
 25

BULGARIAN ACADEMY OF SCIENCES

CYBERNETICS AND INFORMATION TECHNOLOGIES Volume 19, No 3

Sofia 2019 Print ISSN: 1311-9702; Online ISSN: 1314-4081

DOI: 10.2478/cait-2019-0024

Course Sequence Recommendation with Course Difficulty Index

Using Subset Sum Approximation Algorithms

M. Premalatha, V. Viswanathan

School of Computing Science & Engineering, Vellore Institute of Technology, Chennai 600027, India

E-mails: premalatha.m@vit.ac.in viswanathan.v@vit.ac.in

Abstract: Choice Based Course Selection (CBCS) allows students to select courses

based on their preferred sequence. This preference in selection is normally bounded

by constraints set by a university like pre-requisite(s), minimum and maximum

number of credits registered per semester. Unplanned course sequence selection

affects the performance of the students and may prolong the time to complete the

degree. Course Difficulty Index (DI) also contributes to the decline in the

performance of the students. To overcome these difficulties, we propose a new Subset

Sum Approximation Problem (SSAP) aims to distribute courses to each semester with

approximately equal difficulty level using Maximum Prerequisite Weightage (MPW)

Algorithm, Difficulty Approximation (DA) algorithm and Adaptive Genetic Algorithm

(AGA). The three algorithms have been tested using our university academic dataset

and DA algorithm outperforms with 98% accuracy than the MPW and AGA

algorithm during course distribution.

Keywords: Course sequence recommendation, Course credits, Course difficulty, Pre-

requisite weight, Approximation Algorithm.

1. Introduction

University Grant Commission (UGC) of India has instructed the universities of India

to implement the Choice Based Credit System (CBCS) in the order issued during

2015 [1]. In CBCS, students have the freedom to select courses of their interests and

help them to pursue courses at different times in different semesters [2]. Vellore

Institute of Technology (VIT) is the first university in India to introduce the Fully

Flexible Credit System (FFCS) [3] in which 87% of our university students are

comfortable with the choice of selecting the courses, timings, and the respective

instructors [3, 4]. For four-year engineering graduation in VIT, as per the, a student

needs to register a minimum of 4 courses (16 credits) per semester from the university

curriculum with approximately 30 mandatory courses leaving the elective courses

behind. Unplanned course selection without a clear plan increases the graduation

duration of a student [5]. A personalized recommendation helps the student to register

the desired course in a proper sequence, which will help them to complete their

 26

courses without delay [5]. Apart from course selection, the difficulty of a course also

affects the students’ performance, lowers their grades, and sometimes leads to course

dropout [6]. Students who register for courses with high difficulty index, however,

tend to earn lower Grade Point Average (GPA) and experience lower retention [7].

Any effect of credit load on retention appears to work through GPA. Researchers

have found that students find some required information technology programme

courses to be quite difficult, e.g., mathematics and programming. Such types of

difficult courses could lower students’ grades, which in turn could lower their

motivation to study, thus causing dropout [8].

This paper considers only mandatory courses from our university undergraduate

computer science and engineering curriculum for personalized recommendations,

and elective courses are not considered for the proposed method. For n set of

mandatory courses in VIT curriculum, there are 35% of university core and 65% of

programme core courses. With n courses and with a minimum of 1 prerequisite

course, a student has 𝑛𝑛−1 course sequence combinations out of which every student

has the freedom to complete the required courses in any sequence at each semester,

with constraints which are identified by its course code, course credits, course

prerequisite(s), course difficulty index (assumed since estimating course difficulty

index itself is our part of our future research work) and course prerequisite weight.

Student registers a set of courses for a semester and completes the same by getting

the required grades, and the set of completed courses will be added to the students’

academic history with the acquired grades and Cumulative Grade Point Average

(CGPA). Curriculum courses which are not completed by a student are considered

for further recommendations for the respective semesters. The students are

recommended with the course(s) until the students complete all the required courses

and credits.

A personalized course sequence recommendation at each semester of the degree

programme hence hit as to be computed by adhering to the following constraints.

Course Prerequisites: The courses have to be registered in sequence if a course

has the prerequisite(s). A prerequisite is a course which has to be registered before a

specific course is registered. If a course has a set of prerequisite(s), all prerequisites

should be completed before registering that particular course.

Course Credits: Every course 𝐶𝑖 is specified by a course credit cci based on the

number of lecture hours needed per week to complete the course. There are 𝑘

semesters {𝑠1, 𝑠2, … , 𝑠𝑘} and every semester has a Credit Limit (CL) such that the

sum of credits of all the courses selected in a semester should be less than or equal to

CL.

Course Difficulty: Mundfrom et al. recorded the course difficulty index in the

Likert-type scale of 9 points from very easy to very difficult [9]. As a reference, this

paper considers the Likert-type scale of 5 points for recording the course difficulty as

very easy, easy, moderate, difficult, and very difficult from 1-5, respectively. Every

course 𝐶𝑖 is assumed with a course Difficulty DC𝑖 . Courses are distributed to 𝑘

semesters such that the average course difficulty of every semester is approximately

equal to the Average Difficulty (AD) of all the courses.

 27

Course Prerequisite Weight: The number of courses for which a course is been

identified as a prerequisite is specified as prerequisite weight. Let say if C1 is the

prerequisite course for C2, C4, and C5, the prerequisite weight pw1 for C1=3.

During the course registration process, there is a possibility of any student

selecting very difficult courses for a semester or very easy courses for another.

Students grades increase when the courses are easy and decreased when the courses

are more difficult [6, 7]. Since the above issues related to course planning and course

difficulty affects the student’s performance, the course distribution recommendation

must consider difficulty index as the main factor such that distribution of courses to

each semester should have approximately equal difficulty index. This helps the

students to score good grades and complete the courses on time.

A Subset Sum Approximation Problem (SSAP) is proposed to distribute the

courses using two methodologies. The first method initially subgroups the curriculum

courses based on the hierarchy level and solves the problem by considering two

algorithms named Maximum Prerequisite Weightage (MPW) Algorithm and

Difficulty Approximation (DA) Algorithm. The second method considers the

curriculum course list, constructs a dependency matrix based on the prerequisite

courses and uses a disagreement fitness function to distribute the courses using

Adaptive Genetic Algorithm (AGA).

The paper is organized as follows: Section 2 discusses the related work

Section 3 discusses the motivation behind the proposed work. Section 4 discusses the

results of the work done. Section 5 summarizes the overall work as a conclusion.

