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Abstract: The following paper adapts the classical Zigangirov-Jelinek algorithm to 

the decoding of nonbinary block codes under severe mixed jamming. To ensure 

reliable communications in this scenario we combine reception techniques based on 

distribution free statistical tests with sequential decoding on syndrome trellises. It 

will be shown that the proposed approach can ensure relatively high transmission 

rate with reasonable complexity. 
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1. Introduction 

Reception techniques using nonparametric or distribution free test can be con-sidered 

to be promising candidates for communication systems operating under severe 

interference. However decoding algorithms that were proposed for communication 

systems employing those techniques have relatively high computational complexity. 

This paper deals with the possibility of using sequential decoding on syndrome 

trellises to solve this problem. 

2. A DHA FH CDMA system: Transmission and reception 

Let us consider a multiple access system in which K active users transmit information 

via a channel split into Q identical nonoverlapping subchannels. In what follows it 

will be assumed that information to be transmitted is encoded into a codeword of a 

q-ary (n, k, d) block code (q < Q). Whenever a user is to transmit a q-ary symbol it 

places 1 in the position of the vector x̄g corresponding to the symbol in question 

within the scope of the mapping in use (in what follows it will be assumed that all the 

positions of the vector are enumerated from 1 to Q, moreover for the sake of 

simplicity and without loss of generality we shall assume that the 1st subchannel 
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corresponds to 0, the 2nd subchannel corresponds to 1 and so on). Thus each q-ary 

symbol to be transmitted is mapped into a weight 1 binary vector (the construction 

under consideration is the Kautz-Singleton construction for binary superimposed 

codes [1]). Then a random permutation of the aforesaid vector is performed and the 

resulting vector ̄g = g(x̄g) is then transmitted by employing Q-ary Frequency Shift 

Keying (FSK) (permutations are selected equiprobably from the set of all possible 

permutations and the choice is performed whenever a symbol is to be transmitted).  

Within the scope of a certain codeword reception the receiver is to receive n 

signals corresponding to the codeword in question. Note that the receiver is assumed 

to be synchronized with transmitters of all users. Therefore all the permutations done 

within the scope of transmission of the codeword in question are known to the user. 

The receiver measures energies at the outputs of all subchannels (let us designate the 

vector of the measurements corresponding to the g-th symbol as ̄g) and applies 

inverse permutation to each vector ̄g corresponding to the respective symbol thus 

reconstructing the initial order of elements and obtaining vector b̄g = ḡ
1(̄g). Let us 

consider a matrix B = [b¯1, b¯2, …, b¯n] corresponding to the codeword of the inner code. 

Let us consider the submatrix Y = [ȳ1, ȳ2, …, ȳn] (here Y is the submatrix 

corresponding to the q first rows of the matrix B and each vector ȳg is the height q 

column vector corresponding to the g-th symbol of the codeword). Please note that Y 

provides all the information necessary to decode the codeword of the inner code. 

3. Nonparametric detection 

Let us now consider the detection problem. This problem can be decomposed into 

two successive stages: reliability values computation and decoding. First and 

foremost let us consider the first problem. 

The aim of the first stage is to compute the decision reliability values for each 

symbol. The latter are to be used by the decoder at the second stage. Since the a priori 

presupposition is that each symbol can take any of the q possible values for each 

symbol the corresponding vector of reliability values will be computed for each 

symbol.Thus a matrix of reliably values corresponds to each codeword. Since the 

matrix in question is used to make a decision on the transmitted codeword it will be 

further on referred to as decision statistics matrix MD. 

A number of reception techniques tolerant to severe jamming were developed 

in recent decades. In Normalized Envelope Detection (NED) method the decision 

statistics matrix is obtained by dividing each column of the matrix of envelopes by 

the sum of the respective column. 
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1
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However this method is hardly suitable for the case when the interfering users’ 

signals have power much higher than that of the user under consideration. For this 

case a more robust method is needed. Hereinafter we shall consider some methods 

based on ordered statistics calculation. For simplicity let us assume that all elements 

of Y are distinct, i.e., 
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(2)   ∀ i  i′, ∀ j  j′, 

Y(i, j)  Y(i′, j), 

Y(i, j)  Y(i, j′), 

and consider the indicator function 

(3)   ℑ (x, y) = 
1 if ,

0 if .

x y

x y





 

For each element of the matrix Y its rank is given by 

(4)   ( , ) (( ( , ), ( , ))) 1.M M

t t z z

R t z Y t z Y t z
  
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In “rank sum method” [5] the rank matrix is the matrix of the decision statistics. 

