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Abstract: Cloud Data centers have adopted virtualization techniques for effective 

and efficient compilation of an application. The requirements of application from the 

execution perspective are fulfilled by scaling up and down the Virtual Machines 

(VMs). The appropriate selection of VMs to handle the unpredictable peak workload 

without load imbalance is a critical challenge for a cloud data center. In this article, 

we propose Pareto based Greedy-Non dominated Sorting Genetic Algorithm-II  

(G-NSGA2) for agile selection of a virtual machine. Our strategy generates Pareto 

optimal solutions for fair distribution of cloud workloads among the set of virtual 

machines. True Pareto fronts generate approximate optimal trade off solution for 

multiple conflicting objectives rather than aggregating all objectives to obtain single 

trade off solution. The objectives of our study are to minimize the response time, 

operational cost and energy consumption of the virtual machine. The simulation 

results evaluate that our hybrid NSGA-II outperforms as compared to the standard 

NSGA-II Multiobjective optimization problem. 

Keywords: Cloud computing, data center, virtual machine, pareto optimal, NSGA-II, 

greedy. 

1. Introduction 

Cloud users adopt the cloud computing services by utilizing the storage, 

computational and network resources available in the data centre. Cloud offers three 

important services in the form of Software as a Service (SaaS), Platform as a Service 

(PaaS) and Infrastructure as a Service (IaaS) [1]. The Data centres cater the demand 

of unlimited resources made by cloud users on pay per use basis with the help of 

virtualization. In virtualization [2], Virtual Machines (VMs) are created and allocated 

on top of the Physical Machines (PMs) in the form of computing instances of the PM. 

To speed up the overall operations of application, parallel execution of workloads is 

performed by VMs. In dynamic environment, the processing speed of virtual 

machines vary from one PM to another due to the unpredictable workload arrival and 

its allocation. This results in either overutilization or underutilization of VMs that 
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consequences load imbalance of data centre [3]. The scheduling of the workload on 

an appropriate virtual machine is an essential assignment to maintain stability and 

avoid poor system performance.  

Therefore it is necessary to design an algorithm that could enhance the data 

centre performance by dynamically selecting the VM for workload execution in such 

way that all the VMS will perform relatively equal work at a particular point of time 

i.e. at intra data centre level. Hence load balancing and VM selection problem can be 

treated as Multiobjective and NP-hard problem [4].    

1.1. Multiobjective optimization problem  

The VM selection problem in a cloud environment needs to optimize multiple 

objectives. In general, these objectives conflict with each other. These contradictory 

objective functions, generate a set of optimal solutions. In the optimal solution set, 

no single solution is greater than other solutions as far as objective functions are 

concerned. These optimal solution sets are denoted as Pareto optimal solutions. A 

Multiobjective optimization problem with p decision variables and q objectives can 

be formulated as [5]: 

(1)   Minimize 𝐹(𝑥) = (𝑓1(𝑥), 𝑓2(𝑥), … , 𝑓𝑘(𝑥)), 

subject to:  
𝑔𝑖(𝑥) ≤ 0     ∀𝑖 ∈ [1, 𝑝], 
ℎ𝑗(𝑥) = 0      ∀𝑗 ∈ [1, 𝑞], 

where x and  is the decision space, Rn   is the objective space, F:  Rn consists 

of k real valued objective functions fi(x) is the i-th objective function. gi(.) and hj(.) 

are the optional p number of inequality and q is number of equality constraints on the 

problem. These functions f1(x), f2(x), …, fk(x), are usually in conflict with each other. 

Similar to (1), in our article, we need to minimize the three conflicting objectives: 

response time, operational cost and energy consumption.  

1.2. Pareto optimality 

Pareto optimization is a technique for dealing with Multiobjective optimization 

problems [6]. This technique applies logical tactic concerning multiple contradictory 

objectives. Pareto optimization generates a large number of alternative optimal 

solutions as the best solution. However, with Multiobjective problems, the “best “is 

frequently reliant upon a user’s inclinations often termed as the best compromise 

solution.  

Generally, there is no solution that accomplishes the best solution for all 

objectives simultaneously. Therefore, the idea of Pareto optimality is suitable. A 

solution vector x(1) is said to dominate the other solution vector x(2), i.e., x(1) < x(2), 

if both statement below are satisfied. 

The solution vector x(1) is no worse than vector x(2) in all objectives, or fj(x(1)) ≤ fj(x(2)) 

for all j  {1, 2, …, k}. 

