
 93 

BULGARIAN ACADEMY OF SCIENCES 

 

CYBERNETICS AND INFORMATION TECHNOLOGIES  Volume 18, No 3 

Sofia  2018 Print ISSN: 1311-9702; Online ISSN: 1314-4081 

DOI: 10.2478/cait-2018-0041 

 

 

Extending OpenID Connect Towards  

Mission Critical Applications  

Deeptha R.1, Rajeswari Mukesh2 
1Dept.of Information Technology, Hindustan University, Padur, Tamil Nadu, India 
2Dept.of the School of Computing Sciences, Hindustan University, Padur, Tamil Nadu, India 

E-mails: r.deeptha@gmail.com        rajeswarim@hindustanuniv.ac.in 

Abstract: Single Sign-On (SSO) decreases the complexity and eases the burden of 

managing many accounts with a single authentication mechanism. Mission critical 

application such as banking demands highly trusted identity provider to authenticate 

its users. The existing SSO protocol such as OpenID Connect protocol provides 

secure SSO but it is applicable only in the consumer-to-social-network scenarios. 

Owing to stringent security requirements, the SSO for banking service necessitates a 

highly trusted identity provider and a secured private channel for user access. The 

banking system depends on a dedicated central banking authority which controls 

the monetary policy and it must assume the role of the identity provider. This paper 

proposes an extension of OpenID Connect protocol that establishes a central identity 

provider for bank users, which facilitates the users to access different accounts using 

single login information. The proposed Enhanced OpenID Connect (EOIDC) 

modifies the authorization code flow of OpenID Connect to build a secure channel 

from a single trusted identity provider that supports multiple banking services. 

Moreover, the EOIDC tightens the security mechanism with the help of SAT to avoid 

impersonation attack using replay and redirect. The formal security analysis and 

validation demonstrate the strength of the EOIDC against possible attacks such as 

impersonation, eavesdropping, and a brute force login. The experimental results 

reveal that the proposed EOIDC system is efficient in providing secured SSO protocol 

for banking services.  

Keywords: Online banking, SSO, authentication, identity provider, service provider, 

OpenID connect. 

1. Introduction 

Single Sign-On (SSO) authentication [1] is an essential security technique that is 

widely adopted by modern Internet applications to simplify the login process and it 

avoids multiple authentication credentials. Owing to the flexibility and ease of use, 

SSO is preferred to access multiple systems using a single username and password. 

Security is the crucial aspect of mission-critical enterprise applications such as 

banking. Nowadays, online Internet banking applications are extensively used for 

https://en.wikipedia.org/wiki/Central_bank
https://en.wikipedia.org/wiki/Monetary_policy


 94 

financial transactions by individuals as well as enterprise business systems. The 

mission-critical process of the bank requires a complex password to strengthen the 

security such that it is not easy to remember. Thus, instead of managing many 

complex passwords, SSO allows end users to log in to multiple accounts with the 

help of a single login credential. SSO offers several benefits that include the simple 

system maintenance, and easy to remember one password instead of many. Even 

though SSO is advantageous to the bank, the necessary disclosure of sensitive user 

information to the third party makes the enterprises skeptical about the 

implementation of SSO-based solutions. The Single Sign-On (SSO) facilitates the 

user to access multiple bank accounts with the help of single login credential. Since 

banking systems do not disclose mission critical data to any third party, most of the 

banks are reluctant to implement SSO. Moreover, the existing SSO systems like 

Security Assertion Markup Language (SAML) [2], Lightweight Directory Access 

Protocol (LDAP), Central Authentication Service (CAS), and OAuth2 [3] are not 

adaptable to the bank SSO due to their design vulnerabilities [4]. Therefore, this paper 

proposes an OpenID Connect system for banks that aim to deploy the secure SSO 

protocol without disclosing any user-sensitive data to the third party. The proposed 

system extends the existing OpenID Connect to enhance the authentication procedure 

to meet the SSO requirements of the banking world.  

1.1. Scope and motivation 

The OpenID Connect is an SSO provider designed for the consumer-to-social-

network scenario and does not fulfil the strict security features enforced by mission 

critical enterprise business applications. The banking systems prefer secured private 

channel for bank transactions. The scope of the SSO implementation in banking 

significantly depends on the decision of regulating authority. The bank regulator 

emerging as an identity provider paves the way for SSO on the banking system. The 

SSO based banking system simplifies the user authentication and reduces the cost 

involved in user credential management. This work proposes Enhanced OpenID 

Connect (EOIDC), and the main contributions of the EOIDC are summarized as 

follows: 

● To provide secure access to multiple bank accounts with the use of a single 

login credential by extending the existing OpenID Connect.  

● To offer an optimal security protection of the mission critical information of 

the bank, the EOIDC enhances the existing OpenID Connect authorization code flow 

without disclosing the sensitive user information to the third party and also ensures 

the security of the user channel. 

● To avoid the malicious transaction, the EOIDC tightens the security 

authorization code with a hard to guess mechanism and Security Alert Timer (SAT).  

2. Related works  

Several approaches in the past have addressed the problem of SSO in various 

scenarios with different techniques. SSO is widely utilized in various enterprise 

applications such as multi-database systems[5]. OpenID Connect is a popular and 



 95 

widely deployed protocol for SSO over the Web. Owing to the significance of 

OpenID Connect, rigorous security analysis is paramount due to the potential 

applications. A formal security analysis of OpenID Connect is available in [6]. It 

developed a generic model to formalize the properties of authentication and 

authorization  and provides sufficient security guidelines against new attack variants. 