Hereinafter we propose to combine the two previously considered methods by 

applying normalization to the rank matrix. In the resulting method that will be further 

on referred to as Normalized Rank Sum (NRS) the matrix of the normalized ranks is 

given by 

(5)   
1

( , ) ( , ) / ( , ).
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Within the scope of the proposed method the matrix of the normalized ranks is 

used as a decision matrix, i.e., 

(6)   ( , ) ( , ),DM t z R t z  

and the decision matrix for the logarithmic version of the decoder is then given by 

(7)    ( , ) log ( , ) .D t z R t z   

As far as the second stage of the detection process (i.e., the decoding) is 

concerned the majority of papers that consider ordered statistics-based reception 

techniques (e.g., [5, 6]) use the decoding algorithms that boil down to exhaustive 

search. Unfortunately due to complexity considerations this approach leads to low 

rate codes. In [7] another approach has been proposed that is based on employing 

convolutional inner codes and Viterbi decoding. However the effectiveness of this 

approach is limited since the complexity of non-binary convolutional codes Viterbi 

decoding depends exponentially on the overall constraint length. Thus only codes 

with relatively small overall constraint length are practical. Both approaches can be 

explained in terms of the logarithmic version of the decision matrix, i.e., the decoder 

chooses codeword number 

(8)    
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to be the decoded codeword. Here · stands for Hadamard product, C is the error 

correction code in use, Xi is the matrix corresponding to the i-th codeword and ΛD is 

given by (7). Thus both methods make use of the decision matrix MD treating each 

(say t-th) column of the matrix as a vector of estimates of the conditional probabilities 

for the respective (t-th) symbol of the codeword. However as has been mentioned 

above both approaches have relatively high complexity and thus are practical only 

for low rate code. In this paper another approach is proposed. In what follows we 
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shall consider the perspective of decoding block codes on syndrome trellises by 

applying the sequential decoding concept. 

4. Using ZJ decoding algorithm for nonparametric detection: The 

proposed approach 

Syndrome trellises were introduced by B a h l  et al. [2]. Unfortunately both APP 

decoding (that has been proposed in [2]) and Viterbi decoding on syndrome trellis [8] 

have complexity exponential with the number of parity check symbols. Thus only 

non-binary codes with relatively small distances can be decoded in this way. In what 

follows we propose another approach based on the classical sequential decoding 

paradigm. In particular we adapt the classical stack algorithm that has been proposed 

by Z i g a n g i r o v  [3] and J e l i n e k  [4] for convolutional codes (also known as  

ZJ algorithm) for block codes decoding. To do so we use the syndrome trellis of  

the code in use and use the matrix MD (6) as the matrix of conditional  

probabilities for the respective symbols. The algorithm operates almost in the same 

way as the ZJ algorithm does and makes use of the conventional Fano metric. Let us 

consider a length l path that corresponds to a vector vi(l) = [v0
i, v1

i, …, vl
i
−1] such that 

vi = [v0
i, v1

i, …, vn
i
−1] is a codeword of the code C(n, k) in use (i.e., vi ∈ C). The metric 

for the respective path will then be given by 
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where p(j+1) is the probability of the fact that the respective symbol has been 

transmitted and ℜ is the rate of the code in use. The algorithm terminates when the 

winning path has full length. Then all the paths having full length n are extracted 

from the stack and exhaustive search is applied to the resulting list (in what follows 

we shall call it the final list). Again the matrix MD is treated as the conditional 

probabilities matrix, i.e., if I is the set of numbers of the (n, k) block code codewords 

that were included in the resulting list and Xi (i ∈ I) are the respective Kautz-Singleton 

matrices then the decoder declares the codeword with the number 

(10)    
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to be the decoded codeword. 

5. Simulation scenario 

To investigate the effectiveness of the proposed algorithm the following scenario will 

be considered: It will be assumed that the user under consideration transmits in a 

system with Q orthogonal subcarriers employing the transmission technique 
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considered above and apart from the user under consideration K interfering signals 

are transmitted in the system under consideration. Hereinafter it will be assumed that 

each interfering signal has the same form as that of the user under consideration but 

its power at the receiver end is  times higher than that of the signal of the user under 

consideration. Moreover it will be assumed that apart from narrowband interfering 

signals the received signal is influenced by the wideband interference that will be 

modeled as an Additive White Gaussian Noise characterized by Signal-to-Noise 

Ratio  SNR = 10∗log10
s

N

E

E

 
 
 

  where Es is the energy of the signal transmitted by the 

user under consideration (at the receiver side), and EN is noise energy (please note 

that EN is noise energy in the entire band whereas Es is the energy in the effective 

band occupied by the transmitted signal. Since the effective bandwidth is much 

smaller than the entire one SNR can take great negative values). In particular 

hereinafter we shall consider the case when q = 8, Q = 4096,  = 104, SNR = −20 dB 

and systematic MDS code C(6, 3) over GF(8). In what follows we shall investigate 

the performance of the proposed detector for different numbers of interfering  

users K. 