2. Related works

The related works analyzes the impact of course difficulty on student’s performance,

course planning, and course sequencing. The difficulty of a course is estimated by

considering the average grades awarded, rank correlation coefficient (rho) – means,

scaling analysis and cluster analysis as factors [9, 10]. A study of item difficulty

assessment depends on any of the factors like the learners’ course contents, students’

scores, and subject matter expert using the Apriori Algorithm [11]. Impact of course

difficulty in students’ performance is studied by L i u et al. [13], analyses by the

previous students’ results and predicts the results of the existing student’s using the

bagging algorithms. Based on the learning dependency, difficulty of knowledge units

are ranked with respect to subjective difficulty and objective difficulty [13]. Some

research discusses on what way the rating of instructors [14] and feedback [15] by

student helps the instructors to improve their performance in examinations. Bloom’s

taxonomy is used for evaluating the cognitive level of a question paper with respect

to the action words and based on which course’s difficulty level and the student’s

cognitive skills can be identified [16]. Students’ course outcomes are used for

assessing the performance of a student in their examination based on the difficulty

index of a course. With the help of bloom’s taxonomy, final exam papers are

evaluated and a difficulty index is identified [17]. A cognitive map [18] is provided

to the research scholars, which gives them a clear picture of how to start and to

proceed with their research. Course difficulty is evaluated using the factors like

 28

student’s learning skills; course contents’ difficulty, student’s feedback on the course

and the faculty handled in the existing research. The proposed method doesn’t

consider any of the said factors for the course difficulty index and the values used are

mere assumptions. The algorithm proposed works the same even when the difficulty

of a course is static or dynamic for various semesters. The difficulty of a course

depends on various factors and hence is considered for our future scope of research.

In terms of course recommendation, courses are recommended in sequence

automatically for each student using a Bayesian approach [19, 20]. W a n g and

Y u a n [21] recommend the courses based on user profiles from users’ interest

description, browse log and subscriptions. Learning objects are recommended

sequentially [22] in which a personalized learning route is suggested to learn the

sequence of learning object and if the student fails in the assessment during the

learning process, the route will be modified/repaired and recommended with new

objectives. The research work proposed by X u, X i n g and V a n d e r S c h a a r [5]

recommends personalized course sequence recommendation such that time to

graduation is reduced along with an improvement in the student’s grades. The courses

were ranked and the best sets of courses with prerequisites were recommended in

sequence [23] using breadth-first pickings, greedy-value pickings, and top-down

pickings. Along with ranking and recommending courses with constraints,

P a r a m e s w a r a n, V e n e t i s and G a r c i a-M o l i n a [24] have developed a

model which checks for requirements which have to be satisfied as the students have

to five math course using Integer Linear Programming Algorithm and Max-Flow

Algorithm. B e t a n c u r et al. [25] assess the course sequencing recommendation

analytically, evaluate them by applying research questions about the student

achievement and their relationship with psychology courses, and analyze the

recommendation of taking the psychology courses before and after the

methodological courses using regression techniques. A personalized learning

pathway is been recommended for e-Learning courses in which the course contents

are recommended in sequence using item response theory methodology [26]. Based

on the student’s history of grades and on the performance of the student at each state,

a directed structure with the state transitions has been constructed and the courses are

recommended such that the grades are always balanced in each state [27]. An

optimized course sequence recommendation with prerequisite constraints is solved

using multiple integer linear programming algorithms and used structure-based

heuristics for reducing the time to a degree [28]. Courses are ranked and optimal

course sequences are recommended based on the student population’s performance

using a rank aggregation framework [29]. Multi-Armed bandits Personalization for

Learning Environment (MAPLE) is an approach which considers the difficulty of the

educational content and personalizes them for the student in such a way that the

student’s performance is increased with maximum grades [30]. Complexity of

optimizing the sequencing problem is greatly reduced when it is initially subdivided

and then sequenced. G u n j i et al. [31] solved this optimal sequencing problem using

Teaching Learning-Based Optimization (TLBO) Algorithm that subdivides the

helicopter parts and then sequentially assembles the same, which hugely reduced the

number of iterations by optimally assembling through subsets. One such method is

 29

followed in the proposed method, which initially divides the curriculum courses into

subsets based on their hierarchy level and then the courses are distributed to each

semester which has greatly reduced the number of iterations during the course

distribution.

The credit system for four-year graduation has 15-16 Semester Credit Hours

(SCH) for a semester and 30 SCH for a year and a student have to complete 120

credits for four-year graduation. A course might have 3 to 4 credits based on the

number of Contact Hours per week. The existing research has recommended 4 to 5

courses with 15-16 SCH per semester and has not considered credit limit, course

difficulty for sequencing the courses in the curriculum. Unlike the commonly used

credit system, our university uses flexible credit selection in which the courses have

different credits based on the number of contact hours of a course, credit limit as

minimum 16 and maximum 27 per semester and require a total of 180 credits to

complete four-year graduation. Since the courses have different credits, the credit-

based course sequence is recommended in the proposed method, which distributes

courses based on constraints like course prerequisites, credit limit and average

difficulty.

3. Proposed work

A course sequencing methodology uses our proposed Subset Sum Approximation

Problem (SSAP), which is the extension of Subset Sum Problem (SSP). In SSP, with

a given set 𝑆 = {𝑆1, 𝑆2, … , 𝑆𝑛} of positive integers and 𝑠𝑠, all possible subsets 𝑆′are

formed such that the sum of each subset is equal to ss:

{(𝑆, ss), there exists a subset 𝑆′ ⊆ 𝑆 such that ∑ 𝑠𝑠∈𝑆′ = ss}.

For example, let a set S = {1, 2, 3, 4, 5, 6} and ss = 6. The data items in S are

positive integers and are independent of each other. The subsets are of S are formed

as {1, 2, 3}, {2, 4}, {1, 5}, and {6} in which the sum of items in each subset is equal

to 6. A Multiple Subset Sum Problem (MSSP) discussed by C a p r a r a, K e l l e r e r

and P f e r s c h y [32], [33] has added a knapsack feature to SSP in which the subset

sum is less than or equal to ss.

{(𝑆, ss), there exists a subset 𝑆′ ⊆ 𝑆 such that ∑ 𝑠𝑠∈𝑆′ ≤ ss}.

Here, subsets are formed as {1}, {2}, {3}, {4}, {5}, {6}, {1, 2}, {1, 3}, {1, 4},

{1, 5}, {2, 3}, {2, 4}, and {1, 2, 3} in which the sum of items in the each subset is

less than or equal to 6. But in SSAP there exists a set of positive numbers such that

the sum of items of each subset is equal to 𝑠𝑠 with an error quotient added or

subtracted to it as in (2). Unlike the SSP, SSAP considers all the possible positive

numbers. There exists a dependency among the items in the set and the subsets are

formed sequentially one after the other. When there is a dependency for a data item,

it should satisfy certain constraints to form a subset that is approximately equal to ss.

