
 94

BULGARIAN ACADEMY OF SCIENCES

CYBERNETICS AND INFORMATION TECHNOLOGIES Volume 19, No 3

Sofia 2019 Print ISSN: 1311-9702; Online ISSN: 1314-4081

DOI: 10.2478/cait-2019-0028

Uncertainty Aware Resource Provisioning Framework for Cloud

Using Expected 3-SARSA Learning Agent: NSS and FNSS Based

Approach

Bhargavi K.1, B. Sathish Babu2
1Department of CSE, Siddaganga Institute of Technology, Tumkur, Karnataka, India
2Department of CSE, R V College of Engineering, Bangalore, Karnataka, India

E-mails: bhargavi.tumkur@gmail.com bsbabu@rvce.edu.in

Abstract: Efficiently provisioning the resources in a large computing domain like

cloud is challenging due to uncertainty in resource demands and computation ability

of the cloud resources. Inefficient provisioning of the resources leads to several

issues in terms of the drop in Quality of Service (QoS), violation of Service Level

Agreement (SLA), over-provisioning of resources, under-provisioning of resources

and so on. The main objective of the paper is to formulate optimal resource

provisioning policies by efficiently handling the uncertainties in the jobs and

resources with the application of Neutrosophic Soft-Set (NSS) and Fuzzy

Neutrosophic Soft-Set (FNSS). The performance of the proposed work compared to

the existing fuzzy auto scaling work achieves the throughput of 80% with the learning

rate of 75% on homogeneous and heterogeneous workloads by considering the

RUBiS, RUBBoS, and Olio benchmark applications.

Keywords: SARSA (State-Action Reward-State-Action), Resource provisioning,

Uncertainty, Soft-set, elasticity, throughput, learning rate.

1. Introduction

The cloud resource demands of the complex computational applications in the area

of engineering, economics, environmental science, and so on, are highly fluctuating

in nature and consist of data that are uncertain and imprecise, elastic resource

provisioning becomes one of the critical requirements of such applications. The

elastic resource provisioning mechanism allows the user to scale up or down the

resources dynamically at run-time, this feature reduces infrastructure cost and then

models the application to attain high Quality of Service (QoS) requirement by

meeting the Service Level Agreements (SLAs). The existing resource provisioning

approaches can be classified into two types i.e., reactive or proactive, reactive

approaches take resource provisioning decisions when the load on the system

resources are high, whereas the proactive approaches estimate the probable load on

 95

the system resources and then lease the resources in advance [1-3]. The elastic

resource provisioning in cloud involves several challenges in terms of existence of

heterogeneous hardware, maintenance of virtual machine compatibility table,

periodic updating of states of the virtual machines, frequent failures of nodes during

scaling, long-term irregular workload parameters, sudden changes in processing

capability of the resources, frequent violation of SLA, and so on [4-10].

Methodologies based on thresholds, time series analysis, queuing theory and control

theory have failed to provide satisfactory solutions to resource provisioning problem

as those solutions are affected by the undetermined and erratic changes in the

processing requirements of jobs and unstable processing behavior exhibited by the

resources [11-13]. Hence there is a necessity to handle uncertainty in the job and

resource parameters before taking resource provisioning decisions.

Many mathematical models are available to handle uncertainty like probability

theory, interval mathematics, and fuzzy sets. But these techniques have several

limitations like probability theory is suitable only for stochastically stable phenomena

and usually takes more trials to provide a solution; interval mathematics fails to

handle uneven changing in the workload parameters; in the fuzzy set computing

membership function is tedious as it is not general and is individual specific which

cannot handle the dynamics of large state space. These drawbacks motivated towards

soft-set which is parameterized family of a set and does not put any restriction on the

approximate description as it puts soft boundary depending on the parameters. The

conventional reinforcement learning techniques draw policies with the assumption

that the underlying environment is static and do not consider the changing dynamics

into account but this assumption fails in a highly dynamic environment like cloud,

this motivated to use soft-set enabled reinforcement learning [14-17].

The objectives of the paper are as follows.

Identify the uncertainty in the jobs and resources by representing their states in

the form of Partially Observable Markov Decision Process model (POMDP) and

Hidden Markov Model (HMM) model.

Handle the uncertainties of the jobs and resources using NSS and FNSS as they

provide practical frameworks to measure the truth, indeterminacy, and falsehood of

the data associated with the resource provisioning decisions.

Design expected 3-SARSA (State-Action Reward-State-Action) learning agent

empowered with the NSS and FNSS model, which controls the exploration during

action selection state.

Evaluate the resource provisioning policies with respect to successful job

completion rate and learning rate, as SARSA agent updates the resource provisioning

policies by considering three adjacent expected action-value pairs, which increases

the learning stability of the agent and even increases the successful job completion

rate.

The remaining part of the paper is organized as follows, Section 2 deals with

related work; Section 3 briefs about the system model; Section 4 gives the high-level

view of the proposed work; Section 5 does interval-valued NSS analysis of the

proposed work; and Section 6 deals with result and discussion; and finally Section 7

draws the conclusion.

 96

2. Related works

The [19] proposed a resource allocation scheme under job uncertainty. Here the

execution delay of the incoming jobs is predicted using a self-similar long tail

process, where the similar properties are repeated at different time scales. Then the

Pareto fractal flow prediction model is used for resource allocation purpose. However

the basis for allocating the resources is on the assumption that the jobs exhibit similar

properties but the complex computational jobs are highly random in nature and

always exhibit an uneven pattern of workload, so the efficiency of the resource

allocation is found to be below average.

In [20], a deep reinforcement learning based resource provisioning scheme is

proposed to minimize the energy consumption of the data centers. Here deep

reinforcement learning is employed using multiple layers of computational nodes,

which tries to learn from changing cloud environment to draw optimal resource

provisioning policies. The scheme is found to be good with respect to energy

reduction in the large data centers as it effectively handles the sudden burst of the

workload but the time by the network to convergence is high as it takes too long time

to balance between exploration and exploitation.

A reinforcement learning based auto resource scaling system is proposed in

[21], here multiple reinforcements learning agents with parallel learning policy is

used to allocate the resources. Each agent has different learning experience and every

agent share the information learned from the other agents. The parallel learning

process is found to be good with respect to the rate of learning and Q-Value table

updating. However, this increases the interaction rate between the agents as huge state

space need to be considered while deciding the actions, which in turn increases the

response time of the agents and leads to improper utilization of the resources.

The [22] proposes a new predictive resource scaling approach for cloud systems.

The approach extracts the fine-grained pattern from the workload demands and then

adjusts the resources accordingly. To extract the pattern, signal processing, and

statistical methods are used. Here the workload patterns are analyzed as it is, i.e.,

uncertainty is not handled, so there was the drop in prediction accuracy, which

resulted in the increased rejection rate of the jobs.

An analytical model based auto scaling mechanism is used in [23]. Here an

analytical model is developed to characterize the workload and to analyze its impact

on the efficiency of the scale-out or scale-in decisions in the cloud. An inference is

drawn that scale up is suitable when SLA is strict and scale down is suitable when

the workload is high. The Kalman filtering-based auto-scaling solution is applied for

scaling of infrastructure services, as its topology is available. But the model does not

fit for scaling of software applications as they lack fixed topology.

A comparison of fuzzy SARSA and fuzzy Q-Learning towards auto-scaling of

resources in the cloud environment is given in [24]. Both approaches are used to

efficiently scale the resources under varieties of workload and even maximize the

resource utilization rate. However the performance of the fuzzy Q-Learning is low

with respect to learning rate as it always try to compare the actual state with the best

possible next state while taking actions using fuzzy rule base and the performance of

the fuzzy SARSA learning is low with respect to adaptability towards heterogeneous

 97

workload as the policy formed after the learning phase is not optimized further to

adapt to uneven pattern in the workload.

The [25] proposes a self-managed virtual machine scheduling technique for the

cloud environment. The placement of virtual machines in cloud is one of the

computation intensive activities, so in this approach, the history of the virtual

machine’s resource (CPU, memory, hard disk, RAM, network and so on) utilization

ratio is taken into account to predict the resource utilization level then the decisions

about virtual machines placement is made. However, the state of virtual machines

inside the physical machines is not directly visible and it consists of several hidden

states; as a result, the accuracy of the predicted resource utilization level using various

machine learning models is less, this resulted in improper placement of virtual

machines inside the physical machines which leads to a drop in physical machine

throughput.

In [26] the heuristic approach is used to schedule the tasks through proper

distribution of the resources. In this approach every incoming task is processed using

modified analytic hierarchy process then the resources are scheduled using

differential evolution algorithm. The analytic hierarchy process ranks the tasks based

on the requirements of the tasks, however it is not possible to directly rank the tasks

in the cloud environment as the jobs are usually malleable they start with very few

resource requirements and then gradually expand to higher resource requirements. As

a result the application of analytic hierarchy process to malleable jobs leads to

improper ranking of jobs and the chances of pre-empting the higher priority jobs are

more which leads to improper utilization of resources.