The following section divides the conventional SSO-enabling technologies and 

protocols regarding the applications such as consumer-to-social-network scenario 

and mission critical applications. 

SSO Protocols for consumer-to-social-network. Kerberos is one of the 

commonly used key distribution protocols which provides centralized SSO 

environment for the network, and it helps to overcome specific threats such as hacked 

passwords, information leakage, and alteration of information [7]. Moreover, the 

Kerberos infrastructure is more complex, and it is prone to several errors that create 

a negative impact on security. Thus, in Kerberos, users may impersonate and steal 

authentication tickets through simple network based attacks. Notably, the recent 

approaches have tried to overcome the security breaches in Kerberos [8]. LDAP is 

the API to access the directory service, which secures identities of the users such as 

employee names, telephone numbers, and credentials and network devices. Although 

the LDAP presented by Microsoft enables true SSO, it is applicable only in Windows 

environments [9]. The SAML provides a standard for exchanging the authentication 

and authorization data. The SAML uses the eXtended Markup Language (XML) 

based WS communication, and it allows a remote, unauthenticated attacker to craft 

specially formed messages. The arbitrary content that is crafted is known as an XML 

Signature Wrapping attack (XSW) [10]. To detect and overcome this attack, the 

detection techniques are grouped into three categories such as the policy-based 

approaches, the inline approaches, and the string-based approaches. 

The WS policy-based approaches prevent the XML Rewriting attacks through 

forcing the position of the signed element in policy files. An advisor policy tool in 

[11] creates security policies for the WS protocols, but it is not directly applicable to 

SAML. WS-Security is widely accepted with its standards XML-Encryption and 

XML-Signature to provide security of SOAP (Simple Object Access Protocol) based 

web services [12]. The inline approach considers the structure of the SOAP message, 

and it includes the new header element called SOAP account which assists in 

identifying the XML rewriting attack [13]. However, the inline approach fails to 

address all types of XML Rewriting Attack [14]. The RewritingHealer approach 

extends the inline approach by considering new characteristics of the SOAP message. 

This extended approach improves the security in XML wrapping attack, but it is 

unable to completely stop the attack [15]. The string-based approach in [16] employs 

the effectiveness of the XPath mechanism to resist the XSW attacks in the SOAP 

context. However, it allows to perform the XSW attacks against the XPath referenced 

resources successfully [17]. OpenID Connect is a decentralized SSO web protocol 

that is built on top of the OAuth 2.0 protocol. It enables the client WS to rely on 

verification of access permission by an OIDP to authenticate an end user [18]. 

OpenID Connect is the child of OpenID, and it combines both OpenID and  

OAuth 2.0. The OpenID is a complex protocol and specified in a community standard 

https://en.wikipedia.org/wiki/Decentralized


 96 

document [19]. OAuth (stands for Open Authorization) is a web SSO, which is a 

reference architecture, intended for authorization purpose, and does not facilitate user 

authentication. The OAuth 2.0 improves the security performance of OAuth 1.0 by 

including new authorization features [20]. The OAuth2 offers authorization only, 

whereas an OpenID Connect also offers authentication.   

The characteristics of OpenID standard and its applications are discussed in 

[21]. The OpenID is found to be vulnerable to several attacks [22]. A novel 

framework improves the OpenID security using the One-Time Password (OTP) to 

overcome the Replay attack in SSO [23]. The benefits of OpenID Connect protocol 

are analyzed to apply the mechanism on the Web of Things (WoT) context for 

providing user authentication. The developed model is incorporated into the 

infrastructure that allows access to physical devices on the Web through an Enterprise 

Service Bus (ESB). In this context, the MultiAuth-WoT service and the provider of 

OpenID Connect establish communication for authentication purpose [24]. The new 

OpenID Connect protocol is described, and its design features such as Discovery and 

the Dynamic Registration extensions are analyzed in [25]. The extensions are still 

vulnerable to malicious attacks. A Fault-tolerant WS framework (FT-SOAP) is 

introduced in [26] that protect the SOAP messages using four components such as 

Replication Management (RM), membership management Fault Detector, Fault 

Notifier, and Logging/Recovery mechanism. A distributed hierarchical multi-agent 

architecture is developed to block malicious SOAP messages that assist in preventing 

the XML wrapping and Denial of Service attack [27]. The work in [28] has performed 

in-depth analysis of various SAML frameworks and discussed the vulnerabilities in 

XML Signature Wrapping (XSW). The analysis reveals that the security implications 

behind SAML and XML Signature are not clear yet. Moreover, the SAML framework 

is hard to scale on the Web. The real-world implementations of OpenID Connect is 

vulnerable to Cross-Site Request Forgery (CSRF) attacks and a mitigation technique 

is proposed in [29]. 

Mission Critical Applications. A Multi-Layered Framework is proposed 

in [30] that implements two-factor authentication and SSO together. The SSO 

protocols assure the federated identity credentials, which is utilized to access several 

services without re-authenticating the servers. These protocols have been widely 

deployed in banking Interoperability services online [31]. The paper [32] exploits the 

SAML for e-banking account login with single login credentials. Compared to the 

social network, the implementation of SSO on banking services is critical due to the 

stringent security requirements. The digital signature is essential in SSO protocol to 

ensure whether the sender has the possession of the login credentials for a bank 

account. In addition to the SAML, there are several SSO protocols to balance security 

and privacy [33]. The papers [34], [35] propose a solution to integrate and evaluate 

the core banking system with SSO. Moreover, the existing approaches such as 

Kerberos and LDAP are not suitable for the SSO applications. Though the SAML is 

a highly flexible and extensible framework, it is not scalable for the web. The OpenID 

Connect is a new RESTful model based on SAML with the desired changes according 

to REST Architecture. Hence, the proposed system adopts the existing OpenID 

Connect to deploy a secure SSO protocol for banking systems. 