The SSAP with constraints involves steps like course hierarchy estimation,

course distribution using MPW, DA Algorithm by considering the estimated

hierarchy and an evolutionary AGA algorithm without considering the estimated

hierarchy.

 30

In Figs 1 and 2, the courses specified in green rectangle boxes are prerequisite

courses. Courses specified in blue rectangle boxes are post requisite courses and are

not prerequisites for any other courses. Courses specified with orange rectangle boxes

are both prerequisite and post requisite courses. A course specified in red dotted

rectangle box is neither a prerequisite course nor a post requisite course. A course

dependency structure represents the prerequisite among the courses as specified in

Fig. 1. The dependency of a course represented as MAT101→MAT105 specifies that

MAT101 is the prerequisite course of MAT105, i.e., MAT105 should be registered

by the students only if they have completed MAT101. The introductory courses

without prerequisites are first level courses. Level two represents courses with one

level of prerequisites and so on. For example, MAT101, MAT106, CSE101, and

MAT206 are first level courses. MAT105, MAT202, CSE202, and CSE220 have

prerequisites in level one and are represented as level two courses. MAT207,

MAT203 have two levels of prerequisite courses that are represented as level three

courses. The course recommendation initially selects courses from level one and

continues its recommendation to further levels until all courses are recommended at

each level. The hierarchy for each course is estimated based on the number of level

of prerequisite a course has and it is validated through Algorithm 1.

Fig. 1. Course dependency structure

As specified in Table 1, let {c1, c2,…, cn} be the set of courses, {cc1, cc2,…, ccn}

be the set of course credits, {dc1, dc2,…, dcn} be the set of course difficulties and

{pw1, pw2,…, pwn} be the set of prerequisite weights. The duration of the degree

program is specified as k semesters and the curriculum courses are distributed to j

semesters where j = 1, 2,…, N. If a student completes all the required courses within

the duration of the degree program, N will be equal to k otherwise the value of N is

greater than k. Every semester Sj is distributed with a set of courses {ci}, set of course

credits specified as SCj = {cci}, set of course difficulty specified as SDj = {dci}, set

of prerequisite weight specified as SPWj = {pwi}. The number of courses for Sj is

specified as ncj.

Level 1

Level 2

Level 3

Level 4

 31

Table 1. Notations

Notation Description

t Number of students

x Student x = 1, 2,…, t

C Set of all courses

n Number of courses

i Counter variable for courses: i = 1, 2,…, n

ci i-th course

p(ci) Set of all prerequisites of ci

cci, dci, pwi, hci Course credit, course difficulty index, course prerequisite weight, and course

hierarchy level of the i-th course respectively

N Number of semesters

j Counter variable for semester: j = 1, 2,…, N

ncj Number of courses in the j-th semester

r Counter variable for r = 1, 2,…, ncj

max_l Number of hierarchies

h Counter variable for hierarchy level: h = 1, 2,…, max_l

Sj Set of all courses of the j-th semester

SCj, SDj, SPWj, Course credits, course difficulty index and course prerequisite weight of j-th

semester, respectively

SCCj Sum of credits of j-th semester

SDCj The average difficulty of j-th semester

CLh, CCLh, DCLh,

PWCLh

Set of all courses, course credits, course difficulty index and course

prerequisite weight of h-th hierarchy level, respectively

nch Number of courses in each hierarchy

cm, ccm, dcm, pwm Course name, course credits, course difficulty index and course prerequisite

weight of m-th course in h-th hierarchy, respectively

m Counter variable for courses in each hierarchy:

m = 1, 2,…, nch

p(cm) Set of all prerequisites of cm

CCl All possible course combinations using SSAP

CCCl, CDCl,

CPWl

Sum of course credits, average difficulty index and the sum of the

prerequisite weight of CCl

l 𝑙 = 2ncℎ

k Minimum number of semester required for the completion of the degree

program

mk Maximum number of semesters

TC Total Credits of all the courses

AD The average difficulty of all the courses

CL The credit limit for each semester

e Error threshold

Algorithm 1. Algorithm for finding the Hierarchy Level of a course

def recLevelCheck(prereq):

 for cor in prereq:

 if(cor == “None”):

 val=0

 32

 else: val = max(recLevelCheck(corz[cor]), l)

 val = val+1

return val

for i in corz.keys():

 if(i != “None”): print(i+”\t”+str(recLevelCheck(corz[i])))

As a result of Algorithm 1, the hierarchy level of each course hci is estimated as

{hc1, hc2,…,hcn} and the total number of hierarchies max_l in which the curriculum

courses are divided into is estimated as specified in the next equation:

(1) max_l = max{hc𝑖},

max_l in (1) denotes the maximum number of levels the courses have with respect to

their prerequisite dependencies. The course dependency structure has four levels as

specified in Fig. 1 and hence the value of max_l is 4. Let CLh be the set of all courses

falling under level h with corresponding credits, difficulty, the prerequisite weight of

the courses specified as CCLh, DCLh, PWCLh respectively. Hierarchy of each course

as per algorithm 1 and the prerequisite weights are specified in Table 4.

The proposed Subset Sum Approximation Problem (SSAP) is an optimization

problem in which the sum of elements of a subset is approximately equal to ss with

an error quotient e as specified in (2). The proposed algorithms were tested for the

value of e from ±0.1 till ±0.5 and were analyzed with the number of iterations,

percentage of loss attained and the numbers of semesters the courses are distributed.

Based on which, it is finalized with ±0.4,

SSAP = (𝑆, ss), there exists a subset 𝑆′ ⊆ 𝑆 such that
(2) ∑ 𝑠𝑠∈𝑆′ = ss + 𝑒.

The objective of the proposed method is to minimize the loss function during

course distribution that is calculated in terms of the Root Mean Square Error (RMSE)

as in (3). A credit constraint is that the sum of credits of a semester should always be

less than CL as in (4). AD is specified as the average difficulty of all the courses in

the curriculum as specified in (5).

During course recommendation, this paper proposes SSAP in each semester. It

is recommended with a set of courses with average difficulty constraint such that the

average difficulty of a semester should be approximately equal to AD with an error

quotient as specified in (6). TC is specified as the total credits of all the courses in

the curriculum as in (7). A disjoint constraint states that the course distributed to a

semester should not be distributed to any other semester as in (8) and the subset union

constraint states that the union of all semester courses should be equal to the set of

all courses in the curriculum as specified in (9).