The solution vector x(1) is strictly better than x(2) if at least one objective, or  

fj(x(1)) < fj(x(2)) for at least one j {1, 2, …, k}. 

The Pareto frontier is the plot of objective functions whose non dominated 

vectors are in Pareto set also called as feasible Pareto optimal points. Our algorithm 
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generates true Pareto fronts comprising of a set of optimal trade off solutions. VM 

selection with load balancing accomplished by calculating the load imbalance factor 

of the VM and allocating the workloads to VM as per its load capacity during its 

scheduling cycle. Our proposed Multiobjective approach provides a range of possible 

solution on convex Pareto optimal set more quickly and efficiently. In virtue of this, 

our article proposes a greedy based elitist Non-Dominated Sorting Genetic  

Algorithm-II called as G-NSGA2 strategy. 

1.3. Contribution and Organization 

The main contributions of this article are as follows:  

1) A Multiobjective G-NSGA2 based strategy selects VM for workload 

scheduling and take care of data centre load balance.  

2) To avoid trapping in local optima and to improve the convergence speed, our 

proposed algorithm uses greedy strategy along with the Multiobjective evolutionary 

algorithm NSGA-II.  

3) Most of the approaches have given priority for the task scheduling rather than 

the selection of best computing resource, i.e., virtual machine on which the execution 

is to be carried out. Our algorithm selects the best VM first then schedules the 

workload. Therefore the success rate of faster execution of workload is better in our 

proposed algorithm as compared to other algorithms.  

4) The proposed strategy generates Pareto optimal solution with the objectives 

of minimization in response time, operational cost and energy consumption. 

The rest of the paper is organized as follows. Section 2 presents related work, 

Section 3 discusses the problem formulation while Section 4 explains the G-NSGA2 

strategy implementation details. The strategy is evaluated through illustrations in 

Section 5. Section 6 concludes this research article. 

2. Related work 

Avoiding the load imbalance during static as well as dynamic scheduling of workload 

is the primary requirement of the data centre. When information related to workload 

and instances is known to the system prior to execution of an application, then it is 

called static scheduling or compile time execution. In case of dynamic scheduling the 

information related to workload and instances changes unpredictably then it is called 

run time execution [3]. Lots of paper are published on the load balancing technique 

and scheduling of workload in cloud environment. Some of the relevant papers are 

discussed here to understand the view of technique.  

Q i  L i u  et al. [7] suggested an adaptive approach for allocating tasks evenly 

to improve time-space efficiency through map reduce function along with 

Multiobjective algorithm. Here the algorithm optimizes the execution time by map 

phase and prediction of execution time is achieved by reducer and the load balance 

is maintained by using Multiobjective algorithm. Instead S u b h a d r a  B o s e  

S h a w  [8] has proposed the algorithm for load balancer that will identify the least 

loaded VM available for scheduling of the tasks automatically on it to improve the 

response time of the resources. Here Author has used the static data to evaluate the 
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algorithm. A y y a p a z h a m  and V e l a u t h a m  [9] proposed neural network based 

load prediction technique in IaaS cloud environment. The algorithm uses genetically 

weight optimized neural network component for predicting the load of the host to 

create VM in future. The algorithm aims at reducing the response time and cost of 

the VM, while K. R a j e e v and T. P r a s h a r [10] discussed the bio inspired hybrid 

algorithm for efficient load balancing in cloud computing to minimize the average 

response time, processing cost and average data centre processing time. The 

combination of ant colony optimization and artificial bee colony algorithm have been 

used to handle the workload priority wise at multiple VMs. D e v i  and 

U t h a r i a r a j  [11] elaborated an improved weighted round robin algorithm for static 

and dynamic non-pre-emptive independent tasks scheduling to make cloud more 

efficient. F e n g  et al. [12] proposed novel cloud load balancing mechanism for task 

scheduling and elastic cloud scaling to ensure user’s Quality of Service (QoS) 

parameters with better load balance degree and completion time of the task. B h a t t  

and B h e d a  [13] proposed flexible load balancing algorithm based on the grouping 

of the virtual machine as per the domain where the function will provide the details 

of overloaded machine within the same domain. L i u  [14] proposed the load aware 

virtual machine placement algorithm for balancing the load within cloud data centre 

with the objective of reduction in network cost and energy consumption. G. S h i k h a, 

R. K. D w i v e d i and H. C h a u h a n [15] suggested dynamic synchronized throttled 

load balancing to avoid the under and over utilization of VM with the objective of 

maximizing response time and efficient allocation of coming requests. P h a m  and 

N g u y e n  [16] proposed ECRA-SA Algorithm for reducing the energy consumption 

and to improve the performance of data centre. The authors have considered the 

execution time and energy consumption as the objectives for virtual services 

provision in cloud computing. D. A t y a f and K. I. A r i f [17] discussed load 

balancing decision algorithm to manage and balance the load among virtual machines 

with the objective of minimization in completion and response time.  