 97 

3. Proposed methodology 

Password synchronization is a widely used solution to access multiple social 

networking accounts with one password. Despite the social network, the 

implementation of SSO on banking services is critical. The future Internet banking 

aims at providing a single identity provider that supports the transactions on multiple 

bank accounts. Strengthening the security of SSO is crucial to extend the usage of 

password synchronization from social network to mission critical applications. To 

solve these issues, this work proposes the EOIDC. Fig. 1 shows the block diagram of 

the proposed EOIDC protocol. There are three basic components used in the 

functions of EOIDC such as Bank Service Interface (BSI), Server System (SS), and 

Centralized Authentication Provider (CAP). The BSI connects the bank users with 

their accounts to access multiple banks online. To secure login, a bank user has to 

authenticate with the CAP system to access the banking service. The SS acts as a 

service provider that maintains the customer transaction information and enables the 

secure transactions with two-factor authentication such as One Time Password (OTP) 

and a transaction password. 

  

 

Fig. 1. Block diagram of Enhanced OpenID connect 

3.1. Enhanced OpenID connect operations  

The proposed EOIDC is a distributed protocol to authenticate the bank users and 

allow them to access the online services, irrespective of the bank. To use the EOIDC 

services, a bank user has to be registered as an EOIDC user in SS holding any one of 

their bank accounts. During the registration process, the CAP assigns a common user 

id and secret information to the EOIDC user, and later the CAP utilizes that 

information to authenticate the user for accessing online banking services. The 

EOIDC user requests for a login and sends the request by providing the IP address 

via BSI. Also, the EOIDC includes an automated CAPTCHA during the login 

process, before receiving online services. This CAPTCHA is to ensure that the user 

is a human being as well as to strengthen the security of the EOIDC that exploits both 



 98 

IP address and CAPTCHA as encryption keys in double encryption technique. The 

SS redirects the user request to the identity provider, and the user authenticates by 

providing the user id and secret information received during registration. Fig. 2 

illustrates the communication between the user, SS, and CAP that typifies secure 

online services.  

3.1.1. Connecting user to the Identity provider via SS 

The SS has genuine single login information for the customers to access their multiple 

bank accounts online. As the EOIDC credentials are maintained by CAP, the SS has 

to redirect the request to CAP for authentication. Once authentication completes, the 

CAP redirects the request to the corresponding bank through BSI. However, the token 

encapsulates the bank authentication details but has no inherent protection against 

modification. Consequently, the EOIDC decides to send the bank authentication 

details in tokens which reside in the context of the authorization code and such 

residing token ensures secure transmission well in advance. Algorithm 1 illustrates 

an authorization code that covers the message using double encryption scheme. 

Through the encryption scheme, SS receives and validates the code integrity by 

generating the code with the same IP address and CAPTCHA information. After 

validation, the SS requests the CAP for the generated ID and Access Token through 

the double encryption scheme. When the user channel guarantees the security of 

authorization code, CAP sends the token to the user with the authorization code via 

BSI. The steps involved in connecting the user to the identity provider are as follows: 

Step 1. User (U) clicks on a BSI login button adding the CAPTCHA string, and 

the User Agent (UA) in the SS sends the login HTTP request to a CAP.  

Step 2. A SS connects to the CAP. The CAP confirms the receipt of EOIDC 

credentials from the user.  

Step 3. The CAP requests the user for entering the credential information and 

accessing online services. 

Steps 4 & 5. CAP receives the user credentials to authenticate the user.  

Steps 6 & 7. For an authenticated user, CAP generates an authorization code AC 

which resides within the double encryption and redirects UA to SS via a BSI. 

Steps 8 & 9. SS computes the authorization code, then, both the CAP and SS 

mutually validate the received authorization code to ensure that signed code is 

received from the communication channel without modification. 

Step 10. If the CAP considers the received authorization code to be valid, then 

the CAP generates an ID token IDT and Access token ACT with a random and unique 

ID number, and sends that information to the SS via a secured direct communication.  

Step 11. SS lists the banks in the ACT via BSI, and the user selects required 

bank for accessing online services. 

Steps 12 & 13. User signs out from both the bank and EOIDC service.  



 99 

 
 

Fig. 2. Authorization code flow of EOIDC 
 

To strengthen the process, the EOIDC adds security constraints in the 

authentication and authorization flows among the components. As similar to Open 

ID Connect, the proposed EOIDC is also implemented on the top of REpresentational 

State Transfer (REST) protocol. This protocol provides interoperability between 

CAP and SS on the Internet. Under the REST model, performing an appropriate 

validation and authorization is crucial to accept the user request on a communication 

channel. Hence, the proposed system establishes the SSL/TLS communication 

channel between the user and CAP which secures the user credential during 

authentication and authorization.  

3.2. Secure interoperability between systems 

Interoperability is a most crucial factor for both the authentication and authorization 

process. It avoids an adversarial user to login to the CAP and always ensures the login 

of the honest user. It prevents an adversary to track the information of the honest user 

or to interrupt the services of the legitimate user. During authentication, the SS 

redirects the user request to CAP, and it opens the login dialog page. After BSI loads 

the login page from CAP, it passes the Credential Information (CI) such as user id 

https://en.wikipedia.org/wiki/Internet


 100 

and secret from UA as found under the session key. It creates a signature using the 

session key and avoids adversaries from learning the CI; the BSI encrypts the CI 

using CIkey, as shown in the next equation  

(1)   CI = encry{sig(User-ID & User-Secret (Cs))key}Cikey. 