Objective Function:

Minimize the loss function

(3) min 𝑍 =
1

𝑁
∑ (AD − SDC𝑗)

2
,𝑁

𝑗=1

subject to the following constraints:

(4) SCC𝑗 = ∑ cc𝑖 ≤ CL cc𝑟∈ SC𝑗

(Credit Constraint),

(5) AD =
1

𝑛
∑ dc𝑖

(Average Difficulty),

 33

(6) SDC𝑗 =
1

 nc𝑗
(∑ dc𝑖) = AD ± 𝑒,dc𝑟 ∈ SD𝑗

where e is the error threshold value set between –0.4 to +0.4

(Difficulty constraint),

(7) ∑ SCC𝑗 = TC

(Total Credit constraint),

(8) {S1} Ռ {S2} Ռ… Ռ{SN} = {Ø}

(Disjoint set constraint),

(9) {S1} Ս {S2} Ս… Ս {SN} = {C}

(Subset union constraint).

Educational organizations have a curriculum of courses. Suppose, if its students

have the liberty to choose (flexible course selection) their courses for each semester

at the beginning of the program, they might not have a clear idea of how to choose

the courses and in what sequence the courses have to be selected. To solve this

problem the proposed method recommends the sequence of courses to be taken in

each semester. This paper proposes two methods for solving the Subset Sum

Approximation Algorithm (SSAP). The first method considers the parameter

hierarchy level of each course for distributing the courses across the semesters and

uses Maximum Prerequisite Weight (MPW) Algorithm and Difficulty

Approximation (DA) Algorithm. The second method does not consider the

hierarchical level of each course and uses Adaptive Genetic Algorithm (AGA). Each

algorithm is represented in the sections below.

3.1. MPW Algorithm

During course distribution, this algorithm distributes a set of courses to each semester

with approximately equal difficulty level by considering the course combinations

with maximum prerequisite weight and maximum credits. This helps the students to

register all possible prerequisite courses during the prior semesters with maximum

credits within CL.

Algorithm 2. MPW Algorithm

Step 1. Let picked_courses[x] = {Ø}

Step 2. Initialize N=1, mk=12, j=1, h=1

Step 3. Sub divide C into CLh based on hierarchy h

Step 4. Compute CL as CL = TC/max_l

Step 5. Compute AD as

 AD =
1

𝑛
(∑ dc𝑖)

Step 6. for h=1 ≤ mk loop

𝐒𝐭𝐞𝐩 𝟕. ∀ 𝑐𝑚 in CLℎ ≠ {0}

Step 8. if (𝑝(𝑐𝑚) not in picked_courses[𝑥])then
a. Add cm to CLh+1

b. Delete cm from CLh

Step 9. else

compute all possible CCl using SSAP such that

CCC𝑙 = ∑ cc𝑚 ≤ CL

cc𝑚 ∈ CLℎ

 34

CDC𝑙 =
1

nc𝑗
 ∑ dc𝑚 = AD ± 𝑒

dc𝑚 ∈ CLℎ

CPW𝑙 = ∑ pw𝑚

pw𝑚 ∈ CLℎ

Step 10. for j=1 to N ≤ mk loop

Step 11. Select CCl max(CPWl)

a. if count(CCl) == 1 then distribute it to semester Sj

b. else if count(CCl) > 1

i. if count(CCl) with max(CCCl) == 1 then distribute it to semester

Sj

ii. else if count (CCl) with max(CCCl) > 1 then

a. if count(CCl) with ≈ CDCl == 1, distribute it to Sj

b. else if count(CCl) with ≈ CDCl > 1, then select CCl in

random

Step 12. End for j

Step 13. Set the state of cm in CLh to 1 or 0 otherwise

Step 14. Add Cm with state 0 to CLh+1

Step 15. Increment j, h

Step 16. N=j

Step 17. End for h

The MPW algorithm prioritizes course distribution based on the maximum

prerequisite weight followed by maximum credits and the approximate course

difficulty for the combination of courses, which are selected for a semester. Course

combinations with high prerequisite weights are prerequisites for more number of

courses. Courses with no prerequisite weight are not prerequisites for any courses and

courses with less prerequisite weight are prerequisites for fewer courses. Since the

post requisite courses are more difficult than prerequisite courses [34, 35], a better

sequencing has to be recommended to balance the difficulty index throughout the

degree program. MPW gives higher priority for prerequisite weight (pwi) in which

courses with more pwi are distributed in the early semesters and less pwi are

distributed in the later semesters. This balances the difficulty of prerequisite courses

along with the post requisite courses whose prerequisites are already distributed in

the previous semesters.

3.2. Difficulty Approximation (DA) Algorithm

During course distribution, this algorithm distributes a set of courses to each semester

with approximately equal difficulty level by considering the course combinations

with approximate difficulty such that the loss value for the difficulty index is

decreased. This helps the students to have a balanced workload throughout the

semesters.

Algorithm 3. DA Algorithm

Step 1. Consider steps 1-9 from Algorithm 2

Step 2. for j=1 to N ≤ mk loop

Step 3. Select CCl with ≈ CDCl

a. if count(CCl) == 1 then distribute it to semester Sj

 35

b. else if count(CCl) > 1

i. if count(CCl) with max(CPWl) == 1 then distribute it to

semester Sj

ii. else if count (CCl) with max(CPWl) > 1 then

a. if count(CCl) with max(CCCl) == 1, distribute it to Sj

b. else if count(CCl) with max(CCCl) > 1, then select CCl

in random

Step 4. end for j

Step 5. Set the state of cm in CLh to 1 or 0 otherwise.

Step 6. Add Cm with state 0 to CLh+1.

Step 7. Increment j, h

Step 8. N=j

Step 9. end for h till CLh = {0}

The proposed DA algorithm prioritizes the difficulty index for selecting courses

for a semester such that the average difficulty of the semester is approximately equal

to AD so that the loss function is greatly reduced.

3.3. Adaptive Genetic Algorithm (AGA)

The proposed AGA has an initial set of the population with courses and their

respective prerequisites for which a dependency matrix is constructed as per Fig. 1

and as specified in Table 2. In Table 2, the prerequisite(s) of a course is specified

with 1. Disagreement is a function specified for the presence and absence of course

prerequisites. A fitness function with a disagreement value is generated by adding all

the prerequisite values set for a particular course. The courses with disagreement

value as null as specified in Table 2 alone are considered for course distribution since

those are the courses which don’t have prerequisites.

MAT101, MAT106, CSE101, and MAT206 are the courses with disagreement

value 0 as per Table 2. With these course combinations, the Adaptive Genetic

Algorithm selects a set of courses with a sum of credits less than or equal to CL and

the average difficulty approximately equal to AD. After the distribution of courses

with disagreement value 0 to the initial semester in iteration 1, the course dependency

structure is reconstructed as specified in Fig. 2 by removing the courses which are

already distributed. Corresponding dependency matrix is specified in Table 3.

