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Abstract: The residual vibrations in flexible structure system model can cause errors. 

In addition, the parameters in the system are also changed. For the problem of 

residual vibration, robust H∞ filter is designed for neutral systems with multi-delay. 

Based on Lyapunov stability theory, the sufficient condition for the existence of filter 

is given. For the permitted uncertainty and multi-delay, the designed filter can 

guarantee the robust asymptotically stability and satisfy H∞ performance index for 

the filtering error dynamic system. Finally, the designed filter is applied to the 

flexible system, and the result shows that the filter is effective.   
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1. Introduction 

Flexible systems are widely used in various production activities, such as flexible 

joint robots and flexible spacecraft. In the process of using flexible structure, the cost 

and weight of the equipment can be reduced. But due to the inherently low damping 

characteristics of the flexible structure, coupled with the relatively difficult control 

of the flexible system and the existence of various uncertain factors, the system will 

result in the vibrations provoked by various reasons, so flexible systems are difficult 

to attenuate rapidly in a short period of time. Therefore, the research on the vibration 

control of flexible structures is significant, and more and more scholars have begun 

to work on this aspect [1-5]. In [2], for the problem of medium-low frequency 

mechanical resonance caused by mismatched inertia in flexible systems, the inertia 

matching range of different port acceleration feedbacks is discussed by means of 

acceleration compensation. The purpose of suppressing resonance is achieved by 

reasonably matching the motor and the load inertia. Reference [3] is based on a 

flexible robot designed multi-modal input shaper to reduce residual vibration while 

reducing the time-delay of system response. 

Various uncertainties and time-delays are common in the system and become 

the main factors causing system instability. In the actual control system, many control 

system models can be transformed into neutral systems. At present, the research on 
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this type of system has achieved rich results. The stability of neutral systems is 

discussed in reference [6], and the design method of robust H∞ filters is given in [7]. 

While the case of adding nonlinear perturbations are discussed in the reference [8, 9]. 

However, in many practical control systems, not only a single time-delay factor, but 

also multi-delay factors are involved, and it is of great significance to fully consider 

the influence of time-delay factors on system control effects. In this paper, for the 

multi-delay neutral system, combined with the uncertainty of the state and the 

designed filter parameters, the nonlinear part is assumed to satisfy the Lipschitz 

condition, and the filter design algorithm is given by the linear matrix inequality. A 

flexible system is used as the research model and a robust H∞ filter is applied to the 

residual vibration of the system. The application analysis shows the effectiveness of 

the filter. 

2. Robust H∞ filter design 

Consider the following uncertain multi-delay neutral system: 
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where ( ) nx t R  is the state vector, ( ) my t R  is the measurement output, ( ) pw t R  

is the external disturbances input which belongs to 2[0, ),L   2[0, )L   represents the 

square integrable vector function space, d and ih  are the constant time-delays, 

1, 2, , .i m  1 0 0, , , , , ,iG D D A B A  1, 2, , .i m  are constant matrices with 

appropriate dimensions. The following filter is designed: 
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where ˆ( ) nx t R , ˆ( ) ,qz t R  K is a matrix of coefficients to be determined, 0L  is a 

constant coefficient matrix with appropriate dimensions,  

(3)
    0 1 2, ,A M FN K M FN     

where 0A  and K  are uncertainties, 1 2,M M  and N are constant matrices with 

appropriate dimensions, F is an uncertain matrix and satisfies T .F F I   

( ( ))f x t  is a nonlinear function and for any 1 2, :x x  

(4)    1 2 1 2( ) ( ) ( ) ,f x f x H x x     

where (0) 0,f   H is a known weight matrix,  denotes the Euclidean norm. 

Definition e
ˆ( ) ( ) ( ),x t x t x t   then we can get the corresponding filter error 

dynamic augmentation system: 
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where  0( ) ( ).z t L x t  

The following lemma is cited from the reference [10].  

Lemma 1.  Given the matrix Y, D and E with appropriate dimension, where Y  

is symmetric, then  

(11)    T T T( ) ( ) 0.Y DF t E E F t D    

for all ( )F t  satisfying T ( ) ( ) ,F t F t I  if and only if there exists a scalar 0  such 

that 

(12)    T 1 T 0.Y DD E E     

The main conclusions are given below. 