Adversary users are unable to predict the correct key due to the characteristics 

of the SSL / TLS channel. The CAP authenticates the users and deals with the service 

provider, and at the same time, SS deals with the verified user for providing the online 

services.  

Also, the proposed system includes the State Parameter SP with the 

authentication request [36]. The state variable must be unique such that it is hard to 

guess by an attacker. This variable must match with the authentication response 

returned by the CAP to ensure that the user is legitimate. The EOIDC employs a high-

quality random-number generator to create a string of 30 characters as state 

parameter, which is hard for an attacker to calculate or guess. During authorization, 

the CAP issues the ID and Access token to the authenticated EOIDC-enabled bank 

users. Thus, the EOIDC designs the authorization code hard enough to guess for the 

attackers. Instead of generating a plain random string, the proposed system employs 

the IP address of the user and the captured CAPTCHA string at a BSI to create an 

authorization code. The CAP generates the authorization code as per the procedure 

explained in the algorithm 1 and sends it to the SS. The authorization code generating 

algorithm hashes the IP address with SHA-256 and then encodes the hash value with 

the CIkey as well as base64url to tighten the security of the code. This process ensures 

the secure interoperability between the servers online.  

Algorithm 1. Authorization code generation 

/* Authorization Code Algorithm */ 

Input: CAPTCHA String, User IP address 

Output: Encrypted IP address 

Notations: a_p=alphabet position, k= No of letters in the CAPTCHA 

Procedure:  

Step 1. CAPTCHA String Conversion 

A= Get the CAPTCHA string 

Replace the CAPTCHA string letters with numerical value according to its 

alphabets position. 

CAP = [‘a_p’,’a_p’,....,’a_p’]; 

             CAP = [(Sum of ‘a_p’) / k];  

Step 2. IP Address Conversion 

IP = Obtain user IP address;  

Retrieve each block of the IP address on the basis of separator ‘.’ and store them 

in a[i].  

Convert a[i] integer value to individual digit and store in b[i], c[i], d[i], and e[i]. 

Step 3. Encrypt the IP Address  

Replace the individual digits of b[i], c[i], d[i], and e[i] with equal alphabets.  

Shift the alphabets by CAP position.  

POS = b[i]+CAP; c[i]+CAP; d[i]+CAP; e[i]+CAP; 

Replace the alphabets of b[i], c[i], d[i], and e[i] with equal numerical value.  



 101 

EIP= {Encrypt – Hash( IP address)}.  

Step 4. Added Security  

Auth_Code = BASE64URL-ENCODE(SHA256(ASCII(EIP))); 

3.3. Secure user transaction 

To initiate the secure user transaction online, the SS must receive the response for a 

token from the identity provider. The EOIDC redirects the user to the SS with the ID 

and Access Token. The SS responds to the user on verifying the ID and possibly the 

access token and subsequently provides the online services to the corresponding user. 

With the authorized access token, the CAP lists out the bank accounts to the user via 

BSI. It enables the users to call a particular bank web service and perform online 

banking transactions. The EOIDC protocol is built on the top of OAuth by adding an 

ID and Access Token. The ID token is a security token which includes the claim 

about the identity of a user by a CAP to prove the identity of a user to SS. According 

to OAuth, the ID token data structure is JSON Web Token (JWT). The CAP signs 

the token using JSON Web Signature (JWS) to provide authenticity as well as 

integrity to the tokens. A signed token includes a header that has the information 

about using a cryptographic algorithm; the body which includes the information 

required to authenticate the user and a signature that ensures the authenticity and 

integrity of the token. 

The identity of the user. The identity of the user includes issuer and subject. 

The issuer field such as CAP or the EOIDC provider is mandatory, for instance, 

https://www.rbi.org.in/. The subject is also a mandatory field which represents the 

identity of the EOIDC user. The subject of an EOIDC user is unique and never 

resigned by the EOIDC, for instance, alice@EOIDCProvider.com.  

Time-Stamps and freshness. The fields of timestamp and expiry define the 

lifetime of the token. The lifetime is determined between the token creation and 

expiration of the token. The number used ONCE (NONCE) is a string value randomly 

chosen by the SS in the authentication request.  

Security Alert Timer. The EOIDC enables the Security Alert Timer (SAT) at 

the SS side to prevent the redirection of the user to the malicious service. Moreover, 

the EOIDC enables the timer with the starting and ending time while the authorization 

request is transferred between the SS and CAP, and it gets enabled while the user 

requests for the service to the SS. Within the specified end time, if the user fails to 

redirect through the CAP, the EOIDC assumes that a malicious user has redirected 

an authenticated user. Hence, the BSI sends the alert message to the CAP, and it 

informs about the redirected attack to the user. 

Another aspect considered in the EOIDC is the two-factor authentication during 

the transaction. One is the OTP, and the other one is the transaction password, given 

by the corresponding bank. As a result, the EOIDC facilitates the users from 

memorizing dozens of unique user ids and passwords and enables access to multiple 

bank accounts under a single login. However, the transaction password asked at the 

time of the transaction is separate for each bank. These entities along with the EOIDC 

protocol have the potential to provide secure multi-bank online transactions in a 

malicious environment. 

https://www.rbi.org.in/


 102 

3.4. Enhanced OpenID connect analysis and attacks evaluation 

The security protocol implementations have to be rigorously verified before they are 

applied in the real-time for protecting the user credentials, sensitive data, and 

protected resources. To analyze the proposed EOIDC, this section models three 

attacks which exist in different parts of the EOIDC protocol. They are summarized 

below: 

Impersonation. An impersonation attack is launched by sending login 

credentials of the legitimate user to the CAP through an attacker-controlled user-

agent in BSI. The stealing of credential is possible if an attacker steals a copy of the 

credentials of legitimate EOIDC users or when credentials are not limited to one-time 

use. Lack of verification results in the response being sent to the same IP address 

from where the authorization request had been issued. The impersonation attack is 

explained as follows. 