Courses with the disagreement value 0 are again considered for further course

distribution for further semesters.

Algorithm 4. Algorithm AGA

Step 1. Initial population with a set of courses, its prerequisites represented as a

dependency matrix

Step 2. Set RandomPairs=0

Step 3. Maximum RandomPairs= max(default=10)

Step 4. Threshold Disagreement=0

Step 5. For each combination pri ≤ CL

a. Compute the sum of disagreement

b. Disagreement=0

Step 6. End for

 36

Step 7. Sort population in decreasing order with disagreement 0

Step 8. Sample population with pri≤CL and SDCj = AD ± e use MPW or DA

algorithm to select course combination for semester j

Step 9. Crossover population with evolutionary computing

Step 10. Update population by filtering the courses distributed to semester j

Step 11. For the filtered courses, draw a dependency matrix

Step 12. Repeat steps 1-11 till all the courses are distributed and no courses left.

Table 2. Dependency matrix for courses with prerequisites

CCODE MAT101 MAT106 MAT105 MAT202 MAT203 CSE101 Disagreement

MAT101 0

MAT106 0

MAT105 1

MAT202 1 1

MAT203 1

MAT207 1 1

CSE220 1 1

CSE101 0

CSE205 1

CSE208 1

CSE327 1 0

CSE418 1

MAT206 0

MEE437 1

Prereq Weight 3 3 2 3 1 1

Fig. 2. Course Dependency Structure after iteration 1 of AGA

AGA can be used with either MPW or DA logic for the selection of courses for

a semester based on the requirement of the student. For students with great CGPA,

MPW works better and for students with less CGPA and backlogs can be

recommended with the DA Algorithm.

Level 1

Level 2

Level 3

 37

The course dependency structure and the dependency matrix are reconstructed

with further iterations until all the courses are distributed to the semesters and the

course dependency structure and the corresponding dependency matrix is left with

null courses.

Table 3. Dependency matrix for courses with prerequisites after iteration 1 of AGA

CCODE MAT105 MAT202 MAT203 Disagreement

MAT105 0

MAT202 0

MAT203 1

MAT207 1

CSE220 0

CSE205 1

CSE208 0

CSE327 1

CSE418 1

MAT206 0

MEE437 1

4. Results and discussions

This section discusses the experimental analysis of SSAP algorithms, which use the

curriculum courses of the undergraduate computer science and engineering from our

university as the dataset. The sample data includes a set of all dependent courses of

mathematics and set of all dependent courses of CSE101 with their course credit and

course prerequisite(s). The parameters such as difficulty index, hierarchy level and

pre-requisite weight of each course are also being considered for each course as

specified in Table 4. Fig. 3 depicts the course dependency structure, which specifies

the required prerequisite courses for the corresponding course that is to be completed.

Considering these parameters, hierarchy estimation algorithm clusters the courses

with respect to their prerequisite(s) and lists the courses in different hierarchy levels

(level 1, 2, 3,…, etc.,) as specified in Fig. 4.

Fig. 3. Dependency course tree

Course dependency Trees:

MAT101 ['MAT101']

MAT106 ['MAT106']

MAT105 ['MAT101', 'MAT105']

MAT202 ['MAT106', 'MAT101', 'MAT202']

MAT203 ['MAT101', 'MAT105', 'MAT203']

MAT207 ['MAT101', 'MAT105', 'MAT207']

CSE220 ['MAT106', 'CSE101', 'CSE220']

CSE101 ['CSE101']

CSE205 ['MAT106', 'MAT101', 'MAT202', 'CSE205']

CSE208 ['MAT106', 'CSE208']

CSE327 ['MAT106', 'MAT101', 'MAT202', 'CSE327']

CSE418 ['MAT106', 'MAT101', 'MAT202', 'CSE418']

MAT206 ['MAT206']

MEE437 ['MAT101', 'MAT105', 'MAT207', 'MEE437']

 38

Fig. 4. Course hierarchy level

Random distribution method distributes courses to each semester in random

only by considering prerequisite and credit constraints. In MPW and DA, once the

courses are sub grouped, the first level courses are selected for course distribution

such that the course combinations satisfies the credit limit constraint as in (4) and

also the difficulty approximation constraint as specified in (6). MPW and DA

algorithms are quite similar with few variations in the course selection procedures.

The Average Difficulty (AD) of all the courses is calculated as 4.07 which is

considered as the expected Difficulty Index (DI). From the first level of courses, the

two combinations such as combination1 {MAT101, MAT106, MAT206} and

combination 2 {MAT101, MAT106, CSE101} are taken which yield the maximum

sum of credits as 11, average difficulty as 4, 3.65, and prerequisite weight as 8, 9

respectively. The MPW chooses combination 2 since it selects the maximum credits

with maximum prerequisite weights whereas; DA selects combination 1 since it has

more approximate average difficulty. The MPW algorithm considers maximum

credits initially and checks for maximum prerequisites whereas DA Algorithm

considers course combination with lesser credits combination than maximum credit

value which gives approximate average difficulty.

Table 5 specifies the list of courses recommended for each semester using

Random Distribution (RD), MPW Algorithm and DA Algorithm and Table 6

specifies the corresponding total credits per semester and the average difficulty index

per semester when RD, MPW, and DA methodologies were used. The analysis

depicts that when MPW is used, each semester has the maximum credits and the final

semester has least credits and when DA is used, all the semesters have approximately

equal difficulty index.

MPW Algorithm gives priorities to maximize the credits while distributing the

course to a semester. In the case of course combinations with the same credits, the

course combinations with maximum prerequisite weights are chosen. If there are

more combinations available for the same maximum prerequisite, the course

combinations with approximate average difficulty are predicted SDCj as specified in

Table 6. DA Algorithm gives priority only for the approximation of the course

difficulty of all the semesters. When the course combinations SDCi are same, the next

priority will be given to the prerequisite weight else the course combinations are

distributed in random. Initially, course combination with maximum credits is taken

into consideration. In case if the course combination has fewer SDCj than the course

combined with max(SCj) – 1, then the DA considers course combined with fewer

credits with more approximate average difficulty. The loss value of the DA

Algorithm will be comparatively less than MPW algorithm since the course

distribution is purely based on approximate difficulty. The loss function for the DA

Algorithm is calculated based on the expected AD and the predicted SDCj as

Level 1 Courses offered: {'CSE101', 'MAT101', 'MAT206', 'MAT106'}

Level 2 Courses offered: {'CSE208', 'MAT202', 'CSE220', 'MAT105'}

Level 3 Courses offered: {'CSE418', 'CSE327', 'MAT207', 'CSE205', 'MAT203'}

Level 4 Courses offered: {'MEE437'}

 39

specified in Table 6 and hence the objective function is attained with a minimum loss

function.