Theorem 1. Given the scalar 0,  if there exists positive definite symmetry 

matrices 0,P   0,W   0,iZ   1, 2, , ,i m  for the filtering error system (5), the 

following inequality holds 
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where 
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Then the filtering error system is asymptotically stable and can meet H∞ 

performance. 

P r o o f: Let ( ) ( ),t tD C t d      the following Lyapunov function is 

defined: 
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H∞ performance: 
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Under the zero initial conditions, the following matrix inequality holds 
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when 1 0,   then ( ) 0.J w   This completes the proof. 

Theorem 2. Given the scalar 0,  if there exists positive definite symmetry 

matrices 1 0,P   2 0,P   1 0,W   2 0,W   1 0,iZ   2 0,iZ   1, 2, , ,i m  and the 

positive scalars 
1 , 

2 ，such that the following matrix inequality holds 



 124 

(18)   

1 2 3 4

5 6

7

8

0 0,

0

X X X X

X X

X

X

 
 

 
  
 
  
    

 

where 

11 13 1 1

22 24 2 1

T

13 33

1 T

24 44

T

1 1 11

T

1 2 12

2 2

5 1 2

1 1 1 1

7 1 1 2 2 1 1

8 1

0 0 0

0 0 0

0 0 0 0
,

0 0 0 0

0 0 0 0

0 0 0 0

diag{ , , , , , },

diag{ , , , , , },

diag{ , , ,

m m

P A

P A

X

A P Z

A P Z

X Z Z I I I I

X I I I I I I

X I I I

   

  
 

 
 
  

  
  

 
 

  

      

      

    

 

     

 1 2 2

T T T

11 1 0 0 1 1 1 1 1 1 1

1

, , },

,
m

i

i

I I I

P A A P PGH H G P W Z


 

      

  

 

1 T

13 1 0 1 1 1 1 1

1

T T T

22 2 0 0 0 2 0 2 2 2

T T T

2 2 2 33 1 1

1 1

T

24 0 0 2 0 0 2 2 2 2

1

1 T T T

1 0 0 44 2 2

1

( ) ,

, ( ) ,

( )

, ( ) ,

m

i

i

m m

i i

i i

m

i

i

m

i

i

P A PGH W Z C N NC

P A YB A P B Y P GH W

H G P Z C W Z C W

L L P A YB P GH W Z C

B N NB C C W Z C W





 







     

       

     

       

    



 









 

TT

1 1 2 11

2 22

2 21 2 1 1

2 3

TT

0

T T

0

0

00

0
, ,

0 00 0

00

00 0

m

m

PM P MP A

P MP A

P MPD P D YD
X X

NL

B N

  
  


  
   

    
  
  
  

      

 



 125 

T T

4 T T T T T

0 0

T T

1

6

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0
,

0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0
.

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

C N
X

C L C B N

D N
X

 
 
 
 

  
 
 
 
  

 
 
 
 

  
 
 
 
  

 

Then under the zero initial conditions, for any  2( ) 0w t L   and all 

uncertainties, the filtering error system (5) is asymptotically stable and satisfies 
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Substituting Formula (20), Formula (21) into Formula (19), and applying 

Lemma1, then we can get 
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According to Schur complement, Formula (22) is equivalent to next formula: 
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Putting the Formula (9), Formula (10) and formula (24) into Formula (23), and 

letting 2 ,Y P K  then the theorem is proved. 

3. Application of robust H∞ filtering in flexible systems 

3.1. The flexible system and its model 

The flexible system is the control object in this paper, as shown in Fig. 1. The flexible 

system is mainly composed of three parts.  
 

 
Fig. 1. The flexible system 

 

The first part is the electromechanical device, including the spring mass module, 

the sensor behind the mass module, the damper with variable damping coefficient, 

the DC brushless servo motor with superior performance and the high-resolution 

incremental rotary encoder behind the motor. System configuration can be 

constructed according to the needs of actual operation. The second part is the real-

time control box, which includes the DSP, servo and actuator interface circuits, servo 

amplifiers and auxiliary power supplies that enable real-time control. The third part 

is the self-contained software, providing a user interface, which can selectively add 

different input signals to the system. Users can write their own programs and 

implement control algorithms. The experimental equipment can also control the 

system in real time through Simulink modeling [11]. The system provides a 

configuration module corresponding to the experimental device, which can feed back 

the position information of the encoder in the actual system to the Simulink module, 
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and then the feedback information is processed by the designed controller to realize 

real-time control of the experimental equipment.  