1) To impersonate a legitimate EOIDC user EOIDCUi with the identity IDi for 

accessing service provider SS, an attacker EOIDCAi first sends Ui request message as 

EOIDCUi makes it. 

2) Upon receiving message Ui from EOIDCAi, CAP verifies the signature and 

requests the credentials to validate the EOIDCUi (User-ID & Cs). Then, the attacker 

EOIDCAi ensures whether User-ID & Cs exists. If not, EOIDCAi chooses an another 

time to launch the attack. Otherwise, it follows the next step.  

3) If the hash (IP address), as well as CAPTCHA entered by the legitimate 

EOIDCUi, are known by EOIDCAi,  EOIDCAi  can procure the cryptography key using 

encry{sig(User-ID & Cs)key}CIkey.   

Eavesdropping. By sniffing both the private key and encrypted communication 

between the CAP and SS via BSI, the eavesdroppers get the ID and Access Token. 

Using the log analyzer, the eavesdroppers are able to trace the ID and access token 

from its origin and overhear if the token is passed between the BSI and CAP during 

any subsequent communication. The SSL/TLS provides end-to-end protection. 

However, it is commonly used to mitigate the attacks that manipulate the traffic. The 

SSL imposes in such a way that the web contents are not cached, resulting in 

undesired side-effects such as browser warnings due to the combination of HTTPS 

and HTTP contents. Due to these complications, notably the websites used SSL only 

on login pages, but not in entire communication. 

Force-Login. Cross-Site Request Forgery (CSRF) forces a legitimate EOIDC 

user to load a browser page with the malicious request and disrupts the legitimate 

user session. The attack also constructs the URL in a HTML construct such as  

img arc=bank.com/txn?To=evil. It forces the browser to issue an adversary request 

automatically. Even though it is an adversary request, it originates from the legitimate 

browser, and so the adversary request cannot be differentiated from the legitimate 

user request. An attacker EOIDCAi forces a browser to contact the SS by faking the 

CAP.  

Req →CAP EOIDCAi: User-ID – GET password ? TARGET=target . . . (EOIDCUi) 

CAP: Checks the request. 



 103 

3.4.1. Security constraints and validation in EOIDC 

Three separate claims prove the authentication property of the EOIDC: (1) not learning 

the secrets of EOIDC User, (2) EOIDC Authentication, and (3) not observing the 

authorization code.  

Claim 1. User credential transmission against Eavesdropping and 

Impersonation 

Initially, the service provider SS registers with the identity provider CAP and 

acquires the user ID and Cs which are only known to CAP. The user credentials are 

transmitted in the HTTPS message via BSI while redirecting the user to the CAP. 

With the secured HTTPS, the request transmission is performed on the SSL/TLS 

communication channel. Hence, only the intended receiver CAP reads the outgoing 

HTTP POST requests. Other than the HTTP POST request, the messages do not 

include the user secrets as well as CAP data structures. Thus, the EOIDC ensures that 

the secret of the User (User-ID, Cs) is not disclosed or overheard by the attacker. 

Also, the BSI Cid and Cs avoid the type of phishing attack that is an impersonation 

attack of malicious service acting as a legitimate SS to gain the user credentials.  

Validation. In the first protocol step, the User Agent UA establishes contact 

with BSI S 

1) UA  S IST_URL (HTTPS Request); 

2) S  Accept the Request; S  U {CAPTCHA} 

UA connects to the inter-site transfer URL (IST_URL) of SS and SS accepts the 

request and enforces the User U to enter the CAPTCHA string. The initial step has 

no vulnerabilities as it does not have any user credential.  

Claim 2. EOIDC authentication against Impersonation 

The CAP acquires the user credential from an end user via the UA and SS 

authenticates its end user with the CAP. However, sending a clear-text password 

creates the vulnerability as the same password in the clear text interaction is re-used 

in other interactions. The EOIDC overcomes this security issue by encrypting the 

user credential by applying the Algorithm 1.  

Validation. After a successful login of U, CAP generates Authentication 

request Auth_req with the required parameters. 

3) S C Auth_Req (PS, Cid, Cs, Ip_addr, CAPTCHA, RU, SP) IST_URL 

CAP generates Auth_Req and sends it to the user via BSI. Malicious service is 

likely to access the Cid, Cs to act as a legitimate user. The HTTPS is a secured 

channel that does not allow an attacker to access these secrets. However, the C must 

examine the Cid and Cs before accepting the request which secures the EOIDC 

against the phishing attack. After a successful validation of Auth_Req, the C presents 

the login form and acquires the user login credential. 

4) C  U {Login Form}; 

5) U  C {User Login Credential} using encrypted Ip_addr and CAPTCHA 

The malicious user may show interest towards acquiring a user credential for 

impersonating as a legitimate user. Therefore, the EOIDC forwards the user 

credential with the encrypted Ip_addr and CAPTCHA. 