Abbreviations:

NB – No Backlog

OB – One Backlog

TB – Two Backlogs

TCP – Total Credits per Semester

ADP – Average Difficulty Index per Semester

Table 4. Course list with hierarchy and prerequisite weight
Course code Credits Difficulty Index (DI) Pre-requisite(s) Hierarchy level Prerequisite weight

MAT101 4 4 None 1 3

MAT106 4 4 None 1 5

MAT105 4 4 MAT101 2 2

MAT202 4 4 MAT101, MAT106 2 4

MAT203 3 4 MAT105 3 0

MAT207 4 4 MAT101, MAT105 3 1

CSE220 5 4 CSE101, MAT106 2 0

CSE101 3 3 None 1 1

CSE205 4 4 MAT202 3 0

CSE208 4 5 MAT106 2 0

CSE327 3 4 MAT202 3 0

CSE418 4 5 MAT202 3 0

MAT206 3 4 None 1 0

MEE437 3 4 MAT207 4 0

Table 5. Recommended course list with RD vs MPW and DA Algorithm

Semester RD MPW DA

1 MAT101, MAT106, CSE101 MAT101, MAT106, CSE101 MAT101, MAT106, MAT206

2
MAT206, MAT105,

MAT202
MAT105, MAT202, CSE220 MAT202, CSE208, CSE101

3 CSE220, CSE208, MAT203 MAT207, CSE205, CSE418 MAT207, MAT105, CSE220

4 MAT207, CSE327, CSE418
MAT203, CSE327, CSE208,

MAT206
MAT203, CSE327, CSE418,

MEE437

5 MEE437, CSE205 MEE437 CSE205

Table 6. Loss function for RD vs MPW and DA Algorithm

Semester

RD MPW DA RD MPW DA RD MPW DA

Total Credits per

semester

Total Difficulty per

semester

Expected DI – Predicted DI per

semester

1 11 11 11 3.66 3.67 4 0.168 0.16 0.005

2 11 13 11 4 4 4 0.005 0.005 0.005

3 9 12 13 3.66 4.33 4 0.168 0.068 0.005

4 11 13 13 4.33 4.33 4 0.068 0.068 0.005

5 7 3 4 4 4 4 0.005 0.005 0.005

 Loss Function 0.049 0.037 0.002

Table 7. Credit comparison with and without backlogs

TCP NB - RD NB -MPW NB -DA OB-RD OB-MPW OB-DA TB-RD TB-MPW TB-DA

Sem 1 11 11 11 11 11 11 11 11 11

Sem 2 11 13 11 11 13 11 10 11 11

Sem 3 9 12 13 13 11 13 13 13 13

Sem 4 11 13 13 11 12 11 11 12 11

Sem 5 7 3 4 10 9 10 11 12 11

Sem 6 0 0 0 0 0 0 3 0 3

 40

Table 8. Difficulty index comparison with and without backlogs

ADP NB-RD NB-MPW NB-DA OB-RD OB-MPW OB-DA TB-RD TB-MPW TB-DA

Sem 1 3.67 3.67 4 3.67 3.67 4 3.67 3.67 4

Sem 2 4 4 4 4 4.33 4 3.67 4 3.67

Sem 3 3.67 4.33 4 3.67 4 4 4.33 4 4

Sem 4 4.33 4.33 4 4.33 4.33 4 4 4.33 4

Sem 5 4 4 4 4 4 4.33 4.33 4 4.67

Sem 6 4 4

If a student is supposed he/she wishes to complete the entire course in the

curriculum within the duration of the degree of study, MPW is used. When a student

wishes to have a balanced workload with balanced credits and difficulty index, the

course distribution with approximate difficulty index throughout the degree of study

using the DA Algorithm is followed. The results of the RD, MPW and the DA

algorithms are validated with the loss function as specified in (2).

Fig. 5. Total credit per semester with no backlog

Fig. 6. Total credit per semester with one backlog

Fig. 7. Total credit per semester with two backlogs

Fig. 8. Average difficulty index per semester with no

backlog

11 11 1111

13

11

9

12
13

11

13 13

7

3
4

0 0 0

0

2

4

6

8

10

12

14

NB - RD NB -MPW NB -DA

T
o

ta
l
C

re
d

it
s

 p
e

r
s

e
m

e
s

te
r

Comparison of RD, MPW and DA
Algorithm wrt Credits

Sem 1

Sem 2

Sem 3

Sem 4

Sem 5

Sem 6

11 11 1111

13

11

13

11

13

11
12

11
10

9
10

0 0 0

0

2

4

6

8

10

12

14

OB-RD OB-MPW OB-DA

T
o

ta
l
C

re
d

it
s

 p
e

r
s

e
m

e
s

te
r

Comparison of RD, MPW and DA
Algorithm wrt Credits

Sem 1

Sem 2

Sem 3

Sem 4

Sem 5

Sem 6

11 11 11
10

11 11

13 13 13

11
12

1111
12

11

3

0

3

0

2

4

6

8

10

12

14

TB-RD TB-MPW TB-DA

T
o

ta
l
C

re
d

it
s

 p
e

r
s

e
m

e
s

te
r

Comparison of RD, MPW and DA
Algorithm wrt Credits

Sem 1

Sem 2

Sem 3

Sem 4

Sem 5

Sem 6

3.67 3.67

44 4 4

3.67

4.33

4

4.33
4.33

44 4 4

3.2

3.4

3.6

3.8

4

4.2

4.4

NB - RD NB -MPW NB -DA

A
v
e

ra
g

e
 D

if
fi

c
u

lt
y
 I
n

d
e

x
 p

e
r

S
e

m
e

s
te

r

Comparison of RD, MPW and DA
Algorithms wrt to DI

Sem 1

Sem 2

Sem 3

Sem 4

Sem 5

Sem 6

 41

Fig. 9. Average difficulty index per semester with one

backlog

Fig. 10. Average difficulty index per semester with

two backlogs

Accuracy with respect to loss function of DA Algorithm is more appropriate

with 98% than the values during the usage of RD and MPW methodologies. All above

scenarios work when the student completes each recommended course in all the

semester without any deviation. From the recommended courses in Table 4, from

semester 1, if a student fails in any of the semesters with 1 backlog or 2 backlogs, the

scenario totally changes and this is analyzed with RD, MPW, and DA as specified in