The [27] discusses machine learning based resource provisioning techniques for

the cloud environment. Automated self-learning enabled resource provisioning is

most important to deliver elastic services to customers by satisfying their needs. Here

the time series forecasting technique is to predict the number of resources to be

sanctioned for the incoming client requests and support vector regression model is

used to forecast the processing capability of the servers. The use of time series model

in combination with support vector machine is one of the biggest limitations of the

approach as it fails to capture the chaotic and non-deterministic behaviors of the

servers and client requests due to the use quadratic programming approach.

In [28], a deep learning based elastic resource provisioning scheme is proposed

for the cloud environment. Here three different approaches of deep reinforcement

learning techniques, i.e. simple deep Q-Learning, full deep Q-Learning and double

deep Q-Learning are proposed to achieve elasticity in resource provisioning which is

trained to converge to optimal elasticity policies. All three deep reinforcement-

learning techniques are capable of learning in a large state space environment and are

able to collect a sufficient amount of rewards. However, the training of the models is

computationally expensive and accuracy of the elastic resource provisioning policies

formed is weak as it operates directly on the partial information exhibited by the jobs

and resources without the use of any membership functions to handle uncertainties in

the nested layers of the deep reinforcement techniques.

A survey of prediction models based resource provisioning techniques available

for cloud environment is discussed in [29]. Resource provisioning is one of the key

 98

issues in the cloud environment as the behavior pattern of workloads keeps varying

which leads to frequent violations of service level agreements. Various prediction

models like a neural network, fuzzy logic, linear regression, Bayesian theory model,

support vector machine, and reinforcement learning are used to estimate the future

demands of resources. The pros and cons of each of these models are discussed and

the performance of reinforcement learning technique enriched with the fuzzy logic

model is good in terms of speed and accuracy of the resource mapping as it is

proactive in nature and exactly mines the correlation among the variety of resources.

A reinforcement-enabled technique for energy efficient resource provisioning is

discussed in [30] to achieve maximum revenue. Here based on the read user

requirements, the virtual machines and physical machines are hosted in the cloud.

The resource allocation policy is updated based on the reward collected for energy

utilization factor of every virtual machine and physical machine in the data center.

However, in this technique, while predicting the future resource demands, the

resource like CPU utilization, amount of memory, system availability and system

performance are assumed to static and transparent in nature which becomes the major

limiting factor.

The approach of load balancing among the virtual machines in the cloud data

center using the Pareto principle is mentioned in [31]. As the computation

requirement of the applications keeps varying, there is a necessity to scale up and

scale down the virtual machines so Pareto based genetic algorithm is used to generate

a large number of solutions and then select one of the solutions as the best one. Here

the workload requirement of the user is taken directly for analysis without any pre-

processing; hence there will be an influence of uncertainty over the load balancing

solutions formed. Moreover, the stringent nature of the genetic algorithm increases

the time taken to convergence towards an optimal solution and even it fails to arrive

at the global optimum solution.

In [32], fuzzy logic based hybrid bio-inspired techniques like Ant-colony, and

Firefly is developed for placement of the virtual machines within the data center and

to consolidate the server. Here the basic principle used for server consolidation is to

pack as many virtual machines as possible within the data center, this works fine on

steady-state workloads but during the heavy burst of the workloads, it leads to over-

utilization of the resources. The uncertainty factor is handled through the use of

fuzzy membership functions inside ant-colony and firefly algorithms but to achieve

more accuracy there will be an exponential increase in the fuzzy rules and these

algorithms are old enough and their performance is weak compared to the recent bio-

inspired techniques like a whale, crow, squirrel, and raven roosting.

By considering the demand uncertainty, dynamic resource allocation for cloud

environment is discussed in [33]. The cloud providers allocate resources on the

reservation basis or on-demand basis, reservation-based allocation of resources are

carried out on long-term duration which involves lower uncertainty, whereas on-

demand based allocation of resources is carried out on short-term or long-term

duration which involves higher uncertainty. In this work the uncertainty in user

demands are modelled as random variables using stochastic optimization approach

and an algorithm with two phases is developed, the first phase does the reservation

 99

for the resources and the second phase does the dynamic allocation of the resources.

However, modelling the demand uncertainty using random variables is very difficult

as it does not possess exact stopping criteria and the uncertainty involved in the

processing capability of the resources is also ignored which leads to under-utilization

or over-utilization of the resources.

To summarize most of the existing works exhibits the following drawbacks.

 Unable to determine the uncertainty involved in the job processing

requirement.

 Unable to determine the uncertainty involved in the resource computation

ability.

 Drop in prediction accuracy due to the failure in determining the exact pattern

in processing requirement in the malleable jobs.

 By ignoring the hidden states and partially observable states while making

resource provisioning decisions; the chances of over-provisioning or under-

provisioning of the resources is high.

 The conventional reinforcement learning algorithms fail to form robust

resource provisioning policies, as it cannot capture the chaotic behaviours of the

servers and client using a deterministic approach.

 Lack of proactiveness while taking resource provisioning decisions leads to

a decrease in accuracy and speed to learning.

 The bio-inspired algorithms fail to arrive at a global optimum solution, and

even the convergence rate is high due to their harsh approach involved in workload

analysis.

3. System model

This section provides mathematical modeling of the system under consideration. A

cloud is assumed to be ∞ collection of pool of resources,

(1) 𝐶 = { 𝑅𝑖}𝑖=0
𝑖=𝑘 .

Every 𝑅𝑖 consists of unlimited set of heterogeneous resources,

(2) 𝑅𝑖 = { 𝑟𝑖}𝑖=0
𝑖=𝑘 .

The capacity of every resource is subset of resource pool 𝑅+,

(3) 𝐶(𝑟𝑖)ϵ𝑅+.
The price associated with every resource is subset of price pool 𝑃+,

(4) 𝑃(𝑟𝑖) ∈ 𝑃+.
The resources 𝑟𝑖 and 𝑟𝑗 of cloud are connected through a network with link 𝐿 𝑟𝑖, 𝑟𝑗

and the rental time of each resource to process the incoming jobs is limited.

The jobs are classified into various categories according to their resource

requirements, i.e., low (l), medium (m), and high (h),

(5) 𝐽 = {𝐽𝑖 ← {𝑅𝑖(𝑙), 𝑅𝑖(𝑚), … , 𝑅𝑖(ℎ) } … 𝐽𝑘 ← {𝑅𝑘(𝑙), 𝑅𝑘(𝑚), 𝑅𝑘(ℎ) }}.
The jobs and resources are associated with uncertainties in terms of their

resource requirements and processing capabilities, which dynamically vary within

the given time frame 𝑇(𝐽𝑚
𝑛) ,

(6) 𝑇(𝐽𝑚
𝑛) = 𝑇(𝐽𝑖

0), . . . , 𝑇(𝐽𝑝
𝑘), and 𝑇(𝑅𝑖) = 𝑇(𝑅𝑖

0), . . . , 𝑇(𝑅𝑝
𝑘).

 100

The uncertainties of the resources are handled using Neutrosophic Soft-Set

(NSS) theory and the uncertainties of the jobs are handled using Fuzzy Neutrosophic

Soft-Set (FNSS) theory.

Let NSS be the neutrosophic soft-set on the universe of discourse U and E is the

set of parameters:

(7) NSS = {𝑢, 𝑇NSS (𝑢), 𝐼NSS (𝑢), 𝐹NSS (𝑢)𝑢 ∈ 𝑈},

where T, I, F are Truth value, Indeterminate value and False value, and T, I, F →

]− 0, 1+ [and 0− 𝑇NSS (𝑢) + 𝐼NSS (𝑢) + 𝐹NSS (𝑢) ≤ 3+, and 𝐸 = {𝐸1,
𝐸1, . . . , 𝐸𝑘} then the collection (F, NSS) is referred as neutrosophic soft-set of

resources over U.

Let FNSS be the fuzzy neutrosophic soft-set on the universe of discourse U and

E is the set of parameters:

(8) FNSS = {𝑢, 𝑇FNSS (𝑢), 𝐼FNSS (𝑢), 𝐹FNSS (𝑢), 𝑢 ∈ 𝑈},
where 𝑇, 𝐼, 𝐹 → [0, 1] and 0 ≤ 𝑇FNSS (𝑢) + 𝐼FNSS (𝑢) + 𝐹FNSS (𝑢) ≤ 3 then the

collection (𝐹, FNSS) is referred as fuzzy neutrosophic soft-set of jobs over U.