An important shortcoming of most current studies is that though they have 

considered multiple contradictory objectives for the optimization of the problem, still 

they are generating the single optimal solution by combining all the objectives using 

weight and constraint methods instead of Pareto optimal solution. Many studies have 

suggested the complete VM migration to balance the load and to overcome 

overutilization of VM that could lead to the poor response time of the system. Very 

few papers have suggested minimization in energy consumption along with load 

balance. As we are dealing with the utilization of resources from data centre, then 

carbon emission and energy consumptions should be considered as important 

parameters for the selection of VM for scheduling of workload.  

3. Problem formulation 

3.1. VM selector and load balancer model 

The model of Multiobjective virtual machine selector and load balancer is shown in 

Fig. 1. Initially workloads of an application along with its requirements are uploaded 

by the cloud user to the workload portal. The workload analyser evaluates the 
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workload as per user’s requirements, makes the grouping of workload and forwards 

it to centralized scheduler. The resource manager and selector component of the 

scheduler collects the capabilities, information of all VMs in the form of number of 

processing elements and processing capacity of VMs. This collected information is 

forwarded to the load balancer of the scheduler to compute the load of all VMs. The 

load balancer analyses the ratio between the number of workloads executing and the 

total number of VMs available. If the ratio is less than 1, then it conveys the scheduler 

to recognise a VM for the workload; else it will compute the load on each of the VMs 

based upon the data received from resource manager. The scheduler decides the 

threshold value dynamically as per the workload count.  The VMs are classified as 

over utilized if the VM utilization is above the threshold value and if the utilization 

is below the threshold value then they are considered to be underutilized. Once the 

suitable VMs have been identified, the resource selector component of the scheduler 

runs the algorithm to fulfil the objectives of the cloud consumer. The algorithm 

generates the Pareto optimal list of VM for the scheduling of workload. Scheduler 

allocates the workload to the shortlisted VM for the execution of an application. 

 
Fig. 1. VM selector and load balancer model 

3.2. Virtual machine and workload model 

Virtual machines are the computing instances of the data centre used for execution of 

independent/dependent and pre-emptive/non-pre-emptive workload of the 

application. In this article, we are considering non pre-emptive independent 

workload. The scheduler of the system dynamically selects the virtual machine as per 

its capacity and current load to allocate the workload. This maintains the load balance 

of the data centre otherwise load imbalance in data centre develops the additional 

challenges like reduction in response time, added operation and maintenance cost of 

resources  

In general, virtual machine VM can be represented as VM={VM1, VM2,  

VM3, …, VMm}, as a set of M virtual machines that compute N workloads represented 

by the set W = {W1, W2, W3, …, WN}. All the machines are heterogeneous and parallel 

in nature. Here the required data such as capacity of virtual machine in the form of 
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number of processing elements, memory size and network bandwidth required for 

VM are calculated in order to allocate the workload as per the applications’ 

requirement. Cloud users upload the workload details in the form of workload length, 

expressed in Millions of Instructions (MI), as well as input output data file size of the 

workload. The workloads are in need of p amount of processing speed, q amount of 

memory size, r amount of storage space and s amount of bandwidth that will be 

fulfilled by selecting the VM of appropriate capacity for the execution of the 

workload. 

3.3. Scheduling model 

The virtual machine selection with the objectives of minimization in response time, 

reduction in operational cost and minimum energy consumption is performed using 

G-NSGA2 algorithm. 

Response time. Response time is one of the Objective functions (Ob) for 

selection of virtual machine to balance the load. The scheduler is always in the search 

of VM having minimum response time for faster execution of workload. Hence 

response time can be stated as follows: 

(2)   Response Time = minimize Ob𝑗1
(WK𝑖, VM𝑗), 

where:  

WKi  = independent workload i submitted for the execution of an application. 

VMj= virtual machine j selected for the scheduling of the workload. 