Table 7 and Table 8. The number of semesters N to which the courses are distributed

depends on the students’ pass/fail ratio. As per the example, the value of N is 5, i.e.,

the list of courses in Table 4 are distributed to 5 semesters. The value of N increases

when a student fails again in the same course or different courses and the same is

specified in Table 7 and 8. With no backlogs and one backlog, the courses were

distributed to five semesters and when the backlog is increased to two, the courses

were distributed to six semesters. If a student fails in a course, again and again, the

course will be appended to the courses to be distributed and it automatically prolongs

their duration of the degree. A minimum number of semesters required to distribute

a course is max_l and maximum duration is MDD semesters. Our proposed algorithm

stops distributing courses to a particular student until he passes all the required

courses from the curriculum or when MDD is attained. Table 7 depicts the credit

comparison and Table 8 depicts the difficulty index comparison among RD, MPW,

and DA methodologies. When credits are considered, MPW algorithm works better

as specified in Figs 5-7 and when the difficulty index is considered, the DA

Algorithm works better as specified in Figs 8-10. By comparing the loss functions of

MPW and DA Algorithms, DA Algorithm has given more accuracy with least loss

value while distributing the courses to semesters with approximate difficulty. The

adaptive genetic algorithm works better with DA Algorithm where the input to this

algorithm does not consider the hierarchy level of a course but uses the disagreement

function for filtering the courses for the combinations and a fitness function is used

to validate the constraints specified in the objective function of the proposed

methodology. For n courses, the complexity of SSP with brute force method is 2n and

since the proposed SSAP divides n courses into max_l subsets based on the hierarchy,

the complexity is 2mal_l.

3.67 3.67

44

4.33

4

3.67

4 4

4.33 4.33

44 4

4.33

3.2

3.4

3.6

3.8

4

4.2

4.4

OB-RD OB-MPW OB-DA

A
v
e

ra
g

e
 D

if
fi

c
u

lt
y
 I
n

d
e

x
 p

e
r

S
e

m
e

s
te

r

Comparison of RD, MPW and DA
Algorithms wrt DI

Sem 1

Sem 2

Sem 3

Sem 4

Sem 5

Sem 6

3.67 3.67

4

3.67

4

3.67

4.33

4 44

4.33

4

4.33

44 4

3.2

3.4

3.6

3.8

4

4.2

4.4

TB-RD TB-MPW TB-DA

A
v
e

ra
g

e
 D

if
fi

c
u

lt
y
 I
n

d
e

x
 p

e
r

S
e

m
e

s
te

r

Comparison of RD, MPW and DA
Algorithms wrt DI

Sem 1

Sem 2

Sem 3

Sem 4

Sem 5

Sem 6

 42

5. Conclusion

In this paper, the factors affecting student’s performance and the problems of the

existing course sequence recommendation algorithms are studied and examined.

Credit-based course selections with constraints are considered for recommending

curriculum courses in sequence using the proposed MPW, DA and AGA algorithms.

These personalized course recommendation algorithms are elaborated based on the

individual’s academic records which in turn helps the students to graduate on time

with a balanced workload. These algorithms are analyzed and evaluated based on the

loss function. The loss function is compared for the Random Distribution (RD)

Algorithm, Maximum Prerequisite Weight (MPW) Algorithm and Difficulty

Approximation (DA) Algorithm. Hence, every semester is distributed with a balanced

workload with approximately equal difficulty index using the DA Algorithm, which

gives minimum loss function compared with MPW Algorithm. Assuming the

difficulty index for the courses is a limitation of the proposed method. Since the

course difficulty index estimation relies on factors like course content difficulty, the

difficulty of the question paper, feedback of the instructors/students, the same is

adapted for our future research. Moreover, the proposed algorithm works the same

for assumptions or adaptions of the existing course difficulty index methodologies

R e f e r e n c e s

1. U. G. C. Guidelines on Adaptation of the Choice Based Credit System. University Grants

Commission Bahadurshah Zafar Marg, New Delhi, 110 002.

2. H a s a n, M., M. P a r v e z. Choice-Based Credit System in India: Pros and Cons. – Journal of

Education and Practice, Vol. 6, 2015, No 25, pp. 30-33.

3. http://www.vit.ac.in/academics/ffcs
4. Z a f a r, S., B. M a n j u r e k a r, N. P. K u m a r, Z. A. K h a n. Effects of FFCS (Fully Flexible

Credit System) on Learning Experience and Academic Performance. – Procedia-Social and

Behavioral Sciences, Vol. 143, 2014, pp. 4-7.

5. X u, J., T. X i n g, M. V a n d e r S c h a a r. Personalized Course Sequence Recommendations. –

IEEE Transactions on Signal Processing, Vol. 64, October 2016, No 20, pp. 5340-5352.

6. P a u r a, L., I. A r h i p o v a. Student Dropout Rate in Engineering Education Study Program. –

In: Proc. of 15th International Scientific Conference Engineering for Rural Development,

Jelgava, Latvia, May 2016, pp. 641-646.

7. S z a f r a n, R. F. The Effect of Academic Load on Success for New College Students: Is Lighter

Better? – Research in Higher Education, Vol. 42, 2001, No 1, pp. 27-50.

8. K o r i, K., M. P e d a s t e, H. A l t i n, E. T õ n i s s o n, T. P a l t s. Factors that Influence Students’

Motivation to Start and to Continue Studying Information Technology in Estonia. – IEEE

Transactions on Education, Vol. 59, 2016, No 4, pp. 255-262.

9. M u n d f r o m, D. J. Estimating Course Difficulty. Ph.D. Dissertation, Statistics, Iowa State Univ.,

Ames, USA, 1991.

10. B a s s i r i, D., E. M. S c h u l z. Constructing a Universal Scale of High School Course Difficulty.

– Journal of Educational Measurement, Vol. 40, 2003, No 2, pp. 147-161.

11. B a n e r j e e, S., N. J. R a o, C. R a m a n a t h a n. Rubrics for Assessment Item Difficulty in

Engineering Courses. – In: Proc. of Frontiers in Education Conference (FIE), IEEE, 2015,

pp. 1-8.

12. K a u r, K., K. K a u r. Analyzing the Effect of Difficulty Level of a Course on Students Performance

Prediction Using Data Mining. – In: Proc. of 1st International Conference on Next Generation

Computing Technologies (NGCT), IEEE, September 2015, pp. 756-761.

 43

13. L i u, J., S. S h a, Q. Z h e n g, L. C h e n. Ranking Difficulty of Knowledge Units Based on Learning

Dependency. – In: Proc. of 7th International Conference on e-Business Engineering, IEEE,

November 2010, pp. 77-82.