6. Simulation: Results 

In Fig. 1 Frame Error Rate (i.e., the probability of erroneous decoding per block) 

ensured by the proposed decoder (Sequential Decoder (SD)) for different values of K 

(number of interfering users) is shown in Fig. 1 (curve for the Exhaustive Search 

decoder (ES) employing the same decision statistics matrix is shown in the same 

figure). 
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Fig. 1. FER for the proposed decoder (SD) and the exhaustive search decoder (ES)) 
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As can be seen from the presented curves even though the proposed algorithm 

shows considerable performance degradation as compared to the exhaustive search 

algorithm the probability of error per block is still low enough to use the proposed 

decoder as inner decoder in a cascaded coding scheme. It should be noted that the 

complexity of the exhaustive search even for our example is prohibitively large. Thus 

unlike the proposed solution its counterpart that uses exhaustive search can hardly be 

used in practical systems. 

One of the most serious issues that is commonly associated with practical 

implementation of the sequential decoding is the problem of the stack size. In 

classical ZJ algorithm the stack has been assume to be infinite. In real life scenarios 

this is infeasible. Thus it is interesting to investigate the performance of the decoding 

algorithm that uses stack of a fixed size. In Fig. 2 Frame Error Rate (i.e., the 

probability of erroneous decoding per block) ensured by the proposed decoder 

(Sequential Decoder (SD)) for different values of K (number of interfering users) and 

different values of the Stack Size (StS) is shown. 
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Fig. 2. FER for the proposed decoder (SD) and different sizes of the stack 

 

Let us note that performance of the decoder using a fixed size stack is very close 

to that of the decoder that uses infinite stack even if the size of the stack is moderate. 

As has been pointed out in Section4 the main reason for using the sequential 

decoder is the complexity of the decoding. In general the complexity of the decoding 

depends on the number of nodes visited by the decoding algorithm and thus it is a 

random value. In tables 1 and 2 the maximal and average number of nodes visited by 

the decoder are given for for different values of K (number of interfering users) and 

different values of the Stack Size (StS) are given. 

It can be noted that the stack size restriction has almost no effect on the number 

of nodes visited by the decoder. The maximal (worst case) number of nodes is about 

–– Nonrestricted 
–– StS=256 
–□– StS=128 
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1.5 times less that the maximum number of nodes in a syndrome trellis layer (the 

latter is given by Nmax = qk) while the average number of nodes that are to be visited 

is still 2 times less. Thus the proposed decoder indeed offers certain complexity 

reduction. Another aspect that affects the complexity is the size of the final list. The 

maximum values of the final stack size for different values of K (number of 

interfering users) and different values of the StS are presented in Table 3. 
 

Table 1. Number of nodes visited (maximal) for different sizes of the stack 

StS Number of interfering users 

Stack size 300 250 200 150 100 

Not restricted 345 349 364 363 380 

256 327 381 331 415 385 

128 353 369 347 359 415 

 

Table 2. Number of nodes visited (average) for different sizes of the stack 

StS Number of interfering users 

Stack size 300 250 200 150 100 

Not restricted 119.9056 123.7721 124.4617 125.6317 118.0990 

256 119.8394 121.3169 124.9358 126.6210 118.8940 

128 122.1334 120.3910 124.7390 126.1415 118.6147 

 

Table 3. Size of the final list 

StS Number of interfering users 

Stack size 300 250 200 150 100 

Not restricted 39 36 39 49 53 

256 39 47 42 53 55 

128 36 35 34 40 41 
 

One can notice that even the worst case final list size is moderate. Moreover there 

is almost no dependency between the final list size and the size of the stack. 

7. Modified reception strategy 

One of the reasons for the fact that the resulting Frame Error Rates for the proposed 

algorithm and the exhaustive search decoding algorithm are relatively high is the 

influence of the interfering narrowband signals. Although the rank calculation makes 

the decision statistics less sensitive to the distortion introduced by these signals they 

still have some impact. Therefore we suggest a modified version of the decision 

statistics matrix that is calculated by clipping the rank matrix prior to normalization. 