Later resource provisioning decisions for the jobs are taken using expected

3-SARSA model,

(9) (𝐹, NSS), (𝐹, FNSS) ∝ {𝑄𝐴(𝑆𝑡, 𝐴𝑡), 𝑄𝐵(𝑆𝑡, 𝐴𝑡), 𝑄𝐶(𝑆𝑡, 𝐴𝑡)},
where

𝑄𝐴(𝑆𝑡, 𝐴𝑡)+ = 𝛼[𝑟𝑡 + [𝑟𝑡−1 ∗ 𝑄𝐵(𝑆𝑡−1, 𝐴𝑡−1) − 𝑟𝑡−2 ∗ 𝑄𝐶(𝑆𝑡−2, 𝐴𝑡−2)]], in

which 𝑟𝑡, 𝑟𝑡−1, and 𝑟𝑡−2 are the reward obtained at states 𝑆𝑡, 𝑆𝑡−1, and 𝑆𝑡−2

and 𝐴𝑡, 𝐴𝑡−1, and 𝐴𝑡−2 are the action taken at the states 𝑆𝑡, 𝑆𝑡−1, and 𝑆𝑡−2.

3.1. Resources model

The state of the resources in cloud is dependent on the hidden state of the virtual

machines mounted on top of every physical machine in the cloud resource pool.

Hence the resources are modeled using HMM,

(10) HMM(𝑅𝑖) = (𝑆(𝑅𝑖), 𝑉(𝑅𝑖), 𝐵(𝑅𝑖), 𝐴(𝑅𝑖), 𝐼(𝑅𝑖)),

where: 𝑆(𝑅𝑖) = {𝑆1(𝑅𝑖), 𝑆2(𝑅𝑖), … , 𝑆𝑛(𝑅𝑖)} represent the states of the resource;

𝑉(𝑅𝑖) = {𝑉1 (𝑅𝑖), 𝑉2 (𝑅𝑖), . . . , 𝑉𝑛 (𝑅𝑖)} is the value symbols associated with the

resource;

𝐵(𝑅𝑖) = {𝑏(𝑉𝑖 (𝑅𝑖))} indicates the output state probability, where

∑ 𝑏(𝑉𝑖 (𝑅𝑖) = 1;𝑖=𝑚
𝑖=1

𝐴(𝑅𝑖) = {𝑎𝑖𝑗} is the probability of transition from state i to state j, where

∑ 𝑎𝑖𝑗
𝑖,𝑗=𝑛
𝑖,𝑗=1 =1, 𝑖 ≥ 1 and 𝑗 ≤ 𝑛;

𝐼(𝑅𝑖) = {𝐼1(𝑅𝑖), 𝐼2(𝑅𝑖), … , 𝐼𝑛(𝑅𝑖)} is the initial probability states of the

resource, where ∑ 𝐼𝑖(𝑅𝑖)𝑖=𝑛
𝑖=1 =1.

A sample MDP model of resources is shown in Fig. 1. The hidden states of the

resources are handled using NSS as it characterizes every hidden state of the

resources while processing the job requests by perceiving all information of the

unobserved hidden states to optimally switch between exploration and exploitation

dilemma of the resources while processing jobs requirements using neutrosophic

truth, indeterminate, and falsehood membership function.

 101

Fig. 1. A sample HMM model of resources

3.2. Jobs model

Based on the elasticity of resource usage, the jobs are broadly classified into two

types; they are evolving, and malleable. Evolving jobs operate on the inflatable range

of computing nodes and the malleable jobs starts with the available fewer nodes and

gradually expands to more number of nodes. Only partial information is available

about the resource requirement of the jobs. Hence the jobs are modelled using

POMDP,

(11) POMDP(𝐽𝑖) = (𝑆(𝐽𝑖), 𝐴(𝐽𝑖), 𝑃(𝐽𝑖), 𝑅(𝐽𝑖), Ω(𝐽𝑖), 𝑂(𝐽𝑖)),
where:

𝑆(𝐽𝑖) = {𝑆1(𝐽𝑖), 𝑆2(𝐽𝑖), . . . , 𝑆𝑛(𝐽𝑖)} represent the states of the job;

𝐴(𝐽𝑖) = {𝐴1(𝐽𝑖), 𝐴2(𝐽𝑖), . . . , 𝐴𝑛(𝐽𝑖)} represent finite set of actions;

𝑃(𝐽𝑖) = {𝑎𝑖𝑗} is the probability of transition from state i to state j, where

∑ 𝑎𝑖𝑗
𝑖,𝑗=𝑛
𝑖,𝑗=1 =1, i1, and j≤n;

𝑅(𝐽𝑖) = 𝑅(𝑆𝑖(𝐽𝑖), 𝐴𝑖(𝐽𝑖)) is the reward model of the jobs;

Ω(𝐽𝑖) = {Ω1(𝐽𝑖), Ω2(𝐽𝑖), . . . , Ω𝑛(𝐽𝑖)} is the finite set of observations;

𝑂(𝐽𝑖) = 𝑂 (
𝑜

(𝑆𝑖(𝐽𝑖),𝐴𝑖(𝐽𝑖))
) is the observation model of the jobs.

Fig. 2. A sample POMDP model of jobs

A sample POMDP model of jobs is shown in Fig. 2. The partial state of the jobs

are handled using FNSS as it characterizes every partial state of the jobs by giving

equal importance to varying resource requirements of the jobs and precisely solves

 102

hugely intractable uncertainties in the partial states of the jobs using fuzzy

neutrosophic truth, indeterminate, and falsehood membership function.

4. Proposed work

The proposed NSS and FNSS model based expected 3-SARSA learning resource

provisioning framework is shown in Fig. 3.

Fig. 3. Proposed NSS enabled expected 3-SARSA learning Resource provisioning framework

Fig. 4. Flowchart of the proposed framework

It is composed of three modules; one is Resource Neutrosophic Soft-Set Uncertainty

Reducer (R-NSSUR), Job Neutrosophic Soft-Set Uncertainty Reducer (J-FNSSUR),

and Expected 3-SARSA learning agent. The R-NSSUR module handles resource

 103

uncertainty, J-FNSSUR module handles job related uncertainty, and Expected

3-SARSA Resource provisioning Agent (E(3-SARSA)-RPA) forms optimal policies

for resource provisioning by triple coupling the action-value pair of the agent. Fig. 4

gives the flowchart representation of the proposed framework.

4.1. Resource Neutrosophic Soft-Set Uncertainty Reducer (R-NSSUR)

The R-NSSUR inputs the HMM model of the resource HMM(𝑅𝑖) to construct NSS

of the HMM model of the resource NSS-HMM(𝑅𝑖) by calculating truth-membership

function TNSS(𝑅𝑖), indeterminacy function INSS(𝑅𝑖), and falsity membership

function FNSS(𝑅𝑖) of the resources. The Discernibility matrix is constructed to obtain

minimal reduct of resources by removing the irrelevant parameters from the hidden

state of resources D(NSS-HMM(𝑅𝑖, 𝑅𝑗)) then the entries in the matrix are normalized

using standard minimum of the discernibility matrix. Finally the reduced soft-set of

HMM model of resource HMM(𝑅𝑖)
rd is produced as output. The working of

R-NSSUR is shown in Algorithm 1 and satisfies the Theorems 4.1 and 4.2.

Algorithm 1. Working of R-NSSUR

Step 1. Begin

Step 2. Input: HMM(𝑅𝑖) = (𝑆(𝑅𝑖), 𝑉(𝑅𝑖), 𝐵(𝑅𝑖), 𝐴(𝑅𝑖), 𝐼(𝑅𝑖))

Step 3. Output: HMM(𝑅𝑖)
rd=(S(𝑅𝑖

rd)), V(𝑅𝑖
rd)), B(𝑅𝑖

rd)), A(𝑅𝑖
rd)), I(𝑅𝑖

rd))

Step 4. for every 𝑅𝑖 ∈ 𝑅 do

Step 5. Form NSS of HMM(𝑅𝑖), i.e.,

Step 6. NSS-HMM(𝑅𝑖)=(𝑅𝑖 , TNSS(𝑅𝑖), INSS(𝑅𝑖), FNSS(𝑅𝑖))

Step 7. Calculate the Discernibility matrix D(NSS-HMM(𝑅𝑖, 𝑅𝑗)), i.e.,

 D(NSS-HMM(𝑅𝑖, 𝑅𝑗))={𝑎 ∈ 𝐴|𝑔(𝑅𝑖, 𝑎) ≠ 𝑔(𝑅𝑗, 𝑎)}

Φ {a1} {a1, a4}

...