14. S a f a v i, S. A., K. A. B a k a r, R. A. T a r m i z i, N. H. A l w i. What Do Higher Education

Instructors Consider Useful Regarding Student Ratings of Instruction? Limitations and

Recommendations. – Procedia-Social and Behavioral Sciences, Vol. 31, 2012, pp. 653-657.

15. C o r e l l i, A. Direct Vs. Anonymous Feedback: Teacher Behavior in Higher Education, with Focus

on Technology Advances. – Procedia-Social and Behavioral Sciences, Vol. 195, 2015,

pp. 52-61.

16. Z a i n u d i n, S., K. A h m a d, N. M. A l i, N. F. A. Z a i n a l. Determining Course Outcomes

Achievement through Examination Difficulty Index Measurement. – Procedia-Social and

Behavioral Sciences, Vol. 59, 2012, pp. 270-276.

17. S w a r t, A. J. Evaluation of Final Examination Papers in Engineering: A Case Study Using Bloom’s

Taxonomy. – IEEE Transactions on Education, Vol. 53, 2010, No 2, pp. 257-264.

18. Y a n g, F., F. W. L i, R. W. L a u. A Fine-Grained Outcome-Based Learning Path Model. – IEEE

Transactions on Systems, Man, and Cybernetics: Systems, Vol. 44, 2014, No 2, pp. 235-245.

19. P u m p u a n g, P., A. S r i v i h o k, P. P r a n e e t p o l g r a n g, S. N u m p r a s e r t c h a i. Using

Bayesian Network for Planning Course Registration Model for Undergraduate Students. –

In: Proc. of 2nd IEEE International Conference on Digital Ecosystems and Technologies,

IEEE, February 2008, pp. 492-496.

20. P u m p u a n g, P., A. S r i v i h o k, P. P r a n e e t p o l g r a n g. Comparisons of Classifier

Algorithms: Bayesian Network, C4. 5, Decision Forest and NBTree for Course Registration

Planning Model of Undergraduate Students. – In: Proc. of IEEE International Conference on

Systems, Man and Cybernetics, IEEE, October 2008, pp. 3647-3651.

21. W a n g, X., F. Y u a n. Course Recommendation by Improving BM25 to Identity Students’ Different

Levels of Interests in Courses. – In: Proc. of 2009 International Conference on New Trends in

Information and Service Science, IEEE, June 2009, pp. 1372-1377.

22. G a r r i d o, A., L. M o r a l e s. e-Learning and Intelligent Planning: Improving Content

Personalization. – IEEE Revista Iberoamericana de Tecnologias del Aprendizaje, Vol. 9, 2014,

No 1, pp. 1-7.

23. P a r a m e s w a r a n, A. G., H. G a r c i a-M o l i n a, J. D. U l l m a n. Evaluating, Combining and

Generalizing Recommendations with Prerequisites. – In: Proc. of 19th ACM International

Conference on Information and Knowledge Management, ACM, October 2010, pp. 919-928.

24. P a r a m e s w a r a n, A., P. V e n e t i s, H. G a r c i a-M o l i n a. Recommendation Systems with

Complex Constraints: A Course Recommendation Perspective. – ACM Transactions on

Information Systems (TOIS), Vol. 29, 2011, No 4, Art. No 20.

25. B e t a n c u r, L., B. M. R o t t m a n, E. V o t r u b a-D r z a l, C. S c h u n n. Analytical Assessment

of Course Sequencing: The Case of Methodological Courses in Psychology. – Journal of

Educational Psychology, Vol. 111, 2019, No 1, pp. 91-103.

26. C h e n, C. M., C. Y. L i u, M. H. C h a n g. Personalized Curriculum Sequencing Utilizing Modified

Item Response Theory for Web-Based Instruction. – Expert Systems with Applications,

Vol. 30, 2006, No 2, pp. 378-396.

27. B r i d g e s, C., J. J a r e d, J. W e i s s m a n n, A. M o n t a n e z-G a r a y, J. S p e n c e r, C. G.

B r i n t o n. Course Recommendation as Graphical Analysis. – In: Proc. of 52nd Annual

Conference on Information Sciences and Systems (CISS), IEEE, March 2018, pp. 1-6.

28. M o r r o w, T., A. R. H u r s o n, S. S. S a r v e s t a n i. A Multi-Stage Approach to Personalized

Course Selection and Scheduling. – In: Proc. of 2017 IEEE International Conference on

Information Reuse and Integration (IRI), San Diego, CA, 2017, pp. 253-262.

29. C u c u r i n g u, M., C. Z. M a r s h a k, D. M o n t a g, P. R o m b a c h. Rank Aggregation for Course

Sequence Discovery. – In: Proc. of International Workshop on Complex Networks and Their

Applications, Springer, Cham., November 2017, pp. 139-150.

30. S e g a l, A., Y. B. D a v i d, J. J. W i l l i a m s, K. G a l, Y. S h a l o m. Combining Difficulty

Ranking with Multi-Armed Bandits to Sequence Educational Content. – In: Proc. of

International Conference on Artificial Intelligence in Education, Springer, Cham., June 2018,

pp. 317-321.

 44

31. G u n j i, A. B., B. B. B. V. L. D e e p a k, C. R. B a h u b a l e n d r u n i, D. B. B. B i s w a l. An

Optimal Robotic Assembly Sequence Planning by Assembly Subsets Detection Method Using

Teaching Learning-Based Optimization Algorithm. – IEEE Transactions on Automation

Science and Engineering, Vol. 15, 2018, No 3, pp. 1369-1385.

32. C a p r a r a, A., H. K e l l e r e r, U. P f e r s c h y. The Multiple Subset Sum Problem. – SIAM

Journal on Optimization, Vol. 11, 2000, No 2, pp. 308-319.

33. C a p r a r a, A., H. K e l l e r e r, U. P f e r s c h y. A PTAS for the Multiple Subset Sum Problem

with Different Knapsack Capacities. – Information Processing Letters, Vol. 73, 2000, No 3-4,

pp. 111-118.

34. W i s n e s k i, J. E., G. O z o g u l, B. A. B i c h e l m e y e r. Investigating the Impact of Learning

Environments on Undergraduate Students’ Academic Performance in a Prerequisite and Post-

Requisite Course Sequence. – The Internet and Higher Education, Vol. 32, 2017, pp. 1-10.

35. A d j e i, S. A., A. F. B o t e l h o, N. T. H e f f e r n a n. Predicting Student Performance on Post-

Requisite Skills Using Prerequisite Skill Data: An Alternative Method for Refining

Prerequisite Skill Structures. – In: Proc. of 6th International Conference on Learning Analytics

& Knowledge, April 2016, ACM, pp. 469-473.

Received: 11.04.2019; Second Version: 10.08.2019; Accepted: 22.08.2019