Response Time of the VM for scheduling of the workload computed as 

(3)   Ob𝑗1
(WK𝑖, VM𝑗) = FT𝑖𝑗 − AT𝑖𝑗 + TT𝑖𝑗,   

where, 

FTij is Finish Time of workload i on VMj, 

ATij=Arrival Time of workload i on VMj, 

TTij=Transfer Time of workload i on VMj,  

(4)      TT𝑖𝑗 =
DS𝑖

VM𝑗−BW
+ Delay,  

where: 

DSi  is input data file size of the workload i to be transferred on VMj, 

VMj is BW: Bandwidth of VMj. 
Operational Cost. To satisfy the user’s requirement, centralized scheduler is 

always in search of VM that requires minimum Operation Cost (OCost) for the 

execution of workload i on virtual machine j. Hence it is represented and computed 

as 

(5)     OCost = minimize Ob𝑗2
(WK𝑖, VM𝑗).    

Operational Cost Calculation.  

(6)    Ob𝑗2
(𝑊𝐾𝑖, VM𝑗) = PRCost𝑖𝑗 + IOCost𝑖𝑗, 

where: 

PRCostij is Processing Cost of workload i on VMj, 

IOCostij is Input Output Data Transfer cost for workload i on VMj, 

(7)   Ob𝑗2
= ∑ ∑ OCost𝑖𝑗

𝑛
𝑖=1

𝑚
𝑗=1 × 𝑋𝑖𝑗, 

s. t.  ∑ 𝑋𝑖𝑗 = 1,𝑚
𝑗=1   𝑋𝑖𝑗 ∈ {0,1}, 
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Xij = 1 when virtual machine executes that workload i, otherwise 0, 

(8)   PRCost𝑖𝑗 = ET𝑖𝑗 × VM𝑗Cost
, 

(9)   ET𝑖𝑗 =
WL𝑖

VM𝑗mips

, 

(10)   IOCost𝑖𝑗 = TT𝑖𝑗 + VM𝑗Cost
, 

where: 

ETij is Execution Time of workload i required on virtual machine j.  

WLij is Workload Length of workload i computed in million instructions. 

VMj_mips is Computing Speed of Virtual Machine j in millions of instructions 

per 1 s. 

Energy Consumption. To calculate the third objective, i.e., minimum energy 

consumption of virtual machines we focus on computational intensive application 

workload, therefore energy consumption caused by data storage and transfer are not 

considered. Minimization of Energy Consumption (EC) is represented as follows: 

(11)   EC = minimize ob𝑗3
(WK𝑖, VM𝑗). 

The total energy consumption is calculated as 

(12)   ob𝑗3
=  ∑ ∑ 𝑒𝑖𝑗

𝑛
𝑖=1

𝑚
𝑗=1 × 𝑥𝑖𝑗 ,    

where: 

𝑒𝑖𝑗  = energy consumption when workload i is executed on VM j.  

xij = 1 when workload i consumes the energy of virtual machine j, otherwise 0. 

Therefore, the VM selection in the cloud environment can be formulated as the 

following Multiobjective optimization problem. 

Response time = minimize Ob𝑗1
(WK𝑖, VM𝑗), 

Operational Cost = minimize Ob𝑗2
(WK𝑖, VM𝑗), 

Energy Consumption = minimize Ob𝑗3
(WK𝑖, VM𝑗). 

Calculation of Load Imbalance factor. The sum of all virtual machines loads 

is defined as 

(13)   LVM = ∑ VML𝑖
𝑘
𝑖=1 , 

where i, represents the No of VMs in the data centre. 

The load per unit capacity is defined as  

(14)   LCVM =
LVM

∑ VMC𝑖
𝑀
𝑖=1

 

(15)   Threshold Ti =LCVMVMCi, 

where VMCi = Capacity of the VM. 
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Before selecting the VM, the load balancer unit of scheduler calculates the loads 

of all VMs and then compares it with the threshold value that dynamically is set by 

the scheduler of the data centre. The VMs having less load value compared to the 
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threshold are considered as under loaded VMs. These VMs are used for workload 

scheduling on priority basis to avoid the load imbalance of the data centre.  

