1-0.6 0.6-0.62 0.6-0.9 

Existing work Olio: concurrent 0.1-0.6 0.2-0.6 0.2-0.4 

 

RUBiS workload 

The performance of the proposed and existing work is evaluated with respect to 

throughput and learning rate by considering browsing and selling clients of RUBiS 

workload. 

A graph of the number of iterations versus throughput with respect to RUBiS 

workload with browsing and selling clients is shown in Fig. 7. The successful job 

completion rate is found to be high for the proposed work with both browsing and 

selling clients as the dynamic nature of the RUBiS workload is handled smoothly 

using NSS and FNSS enabled 3-SARSA Algorithm which is capable of handling 

different uncertainties in the input parameters. Whereas the successful job completion 
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rate of the existing work is found to be lower for selling clients and moderate for 

browsing clients as the dynamic nature of the RUBiS workload is not handled 

properly in Fuzzy SARSA Algorithm because of the use of non-differentiable 

polygon membership function. 
 

 
Fig. 7. Number of iterations versus throughput 

 

A graph of time versus learning rate with respect to RUBiS workload with 

browsing and selling clients is shown in Fig. 8. The learning rate is high for the 

proposed work with browsing clients as it falls in the range of 0.7 to 0.8 and for 

selling clients it is in the moderate range, i.e., between 0.5 to 0.8 owing to the 

approximate and easily adaptable nature of 3-SARSA Algorithm. But the existing 

work learning rate is lower for both browsing and selling clients due to the individual 

specific nature of the polygon membership function used in the Fuzzy SARSA 

Algorithm. 

 
Fig. 8. Time versus learning rate 
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RUBBoS workload 

The performance of the proposed and existing work is evaluated with respect to 

throughput and learning rate by considering bidding and concurrent clients of 

RUBBoS workload. 
 

 
Fig. 9. Number of iterations versus throughput 

 

A graph of the number of iterations versus throughput with respect to RUBBoS 

workload with bidding and concurrent clients is shown in Fig. 9. The successful job 

completion rate of the proposed work is high for bidding clients and remains 

moderate for concurrent clients as the 3-SARSA Algorithm easily handles the 

stochastically unstable phenomena in the workload using NSS and FNSS theory. 

Whereas the successful job completion rate of the existing work is found to be high 

for the bidding clients and low for concurrent clients as the Fuzzy SARSA Algorithm 

cannot easily handle the stochastically unstable phenomena in the workload because 

of the tedious procedure involved in the calculation of fuzzy membership function. 

 
Fig. 10. Time versus learning rate 

 

A graph of time versus learning rate with respect to RUBBoS workload with 

bidding and concurrent clients is shown in Fig. 10. The learning rate of the proposed 
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work remained constant between 0.7 and 0.9 for the proposed work with both bidding 

and concurrent clients owing to the exploratory learning policy of 3-SARSA 

Algorithm. Whereas, the learning rate of the existing work is found to be lower 

between 0.1 and 0.5 for concurrent clients and moderate for bidding clients owing to 

the non-exploratory learning policy of Fuzzy SARSA Algorithm. 
Olio workload 

The performance of the proposed and existing work is evaluated with respect to 

throughput and learning rate by considering concurrent clients of Olio workload. 
A graph of the number of iterations versus throughput with respect to Olio 

workload made up of concurrent clients is shown in Fig. 11. The successful job 

completion rate of the proposed work is found to be moderate as the 3-SARSA 

Algorithm can capture maximum possible uncertainties in the incoming workload 

using NSS and FNSS theory. But there is a huge drop in the successful job completion 

rate for the existing work as the Fuzzy SARSA Algorithm fails to capture all possible 

uncertainties in the incoming workload using not so continuously differentiable 

polygon fuzzy membership function.  
 