 

 



 104 

Claim 3. Authorization code against force login  

The valid end user credential triggers the creation of the authorization code 

(Auth_Code = BASE64URL-ENCODE(SHA256(ASCII(EIP)))) which is created for 

a particular user IP address and CAPTCHA. The authorization code generating 

algorithm encrypts the IP address using the CAPTCHA string. Moreover, to tighten 

the security of the code, the proposed system hashes the encrypted IP address with 

SHA-256, and acquires the leftmost 128 bits and encodes them with base64url. Thus, 

the attacker is prevented from simply reading the authorization code to impersonate 

the authenticated user. Moreover, even if an attacker obtains Auth_Code, it is not 

possible to gain the access from CAP, as the Auth_Code validation time is very short. 

Further, the Auth_Code does not originate from any malicious party or an attacker-

controlled origin in the honest browser as the attacker does not know the key terms 

needed for generating the code. 

Validation. In EOIDC, CAP redirects the U to SS with the Authorization Code 

Auth_Code. 

6) CAP U to SS via UA {Auth_Code, SP} SS_RU;  

On successful validation of a user credential, CAP generates an Auth_Code and 

redirects the U with Auth_Code to SS.  

With the integrity maintained Auth_Code, the U can acquire the IDT and ACT 

from CAP; the malicious user may attempt to access the Auth_Code by modifying 

the value of SS_RU. The system modifies the SS_RU value to evaluate the 

Redirection vulnerability of EOIDC. However, the expired SAT indicates that the 

Auth_Code is in the hands of malicious users before the legitimate user access the 

malicious service. Furthermore, to evaluate the EOIDC against the Replay attack, the 

Auth_Code is accessed and replayed to gain the ID and Access Token from the CAP. 

However, due to the one-time validation and short time validity of the authorization 

code, the attacker fails to avail the service. Followed by the successful authorization 

code verification, the CAP generates and forwards ID and Access Tokens. 

7) CAP SS{Auth_Code}IST_URL; 

8) SS CAP {JWT(IDT, ACT)}SS_RU; 

With the integrity maintained Auth_Code, the SS obtains the JWT represented 

IDT and ACT from the CAP. As the secured IDT and ACT is exchanged between the 

CAP and SS uses the direct communication channel, an attacker is not able to access 

or read out the token values. With the valid IDT and ACT, the user can gain the 

service from the BSI. From the ACT, the BSI learns the list of banks wherein the user 

maintains the accounts and the bank user can directly login to the particular online 

services.  

4. Experimental evaluation 

This study compares the performance of the EOIDC with the conventional OpenID 

Connect protocol [16] to illustrate the security enhancement. 

 



 105 

4.1. Experimental setup 

EOIDC extends the OpenID Connect protocol using the MitreId Connect, which is an 

Open source Java implementation of OpenID Connect. The Mitre Corporation has 

developed it and is maintained by MIT-KIT. The Logging package in Tomcat called 

JULI captures all HTTP(s) traffic. The designed attack evaluation procedure is followed 

to examine the captured Log file to determine whether the attacks exist or not. The Log 

file generated by Logging package JULI is considered as the DataSet to evaluate the 

performance of EOIDC as the attack possibilities of EOIDC are identifiable using these 

Logs only.  

4.2. Performance metrics 

The strength of the system proposed against the attacks is measured by various metrics 

such as Defense Strength, (Detection Accuracy, Sensitivity, and Specificity), and Delay 

in detection. The proposed system either detects and responds to the attacks or misses 

it. The authorization code has the vulnerability for both the Replay and Redirect attacks. 

Based on the system responses, both these attacks have four possible outcomes such as 

True Positive (A), True Negative (D), False Positive (B) and False Negative (C).  

I) Defence strength: 

Detection Accuracy = (A+D) / (A+B+C+D) 

Sensitivity = D / (B+D) 

         Specificity = A / (A+C)  
         II)   Delay in detection 

  Delay in Detection is the time taken to detect/react to the attack.  

4.3. Result analysis  

This section evaluates the performance of EOIDC under various performance metrics, 

and the results are discussed in detail.  

4.3.1. Defence strength 

A) Detection accuracy  

 
Fig. 3. No of requests vs. detection accuracy 

 



 106 

Fig. 3 shows the performance of the EOIDC in terms of detection accuracy by 

increasing the number of requests from 1000 up to 5000. The accuracy detection 

value of both the Replay and Redirect attacks have a moderate variation while 

increasing the number of requests. It is observed that the accuracy detection value of 

Replay attack is 99.9% when the number of requests is 1000, and the detection 

accuracy drops to 99.72% when the number of requests is 5000. Similarly, the 

detection accuracy of Redirection attack falls from 99.8 up to 99.54% while 

increasing the request from 1000 to 5000. Though the EOIDC effectively identifies 

both the attacks with the security enhanced authorization code and the SAT, there is 

a possibility of losing the alert message due to the network congestion. Thus, there is 

a fall in detection accuracy.  

B) Sensitivity and specificity 

 
(a) 

 
(b) 
 

Fig. 4. No of requests vs. detection accuracy  
 

Fig. 4a and b shows the defence strength of the EOIDC in terms of sensitivity 

and specificity by increasing the number of requests. The sensitivity denotes the ratio 

of true positives, and the specificity, the ratio of true negatives. As shown in Fig. 4a, 



 107 

the sensitivity value of Replay attack is 100% as in the EOIDC security mechanism 

the False Negative condition never occurs. However, the specificity value has 

moderate variation while increasing the number of requests. As shown in figure 4a, 

when the number of requests is 1000, the system has 99.7% of sensitivity, and it 

becomes 99.2% while the number of requests increases to 5000.  Since the EOIDC 

effectively resists the replay attack due to the network congestion, the authorization 

code is likely to reach its expiration time, but the system assumes that the code is 

hacked by a malicious user, thus resulting in reduced specificity value. Similarly, 

Redirection attack sensitivity and specificity values also give a negative impact due 

to the network conjunction. As shown in figure 4b, when the no. of requests is at 

1000, the system has 90% of sensitivity and 99.8% of specificity, and when the 

number of requests increases to 5000, the sensitivity and specificity of the system 

drops by 83%, and 99.6%, respectively.  