4. G-NSGA2: NSGA-II based implementation details 

In the process of VM selection, the centralize scheduler waits for specified duration, 

called waiting period or scheduling cycle. During this period, scheduler queues all 

the workloads and collects the capabilities of all VM from resource selector. The  

G-NSGA2 strategy is applied by the scheduler on the VMs to find the optimal 

mapping between the workload and VM. The result of the execution is a Pareto 

solution. Once the set of true Pareto fronts is generated, the scheduler selects first 

scheduling as per the cloud consumer’s preference. The selected solution from the 

Pareto fronts is treated as a state for the virtual machine. This state will be an origin 

from which the next iteration of the strategy will make another execution on a 

collection of VM. The algorithm keeps iterating and selects the VM for mapping of 

workload until no more workload arrives. 

4.1. G-NSGA2 algorithm steps  

In year 2000, D e b  et al. [18] implemented elitist Non-dominated Sorting Genetic 

Algorithm II (NSGA-II) that is a revision of the NSGA Multiobjective Evolutionary 

algorithm. NSGA-II offers greater transparency for finding the solution with the help 

of elitism operator, eliminating the parameter on the diversity operator and also 

reduces the complexity. Hence this article uses the NSGA-II algorithm to select the 

efficient virtual machine for workload scheduling in cloud data centres. Fast non 

dominated sorting and crowding distance are the major components of the NSGA-II 

algorithm. The procedure involved is as follows. 

To initialize with, parent population PI of size S is generated using random and 

greedy method. Details related to population initialization are present in Section 4.3. 

From PI an offspring QI of size S is constructed by adopting tournament selection, 

crossover and mutation operators. PI and QI are aggregated to generate total initial 

population RI of size 2S. Hereafter the algorithm keeps iterating to improve the 

fitness of individual in the population. The new population PI+1 of size S is obtained 

from population RI of size 2S using non-dominated sorting using and calculating 

crowding distance. The crowding distance of each individual is calculated as per the 

Euclidian distance between each individual arranged in front, based on their fitness 

function, comparison and sorting of the results. The individuals in the boundary are 

always selected because they have infinite distance assignment. The Crowding 

Distance (CD) of other solutions are  

(16)   CD𝐽 =  ∑
|𝑉𝐼(𝐽+1)−𝑉𝐼(𝐽−1)|

𝑉𝐼 max−𝑉𝐼 min

𝐾
𝐼=1 , 

here, K is the number of objective functions and CD is the crowding distance of the 

J-th individual. VIJ is the value of the J-th individual in the I-th objective function. 

The final solution is the one which has the largest crowding distance by means of 

NSGA II algorithm. Finally QI+1 offspring is obtained by using genetic operators 

and crowding distance on PI+1 population. At the end RI+1 of size 2S is obtained by 
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combining PI+1 and QI+1. The solutions obtained through NSGA-II are said to be 

Pareto optimal if they are non-dominated by any other solution in the solution space. 

RI+1 of size 2S is called as Pareto optimal set if the real diversity and capabilities are 

present in the individual of the set. 

4.2. Problem encoding 

Fig. 2 depicts the encoding mechanism where individual solution as a vector of 

integers. In our model, the index of the cell represents the workload id that are 

scheduled, the integer in each cell of vector describes the VM to which the workload 

is assigned. Here each workload’s request is allocated to one VM but VM is able to 

handle more than one workload. This encoding notifies about the number of 

workloads available for scheduling during the first scheduling cycle. 

W1 W2 W3 W4 W5 W6 W7 W8 

1 2 5 4 2 5 3 4 

Fig. 2. Example of chromosome in encoding solution 

4.3. Population initialization 

Population initialization is an important steps in NSGA2. In our strategy, the initial 

population is generated in combination of two methods. The first method aims to 

select the VM with minimum response time using greedy algorithm while second 

method adds diversity to the population by using random method. The VMs having 

high speed and good processing capacities are identified by calculating response time 

using (3). Then sorting of all VMs as per response time is performed. After that first 

VM is selected and the VMs having the response time more than first are removed 

from the solution and thus recursively the action is performed on all the VMs of the 

set. The solution set of VM having minimum response time is generated before the 

start of next scheduling cycle. 

4.4. Fitness function  

The objective functions, minimization in operational cost (5) and reduction in energy 

consumption (11) are used as fitness function to evaluate the population generated by 

the greedy and the random method.  The fitness is evaluated for each iteration until 

the termination criteria does not meet. 

4.5. Genetic operators 

Selection. An offspring is generated from the parent solution. The crowding 

tournament technique is used for selecting the parent solution from population. The 

selection strategy consists of elitism, i.e., selecting best one from randomly choosing 

two solutions of the population by replacing the old worst individual from solution. 