{a1, a3, a4} ... Φ

Step 8. Calculate standard minimum ∆∗D(NSS-HMM(𝑅𝑖, 𝑅𝑗)), i.e.,

Step 9. ∆∗D(NSS-HMM(𝑅𝑖, 𝑅𝑗))= (𝑎𝑖 ∧ 𝑎𝑗)⋁(𝑎𝑘 ∧ 𝑎𝑙)

{a1*, a4*} {a3*} Φ

...

{a2*} ... {a2*, a5*}

Step 10. End for

Step 11. Output all reduced resources in HMM form HMM(𝑅𝑖)
rd

Step 12. End

Theorem 4.1. Let HMM(𝑅𝑖) be the input model of the resource parameters and

HMM(𝑅𝑖)
rd is the reduced model of the resource parameters, which is obtained by

eliminating irrelevant parameters 𝛾 from HMM(𝑅𝑖). Then 𝛾 is dispensable in

HMM(𝑅𝑖) if and only if HMM(𝑅𝑖) – 𝛾 ⟹ HMM(𝑅𝑖)
rd.

Theorem 4.2. Let (NSS, E) be the input neutrosophic soft-set, where

𝐸 = {𝑒1, 𝑒2, … , 𝑒𝑗} is the parameter set representing NSS. If there exists irrelevant

parameters like 𝑒𝑗
0 and 𝑒𝑗

𝑖, they are added into reduced parameters set 𝐸 = {𝑒𝑗
0, 𝑒𝑗

𝑖}

 104

to find subset A, i.e., 𝐴 ⊆ 𝐸 then 𝐸 − 𝐴 − 𝐸 produces reduced (NSS, 𝐸) excluding

𝑒𝑗
0 and 𝑒𝑗

𝑖.

4.2. Job Fuzzy Neutrosophic Soft-Set Uncertainty Reducer (J-FNSSUR)

The J-FNSSUR inputs the POMDP model of the job POMDP(𝐽𝑖) =
(𝑆(𝐽𝑖), 𝐴(𝐽𝑖), 𝑃(𝐽𝑖), 𝑅(𝐽𝑖), 𝛺(𝐽𝑖), 𝑂(𝐽𝑖)) to construct the FNSS of the POMDP model

of the job FNSS − POMDP(𝐽𝑖) by calculating Truth fuzzy membership

function 𝑇FNSS (𝐽𝑖), Indeterminacy fuzzy function 𝐼FNSS (𝐽𝑖), and Falsity fuzzy

membership function 𝐹NSS (𝐽𝑖) of the jobs. The discernibility matrix is constructed to

obtain minimal residue of resources by removing the irrelevant parameters from the

hidden state of jobs (NSS − POMDP(𝐽𝑖, 𝐽𝑗)) . Then the entries in the discernibility

matrix are normalized in three levels, in the first level the fuzzy weighted average of

discernibility matrix is calculated, in the second level standard minimum of

discernibility matrix is calculated, and in the third level fuzzy weighted average

square over standard minimum of discernibility matrix is formulated. Finally the

reduced soft-set of POMDP model of jobs POMDP(𝐽𝑖)rd is generated as output. The

working of J-FNSSUR is shown in Algorithm 2 and satisfies the Theorems 4.3

and 4.4.

Algorithm 2. Working of J-FNSSUR

Step 1. Begin

Step 2. Input: POMDP(𝐽𝑖) = (𝑆(𝐽𝑖), 𝐴(𝐽𝑖), 𝑃(𝐽𝑖), 𝑅(𝐽𝑖), 𝛺(𝐽𝑖), 𝑂(𝐽𝑖))

Step 3. Output: POMDP(𝐽𝑖)rd =

= (𝑆(𝐽𝑖)rd, 𝐴(𝐽𝑖)rd, 𝑃(𝐽𝑖)rd, 𝑅(𝐽𝑖)rd, 𝛺(𝐽𝑖)rd, 𝑂(𝐽𝑖)rd)

Step 4. for every 𝐽𝑖 ∈ 𝐽 do

Step 5. Form FNSS of POMDP(𝐽𝑖)

Step 6. FNSS-POMDP(𝐽𝑖)=(𝐽𝑖, 𝑇FNSS(𝐽𝑖), 𝐼FNSS(𝐽𝑖), 𝐹NSS(𝐽𝑖))

Step 7. Calculate discernibility matrix D(FNSS-POMDP(𝐽𝑖, 𝐽𝑗)), i.e.,

Step 8. D(FNSS-POMDP(𝐽𝑖, 𝐽𝑗))={𝜇(𝑎) ∈ 𝐴|𝑔(𝐽𝑖𝑖
, 𝜇(𝑎)) ≠ 𝑔(𝐽𝑗, 𝜇(𝑎))}

Step 9. Compute fuzzy weighted average of discernibility matrix, i.e.,

 FD = ∑ (𝑤𝑖 ∗ 𝜇(𝑎))𝑖=𝑛
𝑖=1 , where 𝑤𝑖 is weight assigned

Step 10. D(FNSS-POMDP(𝐽𝑖, 𝐽𝑗))=

Φ {a1/FD} {a1/FD, a4/FD}

...

{a1/FD, a3/FD, a4/FD} ... Φ

Step 11. Calculate the standard minimum ∆∗D(FNSS-POMDP(𝐽𝑖, 𝐽𝑗))

 ∆∗D(FNSS-POMDP(𝐽𝑖, 𝐽𝑗))= (𝜇(𝑎𝑖) ∧ 𝜇(𝑎𝑗))⋁(𝜇(𝑎𝑘) ∧ 𝜇(𝑎𝑙))

{a1*, a6*} {a1*} {a1*, a6*}

...

{a6*} ... {a4*, a7*}

Step 12. Calculate the fuzzy weighted average square over standard minimum

 of discernibility matrix, i.e., FD2=∑ (𝑤𝑖 ∗ 𝜇(𝑎))𝑖=𝑛
𝑖=1

2, i.e.,

Step 13. D(FNSS-POMDP(𝐽𝑖, 𝐽𝑗))=

{𝑎1
∗ /FD2, 𝑎6

∗ /FD2} {𝑎3
∗ /FD2} {𝛷

∗/FD2}

 105

...

{𝑎6
∗ /FD2} ... {𝑎4

∗ /FD2, 𝑎7
∗ /FD2}

Step 14. End for

Step 15. Output all reduced jobs in POMDP form POMDP(𝐽𝑖)
rd

Step 16. End

Theorem 4.3. Let (FNSS, 𝜇(𝐸)) be the input fuzzy neutrosophic soft-set, where

𝜇(𝐸) = {𝜇(𝑒1)𝜇(𝑒1), … , 𝜇(𝑒𝑗)} is the membership value of the parameter set

representing FNSS. If there exists membership values of irrelevant parameters like

𝜇(𝑒𝑗
0) and 𝜇(𝑒𝑗

𝑖) which exhibits the probability of greater than 0.5, they are added

into reduced parameters set 𝜇(𝐸) = {𝜇(𝑒𝑗
0), 𝜇(𝑒𝑗

𝑖)} to find subset A, i.e., 𝐴 ⊆ 𝜇(𝐸)

then 𝜇(𝐸) − 𝐴 − 𝜇(𝐸) produces reduced FNSS excluding 𝜇(𝑒𝑗
0) and 𝜇(𝑒𝑗

𝑖), i.e.,

(FNSS, 𝜇(𝐸)).

Theorem 4.4. Let f be a function mapping from 𝑓: (𝐽𝑖, 𝐸) → (𝐽𝑘 , 𝐸) then for

any FNSS, i.e., FNSS(𝐽𝑖, 𝐸) in f the following conditions hold good:

𝑓(∅) = ∅,

𝑓(𝐽𝑖, 𝐸) ⊆ 𝑓(𝐽𝑘, 𝐸),

𝑓((𝐽𝑖 , 𝐸) ∪ (𝐽𝑘, 𝐸)) = 𝑓(𝐽𝑖, 𝐸) ∪ 𝑓(𝐽𝑘 , 𝐸),

𝑓((𝐽𝑖 , 𝐸) ∩ (𝐽𝑘, 𝐸)) ⊆ 𝑓(𝐽𝑖, 𝐸) ∩ 𝑓(𝐽𝑘 , 𝐸).

4.3. Expected 3-SARSA resource provisioning agent (E(3-SARSA)-RSA)

The E(3-SARSA-RSA) model inputs three states among which one is current state

𝑄𝐴(S, A) and other two are expected states 𝑄𝐵(S, A), and 𝑄𝐶(S, A), the intention

behind considering three states are it increases the probability of selecting action with

highest action value. All three states are initialized to null value, an action is chosen

in the beginning using an arbitrarily generated policy, the value function is computed

for expected next two states 𝑉𝑆′
𝐵 and 𝑉𝑆′

𝐶 using which agent updates the states and

actions, which allows the agent to converge at different values and move towards

goal by maintaining safe distance from cliff. Later rotate operation is performed on

all the three Q states with probability P to derive optimal policy for resource

provisioning, this increases speed of learning and convergences to optimal solution.