In the case that the friction force is ignored, the configuration of the flexible 

system with 1 degree of freedom is considered. According to the reference [11], the 

linear equation of the flexible system can be obtained as 

1
1 1 1

1 1 1

.
k c F

x x x
m m m

 
    

This formula can be written as 

(25)   
1 1

1

1 1

1 11

0 1 0

,1
x x

Fk c
x x

m mm

   
              
        

 

where the device parameters are: 1 12.77 kg, 200 N/m, 10.2 N/m/s.m k c    Let 

,w F  Then the equation form of the flexible system can be transformed into the 

following equation of state: 

(26)     
0

0 1

( ) ( ) ( ),

( ) ( ) ( ),

x t A x t Dw t

y t B x t D w t

 


 
  

where the parameters of the equation of state are as follows: 

   0 0

0 1
, 0 4600 , 1 0 ,

72.2 3.68
A D B

 
   

  
 

where 1D  is the zero matrix. Performance evaluation signal is as follows: 

0( ) ( ),z t L x t  

where 

0

0.5 0
.

0 0.3
L

 
  

 
 

3.2. Application analysis 

The experimental equipment of the flexible system is shown in Fig. 1. The 

disturbances of simulate external uncertainties under stable operation is added. Other 

parameters of the system (1) are as follows: 

0 1 0

0 1 2

1 2

0 1 0.5 0.1 0.3 0.4 1 0
, , , ,

72.2 3.68 0.2 0.4 0.2 0.5 0 0

0.5 0 0.4 0.5 0.1 0.5 0.1 0.3
, , , ,

0 0.3 0.1 0.3 0.1 0.3 0.5 0.4

0.2 0.5 0.3
,

0.1 0.4

A A G B

L M M N

H H

        
          

         

          
          

         

 
  
 

   
0.5

, 0.01 0 , 0 4600 , 0.5, 0.8.
0.2 0.1

C D d h
 

    
 

 

The feasible solution is obtained by using MATLAB: 
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1 2 1

2 1 2

0.2809 0.0095 0.4615 0.0418 0.1532 0.0068
, , ,

0.0095 0.0053 0.0418 0.0160 0.0068 0.0031

6.6628 0.3473 0.2195 0.0177 6.6947 0.3652
, ,

0.3473 0.0390 0.0177 0.0059 0.3652 0.0474

P P W

W Z Z

     
       

     

    
     
   

,

26.5700 39.9331
.

0.2513 0.5494
Y


 
 

 
  

 

 

Further, the parameters of the filter can be calculated as follows: 

1

2

77.3691 117.5585
.

218.4376 342.3983
K P Y

 
   

 
 

The random signal is taken as disturbance input signal, and the nonlinear 

function is taken as 0.7sin ( )w t . The simulation curves is as in Figs 2 and 3. 

 
Fig. 2. Actual and estimated value of displacement curves  

 

 

Fig. 3. Actual and estimated values of the speed curve  

Fig. 2 is a displacement curve of the mass movement of the flexible system 

without adding the filter and adding the filter. Fig. 3 is the velocity curve of mass 

movement without adding filter and adding filter. It can be seen from the curve that 

the state of the system is greatly influenced by the vibration interference before the 
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filter is added. After adding the filter, the vibration interference is largely reduced. It 

shows that the designed filter has obvious effect and is feasible.  

4. Conclusion 

In this paper, the robust H∞ filter is designed for neutral multi-delay systems, and the 

sufficient conditions for the existence of the filter are given. For the vibration problem 

of flexible system, the robust H∞ filter is applied to show that the filter has a certain 

inhibitory on the bounded disturbance input. It shows that the filter design algorithm 

studied in this paper has certain theoretical significance and practical application 

value.  
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