 
Fig. 11. Number of iterations versus throughput 

 

 
Fig. 12. Time versus learning rate 

 

A graph of time versus learning rate with respect to Olio workload with 

concurrent clients is shown in Fig. 12. The learning rate of the proposed work 

considering concurrent clients is moderate between 0.6 and 0.8 because of the 
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superior resource provisioning ability of the 3-SARSA Algorithm as it considers 

expected three states while forming the resource provisioning policies. Whereas, the 

learning rate of the existing work with concurrent clients is found to be fluctuating 

between 0.1 and 0.6 in a scale of 0 to 1 owing to not so superior resource provisioning 

ability of the Fuzzy SARSA Algorithm because it does not considers adjacent states 

while forming resource provisioning policies. 
Table 2 compares the performance of the proposed work with the existing work 

concerning performance metrics like throughput and learning rate under the 

heterogeneous workload. Concerning RUBiS workload; the performance of the 

proposed work is high towards throughput and is moderate towards learning rate 

whereas the performance of the existing work is weak towards both throughput and 

learning rate. Concerning RUBBoS workload; the performance of the proposed work 

is moderate towards both throughput and learning rate whereas the performance of 

the existing work is moderate towards both throughput and learning rate. Concerning 

Olio workload the performance of the proposed work is high towards throughput and 

is moderate towards learning rate whereas the performance of the existing work is 

weak towards throughput but is moderate towards learning rate.  

7. Conclusion 

The paper presents a new NSS and FNSS based expected 3-SARSA learning 

framework for resource provisioning in the cloud environment. Here the irrelevant 

parameters or outliers of the jobs and resources are reduced, this influences on the 

quality of the resource provisioning decision taken. The proposed agent compares the 

current state with the expected other three states to form optimal decision pertaining 

to resource provisioning, which increases the number of rewards collected by the 

agent and stabilizes the learning. Its performance is found to be good with respect to 

successful job completion rate and learning rate. In future work, the expected  

3-SARSA learning framework is improvised to be self-adaptable and capable enough 

of doing both resource scheduling and resource provisioning at runtime with 

minimum SLA violation, and the cost incurred. 

R e f e r e n c e s 

1. A l-D h u r a i b i, Y., F. P a r a i s o, N. D j a r a l l a h, P. M e r l e. Elasticity in Cloud Computing: 

State of the Art and Research Challenges. – IEEE Transactions on Services Computing,  

Vol. 11, 2018, pp. 430-447. 

2. U l l a h, A., J. L i., Y. S h e n, A. H u s s a i n. A Control Theoretical View of Cloud Elasticity: 

Taxonomy, Survey and Challenges. – Cluster Computing, Vol. 21, 2018, pp. 1735-1764. 

3. D a r, A. R., D. R a v i n d r a n. A Comprehensive Study on Cloud Computing. – International 

Journal of Advance Research in Science and Engineering, Vol. 7, 2018, pp. 235-242. 

4. B a b u, A. A., V. M. A. R a j a m.  Resource Scheduling Algorithms in Cloud Environment – A 

Survey. – In: Proc. of 2nd International Conference on Recent Trends and Challenges in 

Computational Models (ICRTCCM), 2017, pp. 25-30.  

5.  P a r i k h, S. M., N. M. P a t e l, H. B. P r a j a p a t i. Resource Management in Cloud Computing: 

Classification and Taxonomy. – Distributed, Parallel, and Cluster Computing, 2017, pp. 1-10. 

https://ieeexplore.ieee.org/author/37086017928
https://ieeexplore.ieee.org/author/37086021339
https://link.springer.com/journal/10586


 116 

6. E l k h a l i k, W. A., A. S a l a h, I. E l-H e n a w y. A Survey on Cloud Computing Scheduling 

Algorithms. – International Journal of Engineering Trends and Technology (IJETT), Vol. 60, 

pp. 65-70. 