The working of E(3-SARSA)-RSA is given in Algorithm 3 and satisfies the

Theorems 4.5, 4.6, and 4.7.

Algorithm 3. Working of E(3-SARSA)-RSA

Step 1. Begin

Step 2. Input: Q(S, A)= 𝑄𝐴(S, A), 𝑄𝐵(S, A), and 𝑄𝐶(S, A)

Step 3. Output: Optimal Q(S, A)* for every (S, A) pair

Step 4. for ever do

Step 5. Initialize Q(S, A)={Φ}

Step 6. Choose A from S using the arbitrary policy derived from Q(S, A)

Step 7. for every episode do

Step 8. Choose A to observe reward and next state (r, 𝑆′).

Step 9. Choose 𝐴′ in 𝑆′ using ∏ derived from 𝑄𝐴(S, A), 𝑄𝐵(S, A), and 𝑄𝐶(S, A).

Step 10. Compute value function 𝑉𝑆′
𝐴=𝜎𝐴′𝜋(𝐴′/𝑆′) 𝐴(𝑆′, 𝐴′)

 106

Step 11. Compute value function 𝑉𝑆′
𝐵=𝜎𝐵′𝜋(𝐵′/𝑆′) 𝑄𝐵(𝑆′, 𝐵′)

Step 12. Compute value function 𝑉𝑆′
𝐶=𝜎𝐶′𝜋(𝐶′/𝑆′) 𝑄𝐶(𝑆′, 𝐶′)

Step 13. Compute 𝑄𝐴(S, A)= 𝑄𝐴(S, A)+α[𝛾 + 𝛾𝑉𝑆′
𝐵 + 𝛾𝑉𝑆′

𝐶 − 𝑄𝐴(S, A)]

Step 14. Compute 𝑄𝐵(S, A)= 𝑄𝐵(S, B)+α[𝛾 + 𝛾𝑉𝑆′
𝑐 + 𝛾𝑉𝑆′

𝐴 − 𝑄𝐵(S, A)]

Step 15. Compute 𝑄𝐶(S, A)= 𝑄𝐶(S, B)+α[𝛾 + 𝛾𝑉𝑆′
𝐴 + 𝛾𝑉𝑆′

𝐵 − 𝑄𝐶(S, A)]

Step 16. Update 𝑆 ← 𝑆′and A← 𝐴′

Step 17. Rotate 𝑄𝐴(S, A), 𝑄𝐵(S, A), and 𝑄𝐶(S, A) with probability P

Step 18.

𝑄𝐴1
′
 𝑄𝐴2

′
 𝑄𝐴𝑛

′

𝑄𝐵1
′
 𝑄𝐵2

′
 𝑄𝐵𝑛

′

𝑄𝐶1
′
 𝑄𝐶2

′
 𝑄𝐶𝑛

′

Step 19. End for

Step 20. Compute resource provisioning decisions AD𝐴∗
, AD𝐵∗

, and AD𝐶∗
, i.e.,

AD𝐴∗
← ∑ [𝑄𝐴𝑖∗

]𝑖=𝑛
𝑖=1 , AD𝐵∗

← ∑ [𝑄𝐵𝑖∗
]𝑖=𝑛

𝑖=1 , and AD𝐶∗
← ∑ [𝑄𝐶𝑖∗

]𝑖=𝑛
𝑖=1

Step 21. End for

Step 22. Output resource provisioning decisions AD= {AD𝐴∗
, AD𝐵∗

, AD𝐶∗
}

Step 23. End

Theorem 4.5. For any HMM(𝑅𝑖)rd of resources and POMDP(𝐽𝑖)rd of jobs, the

computed Q(S, A) of E(3-SARSA)-RSA agent is always greater than computed value

function of the agent at state 𝑆.
Theorem 4.6. If Q(S, A) is the Q state of single SARSA, 𝑄(𝑆, 𝐴) is the Q state

of double SARSA and 𝑄(𝑆, 𝐴) is the Q state of triple SARSA then the learning rate

α of 𝑄(𝑆, 𝐴) ≥ max (𝑄(𝑆, 𝐴), 𝑄(𝑆, 𝐴)).

Theorem 4.7. The update rule of SARSA does not converge unless the learning

rate drops to zero and exploration rate tends to zero, i.e., 𝑄(𝑆, 𝐴) = 𝑄(𝑆, 𝐴)𝛼[𝛾 +
𝛾𝑉𝑠 − 𝑄(𝑆, 𝐴)]. Whereas, expected three SARSA does not wait till the next state

action is performed, it converges as soon as the expected value of next state and action

is obtained 𝑄𝐴(𝑆, 𝐴) = 𝑄𝐴(𝑆, 𝐴) + 𝛼[𝛾 + 𝛾𝑉𝑠`
𝐵 + 𝛾𝑉𝑆

𝐶 − 𝑄𝐴(𝑆, 𝐴)].

5. Interval-valued analysis

The efficiency of the proposed work is analyzed using interval-valued NSS analysis

method [18]. Assume that the AD = {AD𝐴∗
, AD𝐵∗

, AD𝐶∗
} be the generated

provisioning decisions under consideration in a real SARSA learning agent and let E

be the set of parameters describing the quality of AD𝑖
∗ ∈ AD and 𝐸 = {𝑒1 = low,

𝑒2 = medium, and 𝑒3 = high}. The analysis is carried out in following steps.

 Input the job and resource parameters.

 Construct n interval valued NSS, i.e., INSS𝑘 consisting of three

components, i.e., NSS truth membership function 𝑇𝑘, NSS indeterminacy function

𝐼𝑘 and NSS falsity membership function 𝐹𝑘, which are populated as follows:

INSS1 = [𝑇𝑘 , 𝐼𝑘, 𝐹𝑘] … INSS𝑛 = [𝑇𝑘 , 𝐼𝑘, 𝐹𝑘]
...

 107

INSS𝑚 = [𝑇𝑘 , 𝐼𝑘 , 𝐹𝑘] ... INSS𝑛 = [𝑇𝑘 , 𝐼𝑘, 𝐹𝑘]
 Input the threshold of INSS𝑘𝛼, 𝛽, 𝛾 using average decision rules

 Compute average of INSS𝑘, i.e., INSS𝑘
avg

𝛼, 𝛽, 𝛾

INSS𝑘
avg

𝛼, 𝛽, 𝛾 = 〈
[𝑇𝑘, 𝐼𝑘, 𝐹𝑘]

AD1
∗ , … ,

[𝑇𝑘 , 𝐼𝑘, 𝐹𝑘]

AD𝑖
∗ 〉

 Output the average of INSS𝑘𝛼, 𝛽, 𝛾, i.e., INSS𝑘
avg

INSS1
avg

𝛼, 𝛽, 𝛾 … INSS𝑛
avg

𝛼, 𝛽, 𝛾

...

INSS𝑚
avg

𝛼, 𝛽, 𝛾 … INSS𝑛
avg

𝛼, 𝛽, 𝛾
 Compute the optimal choice 𝐶𝑖=max𝐶𝑖∈𝐶{𝐶𝑖}

Example

A. Triple SARSA learning

Input a sample POMDP(𝐽𝑖)rd = {𝐽1(80), 𝐽2(60), 𝐽3(40), 𝐽4(34), 𝐽5(55),
𝐽6(41), 𝐽7(62), 𝐽8(63), 𝐽9(99)} and the HMM(𝑅𝑖)rd ={𝑅1(32), 𝑅2(59), 𝑅3(55),

𝑅4(61), 𝑅5(83), 𝑅6(99), 𝑅7(67), 𝑅8(76), 𝑅9(80)}

 Construct 3 INSS𝑘𝛼, 𝛽, 𝛾
[0.5, 0.4, 0.1] [0.5, 0.3, 0.2] [0.1, 0.1, 0.8]

[0.4, 0.2, 0.4] [0.3, 0.1, 0.6] [0.1, 0.8, 0.1]

[0.5, 0.4, 0.1] [0.3, 0.6, 0.1] [0.3, 0.2, 0.5]