4.3.2. Impact of No of requests   

 

Fig. 5. No of requests vs. delay in detection 

 
Fig. 6. No of requests vs. detection accuracy 

 



 108 

Fig. 5 shows the performance impact of CAPTCHA in EOIDC in terms of 

detection accuracy and delay in detection. From Fig. 5, it is observed that the delay 

in detection increases linearly when escalating the number of requests. When the 

number of requests is at 3000, the delay in detection in the proposed EOIDC is 2.82 

ms, and in the existing system, it is 2.40 ms only. It is because the proposed system 

has included more security on the authorization code. The detection accuracy of the 

EOIDC is compared with the existing OpenID Connect protocol [16]. As shown in 

Fig. 6, the detection accuracy of both the existing OpenID Connect and the proposed 

EOIDC decreases when increasing the number of requests. While the number of 

requests is at 3000, the EOIDC achieves 98% of accuracy, and at 5000 requests, the 

detection accuracy decreases to 97%. However, the proposed EOIDC achieves better 

detection accuracy than the OpenID Connect protocol as it restricts the possible 

attacks in the OpenID Connect protocol with the enhanced authorization flow.  

5. Conclusion 

This paper proposes OpenID Connect system for the mission critical enterprise 

applications. The proposed system enhances the existing OpenID Connect 

authorization code flow, which avoids the disclosing of sensitive user data to the third 

party and also ensures the user channel security. Moreover, the proposed EOIDC 

tightens the security mechanism with the support of SAT to prevent impersonation, 

eavesdropping, and force login attack. Finally, on formal analysis, the security 

validation demonstrates the protection features of EOIDC. The experimental results 

show that the EOIDC system successfully provides the secure SSO protocol and 

significantly enhances the security aspects of the existing OpenID Connect.  

R e f e r e n c e s  

1. P a s h a l i d i s, A., C. J. M i t c h e l l. A Taxonomy of Single Sign-on Systems. – In: Proc. of 8th 

Australasian Conference on Information Security and Privacy, Vol. 27, 2003, No 27, Springer, 

pp. 249-264. 

2. L e w i s, K. D., J. E. L e w i s. Web Single Sign-on Authentication Using SAML. – International 

Journal of Computer Science Issues, Vol. 2, 2009, pp. 41-48. 

3. L i, W., C. J. M i t c h e l l. Security Issues in OAuth 2.0 SSO Implementations. – In: Proc. of 17th 

International Conference on Information Security, Vol. 87, 2014, No 83, Springer,  

pp. 529-541. 

4. B a i, G., J. L e i, G. M e n g, S. S. V e n k a t r a m a n et al. AUTHSCAN: Automatic Extraction of 

Web Authentication Protocols from Implementations. – In: Proc. of Network and Distributed 

System Security Symposium, 2013. 

5. Z h a n g, L., H.-y. N i n g, Y.-y. D u, Y.-x. C u i, Y. Y a n g. A New Identity Authentication Scheme 

of Single Sign on for Multi-Database. – In: Proc. of 7th IEEE International Conference on 

Software Engineering and Service Science, 2016. 

6. F e t t, D., R. K ü s t e r s, G. S c h m i t z. The Web SSO Standard OpenID Connect: In-Depth 

Formal Security Analysis and Security Guidelines. – In: Proc. of 30th IEEE Computer Security 

Foundations Symposium, 2017. 

7. M u k h a m e d o v, A y b e k. Full Agreement in BAN Kerberos. – In: Proc. of IEEE Workshop of 

the 1st International Conference on Security and Privacy for Emerging Areas in 

Communication Networks, 2005, pp. 218-223. 

http://cogprints.org/6695/1/2-41-48.pdf
http://cogprints.org/6695/1/2-41-48.pdf
http://www.internetsociety.org/events/ndss-symposium
http://www.internetsociety.org/events/ndss-symposium


 109 

8. A b d e l m a j i d, N. T., et al. Location-Based Kerberos Authentication Protocol. – In: Proc. of 2nd 

IEEE International Conference on Social Computing, 2010, pp. 1099-1104. 

9. S h a w, J. Enterprise Single Sign-on: The Holy Grail of Computing. 2009. 

10. M c I n t o s h, M., P. A u s t e l. XML Signature Element Wrapping Attacks and Countermeasures. 

– In: Proc. of ACM Workshop on Secure Web Services, 2005, pp. 20-27. 

11. B h a r g a v a n, K., C. F o u r n e t, A. D. G o r d o n. An Advisor for Web Services Security Policies. 

– In: Proc. of ACM Workshop on Secure Web Services, 2005, pp. 1-9. 

12. G r u s c h k a, N., N. L u t t e n b e r g e r, R. H e r k e n h ö n e r. Event-Based SOAP Message 

Validation for WS-Security Policy-Enriched Web Services. – In: Proc. of International 

Conference on Semantic Web and Web Services, 2006, pp. 80-86. 

13. R a h a m a n, M. A., A. S c h a a d, M. R i t s. Towards Secure SOAP Message Exchange in a SOA. 

– In: Proc. of 3rd ACM Workshop on Secure Web Services, 2006, pp. 77-84. 