7. P h a m, N. M. N., V. S. L e, H. H. C. N g u y e n. Energy Efficient Resource Allocation for Virtual 

Services Based on Heterogeneous Shared Hosting Platforms in Cloud Computing. – 

Cybernetics and Information Technologies, Vol. 17, 2017, pp. 47-58.  

8. S e n t h i l k u m a r, M. Energy-AwareTask Scheduling Using Hybrid Firefly-BAT (FFABAT) in 

Big Data. – Cybernetics and Information Technologies, Vol. 18, 2018, pp. 98-111. 

9. G i l l, S. S., R. B u y y a. Resource Provisioning based Scheduling Framework for Execution of 

Heterogeneous and Clustered Workloads in Clouds: From Fundamental to Autonomic 

Offering. – Journal of Grid Computing, 2018, pp.1-33. 

10. P h a m, N. M. N., H. H. C. N g u y e n.  Energy Efficient Resource Allocation for Virtual Services 

Based on Heterogeneous Shared Hosting Platforms in Cloud Computing. – Cybernetics and 

Information Technologies, Vol. 17, 2017, pp. 47-58. 

11. M e z n i, H., A. H a d j a l i, S. A r i d h i. The Uncertain Cloud: State of the Art and Research 

Challenges. – International Journal of Approximate Reasoning, Vol. 103, 2018, pp. 139-151. 

12. C a y i r c i, E., A. S. D. O l i v e i r a. Modelling Trust and Risk for Cloud Services. – Journal of 

Cloud Computing Advances, Systems and Applications, Vol. 7, 2018, pp. 1-14. 

13. O u a m m o u, A., B. T.  A b d e l g h a n i, M. H a n i n i. Analytical Approach to Evaluate the 

Impact of Uncertainty in Virtual Machine Placement in a Cloud Computing Environment. 1st 

Winter School on Complex Systems, Modeling & Simulation, 2018, p. 1.  

14. L i u, Y., K. Q i n, L. M a r t i n e z. Improving Decision Making Approaches Based on Fuzzy Soft 

Sets and Rough Soft Sets. – Applied Soft Computing, Vol. 65, 2018, pp. 320-332. 

15. D a n j u m a , S., T. H e r a w a n, M. A. I s m a i l, H. C h i r o m a, A. I. A b u b a k a r,  

A. M. Z e k i. A Review on Soft Set-Based Parameter Reduction and Decision Making. – IEEE 

Access, Vol. 5, 2017, pp. 4671-4689. 

16. N a s e f, A. A., M. K. E l-S a y e d. Molodtsov’s Soft Set Theory and Its Applications in Decision 

Making. – International Journal of Engineering Science Invention, Vol. 6, 2017, pp. 86-90.  

17. R i a z, M., M. R. H a s h m i. Fixed Points of Fuzzy Neutrosophic Soft Mapping with Decision-

Making. – Fixed Point Theory and Applications, Vol. 1, 2018, p. 7. 

18. D e l i, I. Interval-Valued Neutrosophic Soft Sets and Its Decision Making. – International Journal 

of Machine Learning and Cybernetics, Vol. 8, 2017, pp. 665-676. 

19. B e n i f a, J. B., D. D e j e y. RLPAS: Reinforcement Learning-Based Proactive Auto-Scaler for 

Resource Provisioning in Cloud Environment. – Mobile Networks and Applications, 2018,  

pp. 1-16. 

20. C h e n g, M., J. L i, S. N a z a r i a n. DRL-Cloud: Deep Reinforcement Learning-Based Resource 

Provisioning and Task Scheduling for Cloud Service Providers. – In: Proc. of 23rd Asia and 

South Pacific Design Automation Conference, 2018, pp. 129-134. 

21. G o n g, Z., X. G u, J. W i l k e s, PRESS: PRedictive Elastic ReSource Scaling for Cloud Systems. 

– In: 6th IEEE/IFIP International Conference on Network and Service Management (CNSM), 

2010, pp. 9-16. 