 Compute the threshold of INSS𝑘𝛼, 𝛽, 𝛾+={[0.8, 0.2, 0.0], [0.4, 0.6, 0.0]}

 Compute the INSS𝑘
avg

𝛼, 𝛽, 𝛾={AD1
∗ = 0.5, AD2

∗ = 0.8, AD3
∗ = 0.2 }

 Summarize the computed INSS𝑘
avg

0.8 0.5 0.2

0.1 0.3 0.4

0.5 0.1 0.9

Output the optimal choice 𝐶𝑖=0.9

B. Double SARSA learning

Input a sample POMDP(𝐽𝑖)
rd = {𝐽1(80), 𝐽2(60), 𝐽3(40), 𝐽4(34), 𝐽5(55),

𝐽6(41), 𝐽7(62), 𝐽8(63), 𝐽9(99)} and the HMM(𝑅𝑖)
rd ={𝑅1(32), 𝑅2(59), 𝑅3(55),

𝑅4(61), 𝑅5(83), 𝑅6(99), 𝑅7(67), 𝑅8(76), 𝑅9(80)}

 Construct 3-INSS𝑘𝛼, 𝛽, 𝛾
[0.5, 0.3, 0.2] [0.6, 0.3, 0.1] [0.0, 0.1, 0.9]

[0.3, 0.4, 0.3] [0.3, 0.4, 0.3] [0.3, 0.3, 0.4]

[0.4, 0.2, 0.4] [0.1, 0.5, 0.4] [0.6, 0.0, 0.4]

 Compute the threshold of INSS𝑘 𝛼, 𝛽, 𝛾+={[0.4,0.2,0.4], [0.5,0.3,0.3]}

 Compute the INSS𝑘
avg

𝛼, 𝛽, 𝛾={AD1
∗ = 0.1, AD2

∗ = 0.2, and AD3
∗ = 0.6 }

 Summarize the computed INSS𝑘
avg

0.1 0.5 0.3

0.8 0.6 0.2

0.4 0.3 0.2

Output the optimal choice 𝐶𝑖=0.52

 108

C. Single SARSA learning

Input a sample POMDP(𝐽𝑖)
rd = {𝐽1(80), 𝐽2(60), 𝐽3(40), 𝐽4(34), 𝐽5(55),

𝐽6(41), 𝐽7(62), 𝐽8(63), 𝐽9(99)} and the HMM(𝑅𝑖)
rd ={𝑅1(32), 𝑅2(59), 𝑅3(55),

𝑅4(61), 𝑅5(83), 𝑅6(99), 𝑅7(67), 𝑅8(76), 𝑅9(80)}

 Construct INSS𝑘𝛼, 𝛽, 𝛾
[0.3, 0.2, 0.4] [0.2, 0.2, 0.6] [0.4, 0.2, 0.3]

[0.4, 0.3, 0.3] [0.3, 0.4, 0.3] [0.3, 0.5, 0.2]

[0.3, 0.4, 0.3] [0.3, 0.4, 0.2] [0.6, 0.2, 0.2]

 Compute the threshold of INSS𝑘𝛼, 𝛽, 𝛾+={[0.3,0.3,0.4],[0.5,0.4,0.1]}

 Compute the INSS𝑘
avg

𝛼, 𝛽, 𝛾={AD1
∗ = 0.1, AD2

∗ = 0.6, and AD3
∗ = 0.3 }

 Summarize the computed INSS𝑘
avg

0.5 0.5 0.3

0.0 0.2 0.5

0.6 0.4 0.8

Output the optimal choice 𝐶𝑖 =0.2

The 𝐶𝑖 of proposed expected 3-SARSA is 0.9, 𝐶𝑖 of the double SARSA is 0.5,

and the 𝐶𝑖 of the single SARSA is 0.2. Hence the 𝐶𝑖 of the expected 3-SARSA is

higher compared to the 𝐶𝑖 of the double and single SARSA.

6. Results and discussion

The performance of the expected 3-SARSA learning in the Proposed Work (PW) is

compared with the fuzzy SARSA learning in the Existing Work (EW) with respect

to throughput achieved and rate of learning [24]. The default parameters for the

SARSA Algorithm are determined by measuring the performance of the jobs running

on Virtual Machines (VMs) versus resources offered by the VMs. The system-wide

performance of the jobs running on VMs is evaluated using interactive benchmark

workloads with varying workload scenarios.

6.1. Experimental setup

For experimentation purpose, we used the Xen Hypervisor based paravirtualization

model, over which more than 100 instances of VM’s have been created. Each of the

benchmark workloads is deployed on clusters of VM’s, which are enabled with

Hypertext Preprocessor (PHP) and MySQL accessibility services. To support

memory-intensive behavior the connections timeout is set to 10 s and to prevent

bottleneck situations memory consumption limit is not enforced on the applications

running on VM’s [24].

6.2. Benchmark applications

The typical workloads considered for performance evaluation are RUBiS, RUBBoS,

and Olio. The RUBiS is a dynamic workload, modeled after the application of

eBay.com, which consists of the emulator to create client jobs of varying load. The

RUBBoS is modeled after the application of slashdot on-line news form, which

 109

provides both regular and moderate level of access to clients. Olio is a social events

calendar application used to support Web 2.0 applications with networking functions

like commenting on posts, posting the reviews, sharing the post, and tagging friends

in the posts. To verify the efficiency of the proposed work with respect to throughput

and learning rate, two types of experiments are carried out one is with the

homogeneous workload and other with the heterogeneous workload.

6.3. Experiment-1: Homogeneous workload

For Experiment-1 the following workloads are being considered, i.e., (RUBiS;

21,000 browsing clients; time 50 s), and (RUBiS; 30,000 bidding clients, time 50 s).

Table 1 shows the performance comparison of proposed work with existing work on

homogeneous workload.

A graph of the number of iterations versus throughput (number of requests

successfully completed per iteration) is shown in Fig. 5. The successful job

completion rate of the proposed work considering RUBiS workload increases with

the increase in the number of iterations for both browsing and bidding clients as the

expected 3-SARSA Algorithm learns quickly with minimum exploration rate. But

with respect to existing work, the successful job completion rate is moderate for

RUBiS workload with bidding clients and it is low for RUBiS workload with

browsing clients as the exploration rate of Fuzzy SARSA Algorithm is high.

Fig. 5. Number of iterations versus throughput

A graph of time versus learning rate is shown in Fig. 6. The learning rate of the

proposed work for RUBiS workload with browsing clients is found to be high

between 0.7 and 0.8 and for the RUBiS workload with bidding clients the learning

rate is moderate between 0.5 and 0.6 as the expected 3-SARSA Algorithm collects

maximum possible rewards. Whereas the existing work learning rate for RUBiS

workload with bidding clients is found to be moderate between 0.5 and 0.6 and

RUBiS workload with browsing clients the learning rate is lower, i.e., between 0.1

and 0.2 because the Fuzzy SARSA Algorithm collects minimum possible rewards.

 110

Fig. 6. Time versus learning rate

Table 1. Performance comparison of proposed work with existing work on homogeneous workload

Works considered

for analysis
Workload type

Performance metric

Throughput (3000-9000 jobs)

Number of iterations (100-1000 iterations)

Fewer

iterations

(100-400)

Moderate

iterations

(400-700)

Higher

iterations

(700-1000)

Proposed work RUBiS: Browsing 5000-8000 8000-9000 8000-9000

RUBiS: Bidding 7000-8000 6000-8000 7000-8000

Existing work RUBiS: Browsing 5000-6000 4000-6000 4000-5000

RUBiS: Bidding 6000-7000 6000-7000 6000-7000

Works considered

for analysis
Workload type

Learning rate (0-1)

Time interval (100-1000 ms)

Lower

time interval

(100-400)

Moderate

time interval

(400-700)

Higher

time interval

(700-1000)

Proposed work RUBiS: Browsing 0.7-0.75 0.7-0.8 0.7-0.8

RUBiS: Bidding 0.5-0.6 0.5-0.6 0.5-0.56

Existing work RUBiS: Browsing 0.5-0.6 0.5-0.55 0.5-0.55

RUBiS: Bidding 0.2-0.22 0.1-0.2 0.2-0.22

Table 1 compares the performance of the proposed work with the existing work

concerning performance metrics like throughput and learning rate under the

homogeneous workload. Concerning RUBiS workload the performance of the

proposed work is very high towards throughput and is moderate towards learning rate

whereas the performance of the existing work is moderate towards throughput but is

weak towards learning rate.

6.4. Experiment 2: heterogeneous workload

For Experiment 2 the following workloads are being considered, i.e., (RUBiS; 3,000

browsing clients, 13,000 selling clients; time 50 s), (RUBBoS; 30,000 bidding

clients, 12,000 concurrent clients; time 50 s), and (Olio; 30,000 concurrent clients;

time 50 s). Table 2 shows the performance comparison of proposed work with

existing work on heterogeneous workload.