14. G a j e k, S., L. L i a o, J. S c h w e n k. Breaking and Fixing the Inline Approach. – In: Proc. of ACM 

Workshop on Secure Web Services, 2007, pp. 37-43. 

15. B e n a m e u r, A., F. A. K a d i r, S. F e n e t. XML Rewriting Attacks: Existing Solutions and Their 

Limitations. – In: Proc. of International Conference on Applied Computing, 2008. 

16. G a j e k, S., M. J e n s e n, L. L i a o, J. S c h w e n k. Analysis of Signature Wrapping Attacks and 

Countermeasures. – In: Proc. of IEEE International Conference on Web Services, 2009,  

pp. 575-582. 

17. J e n s e n, M., L. L i a o, J. S c h w e n k. The Curse of Namespaces in the Domain of xml Signature. 

– In: Proc. of ACM Workshop on Secure Web Services, 2009, pp. 29-36. 

18. S a k i m u r a, N., J. B r a d l e y et al. OpenID Connect Core 1.0. The OpenID Foundation, S3, 2014.  

19. B e l l a m y-M c I n t y r e, J., C. L u t e r r o t h, G. W e b e r. OpenID and the Enterprise: A Model-

Based Analysis of Single Sign-on Authentication. – In: Proc. of IEEE Conference on 

Enterprise Distributed Object Computing, 2011, pp. 129-138. 

20. H a r d t, D i c k. The OAuth 2.0 Authorization Framework. 2012. 

21. A l e c u, F., P. P o c a t i l u, G. S t o i c a et al. OpenID, a Single Sign-on Solution for e-Learning 

Applications. – Journal of Mobile, Embedded and Distributed Systems, Vol. 3, 2011, No 3, 

pp. 136-141. 

22. S u n, S.-T., K. H a w k e y, K. B e z n o s o v. Systematically Breaking and Fixing Openid Security: 

Formal Analysis, Semi-Automated Empirical Evaluation, and Practical Countermeasures. – 

Journal Computers and Security, Vol. 31, 2012, No 4, pp. 465-483. 

23. W a n g, H., C. F a n et al. A New Secure OpenID Authentication Mechanism Using One-Time 

Password (OTP). – In: Proc. of 7th International IEEE Conference on Wireless 

Communications, Networking and Mobile Computing, 2011, pp. 1-4. 

24. V i n i c i u s, C., T. G. D o. MultiAuth-WoT: A Multimodal Service for Web of Things 

Authentication and Identification. – In: Proc. of 21st Brazilian Symposium on Multimedia and 

the Web, 2015, pp. 17-24. 

25. M l a d e n o v, V., C. M a i n k a et al. On the Security of Modern Single Sign-on Protocols – OpenID  

Connect 1.0. arXiv:1508.04324v1, 2015. 

26. L i a n g, D., et al. Fault Tolerant Web Service. – In: Proc. of 10th IEEE Asia-Pacific Conference on 

Software Engineering, 2003, pp. 310-319.  

27. P i n z ó n, C. I., J. B a j o, J. F. D e  P a z, J. M. C o r c h a d o. S-MAS: An Adaptive Hierarchical 

Distributed Multi-Agent Architecture for Blocking Malicious SOAP Messages within Web 

Services Environments. – In: Expert Systems with Applications, Vol. 38, 2011, No 5,  

pp. 5486-5499. 

28. S o m o r o v s k y, J., A. M a y e r et al. On Breaking SAML: Be Whoever You Want to Be. – In: 

Proc. of 21st USENIX Security Symposium, 2012, pp. 397-412. 

29. L i, W., C. J. M i t c h e l l, T. C h e n. Mitigating CSRF Attacks on OAuth 2.0 and OpenID Connect. 

– In: Proc. of IEEE PST, 2018. 

30. B e k m e z c i, A. B., Ç. E r i ş, P. S. B ö l ü k. A Multi-Layered Approach to Securing Enterprise 

Applications by Using TLS, Two-Factor Authentication and Single Sign-on. – In: Proc. of 26th 

Signal Processing and Communications Applications Conference, 2018. 

31. B e n s o n, G., S. K. C h i n, S. C r o s t o n, K. J a y a r a m a n, S. O l d e r. Banking on 

Interoperability: Secure, Interoperable Credential Management. – Computer Networks,  

Vol. 67, 2014, pp. 235-251. 



 110 

32. G r o ß, T. Security Analysis of the SAML Single Sign-on Browser/Artifact Profile. – In: Proc. of 

19th IEEE Conference on Computer Security Applications, 2003, pp. 298-307. 

33. B h a r g a v-S p a n t z e l, A., A. C. S q u i c c i a r i n i, E. B e r t i n o. Establishing and Protecting 

Digital Identity in Federation Systems. – J. Comput. Security, Vol. 14, 2006, No 3,  

pp. 269-300. 

34. A l i, A., M. A f z a l i. Towards Securing e-Banking by an Integrated Service Model Utilizing 

Mobile Confirmation. – Research Inventy: International Journal of Engineering and Science, 

Vol. 4, 2014, No 9, pp. 26-30. 

35. A r d a g n a, C. A., E. D a m i a n i, F. F r a t i, S. R e a l e. Adopting Open Source for Mission-

Critical Applications: A Case Study on Single Sign-on. – In: Proc. of IFIP International 

Conference on Open Source Systems, Springer, 2006, pp. 209-220. 

36. Z e l l e r, W., E. W. F e l t e n. Cross-Site Request Forgeries: Exploitation and Prevention. – The 

New York Times, 2008, pp. 1-13. 

 
Received 30.09.2016; Second Version 16.03.2017; Accepted 07.06.2018 

 