22. R a m i r e z-V e l a r d e, R., A. T c h e r n y k h, C. B a r b a-J i m e n e z, A. H i r a l e s-C a r b a-

j a l, J. N o l a z c o-F l o r e s. Adaptive Resource Allocation with Job Runtime Uncertainty. 

– Journal of Grid Computing, Vol. 15, 2017, pp. 415-434. 

23. G a n d h i, A., P. D u b e, A. K a r v e, A. K o c h u t, L. Z h a n g. Model-Driven Optimal Resource 

Scaling in Cloud. – Software & Systems Modeling, Vol. 17, 2018, pp. 509-526. 

24. A r a b n e j a d, H., C. P a h l, P. J a m s h i d i, G. E s t r a d a. A Comparison of Reinforcement 

Learning Techniques for Fuzzy Cloud Auto-Scaling. – In: Proc. of 17th IEEE/ACM 

International Symposium on Cluster, Cloud and Grid Computing, 2017, pp. 64-73. 

25. S o t i r i a d i s, S., N. B e s s i s, R. B u y y a. Self Managed Virtual Machine Scheduling in Cloud 

Systems. – Information Sciences, Vol. 433, 2018, pp. 381-400. 

26. G a w a l i, M. B., S. K. S h i n d e. Task Scheduling and Resource Allocation in Cloud Computing 

Using a Heuristic Approach. – Journal of Cloud Computing, Vol. 7, 2018, pp. 1-16. 

27. V o z m e d i a n o, R. M., R. S. M o n t e r o, E. H u e d o, I. M. L l o r e n t e. Efficient Resource 

Provisioning for Elastic Cloud Services Based on Machine Learning Techniques. – Journal of 

Cloud Computing: Advances, Systems and Applications, Vol. 8, 2019, pp. 1-18. 

https://www.researchgate.net/journal/0888-613X_International_Journal_of_Approximate_Reasoning
https://www.researchgate.net/profile/Ben_Tahar_Abdelghani
https://www.researchgate.net/profile/Mohamed_Hanini2
https://link.springer.com/journal/13663
https://link.springer.com/journal/13677


 117 

28. B i t s a k o s, C., I. K o n s t a n t i n o u, N. K o z i r i s. A Deep Reinforcement Learning CloudSystem 

for Elastic Resource Provisioning. – In: Proc. of IEEE International Conference on Cloud 

Computing Technology and Science (CloudCom), 2018, pp. 21-29. 

29. K u m a r, K. D., E. U m a m a h e s w a r i. Resource Provisioning in Cloud Computing Using 

Prediction Models: A Survey. – International Journal of Pure and Applied Mathematics,  

Vol. 119, 2018, pp. 333-342.  

30. T h e i n, T., M. M. M y o, S. P a r v i n, A. G a w a n m e h. Reinforcement Learning Based 

Methodology for Energy-Efficient Resource Allocation in Cloud Data Centers. – Journal of 

King Saud University – Computer and Information Sciences, 2018. 

31. N a I k, K. B., G. M. G a n d h i, S. H. P a t i l. Pareto Based Virtual Machine Selection with Load 

Balancing in Cloud Data Centre. – Cybernetics and Information Technologies, Vol. 18, 2018, 

pp. 23-36. 

32. P e r u m a l, B., Ra. K. S a r a v a n a g u r u, A. M u r u g a i y a n. Fuzzy Bio-Inspired Hybrid 

Techniques for Server Consolidation and Virtual Machine Placement in Cloud Environment. 

– Cybernetics and Information Technologies, Vol. 17, 2017, pp. 52-68. 

33. M i r e s l a m i. S., M. W a n g, L. R a k a i, B. H. F a r. Dynamic Cloud Resource Allocation 

Considering Demand Uncertainty. – IEEE Transactions on Cloud Computing, 2019, pp. 1-14. 

 

Received: 30.12.2018; Second Version: 18.05.2019; Accepted: 30.05.2019  

 

 

 