 111

Table 2. Performance comparison of proposed work with existing work on heterogeneous workload

Works considered

for analysis
Workload type

Performance metric

Throughput (3000-9000 jobs)

Number of iterations (100-1000 iterations)

Fewer iterations
(100-400)

Moderate iterations
(400-700)

Higher iterations
(700-1000)

Proposed work
RUBiS: Browsing 6000-9000 7000-9000 7000-8000

RUBiS: Selling 7000-8000 7000-7500 7200-7500

Existing work
RUBiS: Browsing 5000-6000 5000-6000 4000-5000

RUBiS: Selling 2000-3000 2000-5000 3000-4500

Works considered

for analysis
Workload type

Learning rate (0-1)

Time interval (100-1000 ms)

Lower time interval

(100-400)

Moderate time interval

(400-700)

Higher time interval

(700-1000)

Proposed work
RUBiS: Browsing 0.7-0.75 0.7-0.8 0.75-0.80

RUBiS: Selling 0.5-0.7 0.55-0.65 0.65-0.75

Existing work
RUBiS: Browsing 0.2-0.4 0.2-0.4 0.2-0.4

RUBiS: Selling 0.2-0.3 0.1-0.3 0.1-0.2

Works considered
for analysis

Workload type

Throughput (3000-9000 Jobs)

Number of iterations (100-1000 iterations)

Fewer iterations

(100-400)

Moderate iterations

(400-700)

Higher iterations

(700-1000)

Proposed work
RUBBoS: bidding 6000-9000 7000-9000 7000-7300

RUBBoS: concurrent 4000-7000 4000-7000 6500-7000

Existing work
RUBBoS: bidding 5000-8000 5000-7000 6000-7000

RUBBoS: concurrent 3000-3500 3500-4000 3000-3200

Works considered

for analysis
Workload type

Learning rate (0-1)

Time interval (100-1000 ms)

Lower time interval

(100-400)

Moderate time interval

(400-700)

Higher time interval

(700-1000)

Proposed

work

RUBBoS: bidding 0.7-0.9 0.7-0.9 0.7-0.9

RUBBoS: concurrent 0.7-0.9 0.5-0.9 0.7-0.72

Existing work
RUBBoS: bidding 0.3-0.5 0.5-0.51 0.3-0.4

RUBBoS: concurrent 0.1-0.5 0.1-0.5 0.3-0.5

Works considered
for analysis

Workload type

Throughput (3000-9000 jobs)

Number of iterations (100-1000 iterations)

Fewer iterations

(100-400)

Moderate iterations

(400-700)

Higher iterations

(700-1000)

Proposed work Olio: concurrent 6000-7000 6000-7500 7000-8000

Existing work Olio: concurrent 2000-5000 2500-3500 3000-5000

Works considered

for analysis
Workload type

Learning rate (0-1)

Time interval (100-1000 ms)

Lower time interval

(100-400)

Moderate time interval

(400-700)

Higher time interval

(700-1000)

Proposed work Olio: concurrent 0.1-0.6 0.6-0.62 0.6-0.9

Existing work Olio: concurrent 0.1-0.6 0.2-0.6 0.2-0.4

RUBiS workload

The performance of the proposed and existing work is evaluated with respect to

throughput and learning rate by considering browsing and selling clients of RUBiS

workload.

A graph of the number of iterations versus throughput with respect to RUBiS

workload with browsing and selling clients is shown in Fig. 7. The successful job

completion rate is found to be high for the proposed work with both browsing and

selling clients as the dynamic nature of the RUBiS workload is handled smoothly

using NSS and FNSS enabled 3-SARSA Algorithm which is capable of handling

different uncertainties in the input parameters. Whereas the successful job completion

 112

rate of the existing work is found to be lower for selling clients and moderate for

browsing clients as the dynamic nature of the RUBiS workload is not handled

properly in Fuzzy SARSA Algorithm because of the use of non-differentiable

polygon membership function.

Fig. 7. Number of iterations versus throughput

A graph of time versus learning rate with respect to RUBiS workload with

browsing and selling clients is shown in Fig. 8. The learning rate is high for the

proposed work with browsing clients as it falls in the range of 0.7 to 0.8 and for

selling clients it is in the moderate range, i.e., between 0.5 to 0.8 owing to the

approximate and easily adaptable nature of 3-SARSA Algorithm. But the existing

work learning rate is lower for both browsing and selling clients due to the individual

specific nature of the polygon membership function used in the Fuzzy SARSA

Algorithm.

Fig. 8. Time versus learning rate

 113

RUBBoS workload

The performance of the proposed and existing work is evaluated with respect to

throughput and learning rate by considering bidding and concurrent clients of

RUBBoS workload.

Fig. 9. Number of iterations versus throughput

A graph of the number of iterations versus throughput with respect to RUBBoS

workload with bidding and concurrent clients is shown in Fig. 9. The successful job

completion rate of the proposed work is high for bidding clients and remains

moderate for concurrent clients as the 3-SARSA Algorithm easily handles the

stochastically unstable phenomena in the workload using NSS and FNSS theory.

Whereas the successful job completion rate of the existing work is found to be high

for the bidding clients and low for concurrent clients as the Fuzzy SARSA Algorithm

cannot easily handle the stochastically unstable phenomena in the workload because

of the tedious procedure involved in the calculation of fuzzy membership function.

Fig. 10. Time versus learning rate

A graph of time versus learning rate with respect to RUBBoS workload with

bidding and concurrent clients is shown in Fig. 10. The learning rate of the proposed

 114

work remained constant between 0.7 and 0.9 for the proposed work with both bidding

and concurrent clients owing to the exploratory learning policy of 3-SARSA

Algorithm. Whereas, the learning rate of the existing work is found to be lower

between 0.1 and 0.5 for concurrent clients and moderate for bidding clients owing to

the non-exploratory learning policy of Fuzzy SARSA Algorithm.
Olio workload

The performance of the proposed and existing work is evaluated with respect to

throughput and learning rate by considering concurrent clients of Olio workload.
A graph of the number of iterations versus throughput with respect to Olio

workload made up of concurrent clients is shown in Fig. 11. The successful job

completion rate of the proposed work is found to be moderate as the 3-SARSA

Algorithm can capture maximum possible uncertainties in the incoming workload

using NSS and FNSS theory. But there is a huge drop in the successful job completion

rate for the existing work as the Fuzzy SARSA Algorithm fails to capture all possible

uncertainties in the incoming workload using not so continuously differentiable

polygon fuzzy membership function.

Fig. 11. Number of iterations versus throughput

Fig. 12. Time versus learning rate

A graph of time versus learning rate with respect to Olio workload with

concurrent clients is shown in Fig. 12. The learning rate of the proposed work

considering concurrent clients is moderate between 0.6 and 0.8 because of the

 115

superior resource provisioning ability of the 3-SARSA Algorithm as it considers

expected three states while forming the resource provisioning policies. Whereas, the

learning rate of the existing work with concurrent clients is found to be fluctuating

between 0.1 and 0.6 in a scale of 0 to 1 owing to not so superior resource provisioning

ability of the Fuzzy SARSA Algorithm because it does not considers adjacent states

while forming resource provisioning policies.
Table 2 compares the performance of the proposed work with the existing work

concerning performance metrics like throughput and learning rate under the

heterogeneous workload. Concerning RUBiS workload; the performance of the

proposed work is high towards throughput and is moderate towards learning rate

whereas the performance of the existing work is weak towards both throughput and

learning rate. Concerning RUBBoS workload; the performance of the proposed work

is moderate towards both throughput and learning rate whereas the performance of

the existing work is moderate towards both throughput and learning rate. Concerning

Olio workload the performance of the proposed work is high towards throughput and

is moderate towards learning rate whereas the performance of the existing work is

weak towards throughput but is moderate towards learning rate.

7. Conclusion

The paper presents a new NSS and FNSS based expected 3-SARSA learning

framework for resource provisioning in the cloud environment. Here the irrelevant

parameters or outliers of the jobs and resources are reduced, this influences on the

quality of the resource provisioning decision taken. The proposed agent compares the

current state with the expected other three states to form optimal decision pertaining

to resource provisioning, which increases the number of rewards collected by the

agent and stabilizes the learning. Its performance is found to be good with respect to

successful job completion rate and learning rate. In future work, the expected

3-SARSA learning framework is improvised to be self-adaptable and capable enough

of doing both resource scheduling and resource provisioning at runtime with

minimum SLA violation, and the cost incurred.

R e f e r e n c e s

1. A l-D h u r a i b i, Y., F. P a r a i s o, N. D j a r a l l a h, P. M e r l e. Elasticity in Cloud Computing:

State of the Art and Research Challenges. – IEEE Transactions on Services Computing,

Vol. 11, 2018, pp. 430-447.

2. U l l a h, A., J. L i., Y. S h e n, A. H u s s a i n. A Control Theoretical View of Cloud Elasticity:

Taxonomy, Survey and Challenges. – Cluster Computing, Vol. 21, 2018, pp. 1735-1764.