This method will be further on referred to as Normalized Clipped Rank Sum. The 

clipped rank matrix is given by 

(11)   CR(t, z) =
   

 

, ( ) ,

( ), ( ) ,

   ,

,   ,

R R t z R

R t z R t z R

 



 







 

where (R) is the clipping threshold (the designation means that the threshold can 

depend on the matrix R). The normalized clipped rank matrix is given by 
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The decision matrix is then given by 

(13)   ( , ),D
C RM C t z  

and the decision matrix for the logarithmic version of the decoder is then given by 

(14)   
1

,  log( ) ( , / ( ,) ) ,

q
D
C R R
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t z C t z C t z

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 
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in what follows we use the following way to define the threshold. Let i be the 

maximum value for the i-th column of the matrix R(t, z), 

(15)    
{1,..., }
max ( , ) ,i

z q
R i z


  

the threshold value (R) is then given by 

(16)   
{1,..., }

( ) min .i
i n

R 


  

8. Simulation: Results for the modified version 

Let us now consider the simulation results. We consider the same simulation scenario 

that has been described in Section 5. The Frame Error Rate for the proposed decoder 

(SD) and the exhaustive search (ES) decoder for different values of K is shown in 

Fig. 3. In Fig. 4 Frame Error Rate (i.e., the probability of erroneous decoding per 

block) ensured by the proposed decoder (sequential decoder (SD)) for different values 

of K (number of interfering users) and different values of the stack size (StS) is 

shown. Finally in Tables 4, 5, and 6 the maximal and average number of nodes visited 

by the decoder and the final list size are given for different values of K (number of 

interfering users) and different values of the stack size (StS) for the modified 

reception strategy are presented. 
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Fig. 3. FER for the proposed decoder (SD) and the exhaustive search decoder (ES))  

using the modified strategy 
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Fig. 4. FER for the proposed decoder (SD) and different sizes of the stack for the modified strategy 

 
Table 4. Number of nodes visited (maximal) for different sizes of the stack (for the modified  

reception strategy) 

StS Number of interfering users 

Stack size 300 250 200 150 

Not restricted 622 683 690 644 

256 597 657 667 716 

128 472 412 429 490 

 

Table 5. Number of nodes visited (average) for different sizes of the stack (for the modified reception 

strategy) different values of the stack size (StS) for the modified reception strategy are presented. 

StS Number of interfering users 

Stack size 300 250 200 150 

Not restricted 189.9046 189.1874 192.5638 194.9336 

256 187.6872 190.3603 193.5807 195.3684 

128 184.7402 188.0763 193.1795 189.8682 

 

Table 6. Size of the final list 

StS Number of interfering users 

Stack size 300 250 200 150 

Not restricted 103 119 128 112 

256 95 122 120 165 

128 75 67 87 88 

 

Comparing Fig. 3 with Fig. 1 one can notice that the rank matrix clipping actually 

results in a substantial performance gain. However this gain comes at the expense of 

more than twofold growth of the maximal (worst case) growth of the number of nodes 

visited. The average number of the nodes visited grows as well (even though the 

increase in the average number of nodes is much less substantial). The size of the 

 Unrestricted 
 StS=256 
 StS=128 
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final list also is 2 to 3 times larger. Thus we can conclude that the modified strategy 

usage results in complexity increase. Moreover as can be seen from Fig. 3 and Fig. 4 

the usage of the proposed modification results in error floor performance for 

moderate numbers of interfering users and makes the decoder more sensitive to the 

stack size restriction (moderate stack size results in sufficient performance decrease). 

Thus it is advisable to use the modified reception strategy for the low rate codes 

decoding that can be performed by exhaustive search. 

9. Conclusion 

Hereinabove the problem of decoding nonbinary block codes by using a sequential 

decoding on a syndrome trellis has been considered. Two decoding reception 

strategies (the Normalized Rank Sum and Normalized Clipped Rank Sum) and a 

decoding algorithm that is based on the classical Zigangirov-Jelinek algorithm were 

proposed. It has been shown that Normalized Rank Sum method can be used in 

combination with the proposed algorithm to decode relatively high rate codes in the 

cascaded coding construction, whereas the Normalized Clipped Rank Sum is better 

suited for the decoding of lower rate codes by exhaustive search. 
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