3. D a r, A. R., D. R a v i n d r a n. A Comprehensive Study on Cloud Computing. – International

Journal of Advance Research in Science and Engineering, Vol. 7, 2018, pp. 235-242.

4. B a b u, A. A., V. M. A. R a j a m. Resource Scheduling Algorithms in Cloud Environment – A

Survey. – In: Proc. of 2nd International Conference on Recent Trends and Challenges in

Computational Models (ICRTCCM), 2017, pp. 25-30.

5. P a r i k h, S. M., N. M. P a t e l, H. B. P r a j a p a t i. Resource Management in Cloud Computing:

Classification and Taxonomy. – Distributed, Parallel, and Cluster Computing, 2017, pp. 1-10.

https://ieeexplore.ieee.org/author/37086017928
https://ieeexplore.ieee.org/author/37086021339
https://link.springer.com/journal/10586

 116

6. E l k h a l i k, W. A., A. S a l a h, I. E l-H e n a w y. A Survey on Cloud Computing Scheduling

Algorithms. – International Journal of Engineering Trends and Technology (IJETT), Vol. 60,

pp. 65-70.

7. P h a m, N. M. N., V. S. L e, H. H. C. N g u y e n. Energy Efficient Resource Allocation for Virtual

Services Based on Heterogeneous Shared Hosting Platforms in Cloud Computing. –

Cybernetics and Information Technologies, Vol. 17, 2017, pp. 47-58.

8. S e n t h i l k u m a r, M. Energy-AwareTask Scheduling Using Hybrid Firefly-BAT (FFABAT) in

Big Data. – Cybernetics and Information Technologies, Vol. 18, 2018, pp. 98-111.

9. G i l l, S. S., R. B u y y a. Resource Provisioning based Scheduling Framework for Execution of

Heterogeneous and Clustered Workloads in Clouds: From Fundamental to Autonomic

Offering. – Journal of Grid Computing, 2018, pp.1-33.

10. P h a m, N. M. N., H. H. C. N g u y e n. Energy Efficient Resource Allocation for Virtual Services

Based on Heterogeneous Shared Hosting Platforms in Cloud Computing. – Cybernetics and

Information Technologies, Vol. 17, 2017, pp. 47-58.

11. M e z n i, H., A. H a d j a l i, S. A r i d h i. The Uncertain Cloud: State of the Art and Research

Challenges. – International Journal of Approximate Reasoning, Vol. 103, 2018, pp. 139-151.

12. C a y i r c i, E., A. S. D. O l i v e i r a. Modelling Trust and Risk for Cloud Services. – Journal of

Cloud Computing Advances, Systems and Applications, Vol. 7, 2018, pp. 1-14.

13. O u a m m o u, A., B. T. A b d e l g h a n i, M. H a n i n i. Analytical Approach to Evaluate the

Impact of Uncertainty in Virtual Machine Placement in a Cloud Computing Environment. 1st

Winter School on Complex Systems, Modeling & Simulation, 2018, p. 1.

14. L i u, Y., K. Q i n, L. M a r t i n e z. Improving Decision Making Approaches Based on Fuzzy Soft

Sets and Rough Soft Sets. – Applied Soft Computing, Vol. 65, 2018, pp. 320-332.

15. D a n j u m a , S., T. H e r a w a n, M. A. I s m a i l, H. C h i r o m a, A. I. A b u b a k a r,

A. M. Z e k i. A Review on Soft Set-Based Parameter Reduction and Decision Making. – IEEE

Access, Vol. 5, 2017, pp. 4671-4689.

16. N a s e f, A. A., M. K. E l-S a y e d. Molodtsov’s Soft Set Theory and Its Applications in Decision

Making. – International Journal of Engineering Science Invention, Vol. 6, 2017, pp. 86-90.

17. R i a z, M., M. R. H a s h m i. Fixed Points of Fuzzy Neutrosophic Soft Mapping with Decision-

Making. – Fixed Point Theory and Applications, Vol. 1, 2018, p. 7.

18. D e l i, I. Interval-Valued Neutrosophic Soft Sets and Its Decision Making. – International Journal

of Machine Learning and Cybernetics, Vol. 8, 2017, pp. 665-676.

19. B e n i f a, J. B., D. D e j e y. RLPAS: Reinforcement Learning-Based Proactive Auto-Scaler for

Resource Provisioning in Cloud Environment. – Mobile Networks and Applications, 2018,

pp. 1-16.

20. C h e n g, M., J. L i, S. N a z a r i a n. DRL-Cloud: Deep Reinforcement Learning-Based Resource

Provisioning and Task Scheduling for Cloud Service Providers. – In: Proc. of 23rd Asia and

South Pacific Design Automation Conference, 2018, pp. 129-134.

21. G o n g, Z., X. G u, J. W i l k e s, PRESS: PRedictive Elastic ReSource Scaling for Cloud Systems.

– In: 6th IEEE/IFIP International Conference on Network and Service Management (CNSM),

2010, pp. 9-16.

22. R a m i r e z-V e l a r d e, R., A. T c h e r n y k h, C. B a r b a-J i m e n e z, A. H i r a l e s-C a r b a-

j a l, J. N o l a z c o-F l o r e s. Adaptive Resource Allocation with Job Runtime Uncertainty.

– Journal of Grid Computing, Vol. 15, 2017, pp. 415-434.

23. G a n d h i, A., P. D u b e, A. K a r v e, A. K o c h u t, L. Z h a n g. Model-Driven Optimal Resource

Scaling in Cloud. – Software & Systems Modeling, Vol. 17, 2018, pp. 509-526.

24. A r a b n e j a d, H., C. P a h l, P. J a m s h i d i, G. E s t r a d a. A Comparison of Reinforcement

Learning Techniques for Fuzzy Cloud Auto-Scaling. – In: Proc. of 17th IEEE/ACM

International Symposium on Cluster, Cloud and Grid Computing, 2017, pp. 64-73.

25. S o t i r i a d i s, S., N. B e s s i s, R. B u y y a. Self Managed Virtual Machine Scheduling in Cloud

Systems. – Information Sciences, Vol. 433, 2018, pp. 381-400.

26. G a w a l i, M. B., S. K. S h i n d e. Task Scheduling and Resource Allocation in Cloud Computing

Using a Heuristic Approach. – Journal of Cloud Computing, Vol. 7, 2018, pp. 1-16.

27. V o z m e d i a n o, R. M., R. S. M o n t e r o, E. H u e d o, I. M. L l o r e n t e. Efficient Resource

Provisioning for Elastic Cloud Services Based on Machine Learning Techniques. – Journal of

Cloud Computing: Advances, Systems and Applications, Vol. 8, 2019, pp. 1-18.

https://www.researchgate.net/journal/0888-613X_International_Journal_of_Approximate_Reasoning
https://www.researchgate.net/profile/Ben_Tahar_Abdelghani
https://www.researchgate.net/profile/Mohamed_Hanini2
https://link.springer.com/journal/13663
https://link.springer.com/journal/13677

 117

28. B i t s a k o s, C., I. K o n s t a n t i n o u, N. K o z i r i s. A Deep Reinforcement Learning CloudSystem

for Elastic Resource Provisioning. – In: Proc. of IEEE International Conference on Cloud

Computing Technology and Science (CloudCom), 2018, pp. 21-29.

29. K u m a r, K. D., E. U m a m a h e s w a r i. Resource Provisioning in Cloud Computing Using

Prediction Models: A Survey. – International Journal of Pure and Applied Mathematics,

Vol. 119, 2018, pp. 333-342.

30. T h e i n, T., M. M. M y o, S. P a r v i n, A. G a w a n m e h. Reinforcement Learning Based

Methodology for Energy-Efficient Resource Allocation in Cloud Data Centers. – Journal of

King Saud University – Computer and Information Sciences, 2018.

31. N a I k, K. B., G. M. G a n d h i, S. H. P a t i l. Pareto Based Virtual Machine Selection with Load

Balancing in Cloud Data Centre. – Cybernetics and Information Technologies, Vol. 18, 2018,

pp. 23-36.

32. P e r u m a l, B., Ra. K. S a r a v a n a g u r u, A. M u r u g a i y a n. Fuzzy Bio-Inspired Hybrid

Techniques for Server Consolidation and Virtual Machine Placement in Cloud Environment.

– Cybernetics and Information Technologies, Vol. 17, 2017, pp. 52-68.

33. M i r e s l a m i. S., M. W a n g, L. R a k a i, B. H. F a r. Dynamic Cloud Resource Allocation

Considering Demand Uncertainty. – IEEE Transactions on Cloud Computing, 2019, pp. 1-14.

Received: 30.12.2018; Second Version: 18.05.2019; Accepted: 30.05.2019