The solutions belonging to smaller fronts are always good. The same front solutions 

are compared on the basis of crowding distance. The solution having bigger crowding 

distance wins the tournament.  
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Crossover. Crossover operator generates better children by combining two 

parent solutions. Many crossover operators have been proposed in the literature [19]. 

In this paper, we use Two-Point crossover (TPX) [19] which showed a good 

performance to solve the problem.  

Mutation. Mutation operator has low complexity and provides solution 

diversity. These properties of mutation boosts the capabilities of NSGA-II to find the 

real Pareto front. Here, we use swap mutation technique [20]. In a chromosome, two 

genes are randomly selected and the value of their alleles is exchanged. Before 

starting the next scheduling cycle the state of the VM is stored by calculating the load 

imbalance factor using (15) of each VM. The VMs having less threshold, are selected 

for workload allocation of next cycle.   

Thus to solve the scheduling problem with best possible solution in an 

acceptable time frame, a combination of exploitation and exploration from two 

population based heuristic algorithms are used. NSGA-II has the ability of expanding 

the search space in the form of exploration whereas greedy method has the ability of 

finding the optima around the good solution by exploitation and thus helps to avoid 

the algorithm being trapped in local optima. This hybrid algorithm G-NSGA2 is 

designed to achieve minimum response time and reduction in operational cost with 

minimum energy consumption. The flow of G-NSGA2 process is shown in Fig. 3. 

 

 
Fig. 3. Flowchart of G-NSGA2 procedure 
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5. Performance evaluation  

This section explains the simulation results of the proposed algorithm and its 

comparison with the state of the art NSGA-II Multiobjective algorithm. The 

simulations were carried out using Python as an implementation language on an 

Intel(R) Core(TM) i7-5500U with 2.2 GHz processor and 16 GB RAM with Linux 

platform. The specifications and parameters used for demonstration of our proposed 

algorithm in cloud environment, are given in Table 1. 

Table1. Experimental setting 

Parameter  Value  

Network bandwidth 1 MB per 1 s 

Boot time and shutdown time of VM 0.5 s 

Performance variance of VM 24%  

Client execution price  $0.70/CPU per 1 h 

Scheduling cycle 80 s 

5.1. Performance metrics  

Here we have used the normalized fitness function and response time value by 

applying the next normalization formula on (3), (7) and (12): 

(17)   x   
𝑥𝑖

max
𝑗=1 to 𝑛

𝑥𝑗
, 

where x Normalized value of xi. 

We have used max normalization to normalize the absolute fitness value for 

easy comparison and visualization of overall quality of the result. The maximum 

value is mapped to one and the rest of the values lie in the interval [0, 1]. 

5.2. Dataset 

We have used workloads traces from Feitelson’s Parallel Workload Archive (PWA) 

[21].This helps to simulate a heavy workload scenario as workloads play an essential 

roles in process of scheduling.  The traces are shortlisted based on the high utilization 

rate and the offered load on the cloud during the specified period. 

5.3. Result analysis and performance evolution  

We compare the average makespan and average response time of G-NSGA2 with 

NSGA-II [22]. Multiobjective optimization algorithms comparison as per the 

objectives are shown in Figs 4, 5 and 6, respectively. All the values of response time, 

energy consumption and operational cost are normalized to visualize the effect of true 

Pareto fronts.  The NSGA-II and G-NSGA2 algorithms are initialized based on 

stochastic solutions into consideration as both have better search ability. The Pareto 

fronts acquired by NSGA-II are dominated by the G-NSGA2. The true Pareto fronts 

for Response time vs. energy consumption are shown in Fig. 4.  
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Fig. 4. Pareto curve for response time vs. energy consmption 

 

Fig. 5. Pareto curve for response time vs. operational cost 

 
Fig. 6. Pareto curve for energy consumption vs. operational cost 

 

We can see that the results of G-NSGA2 are better than NSGA-II because of 

better evolutionary strategy mixed with good a combination of cooperative and 

competition mechanisms. The diversity is more in G-NSGA2 as compared to  

NSGA-II. This is because the G-NSGA2 achieves more balanced load distribution 

between PMs and selects the VM having less degree of imbalance. In Fig. 5 we can 

see that Pareto fronts of Response time vs. operational cost of G-NSGA2 are better 

than that of NSGA-II. Since the G-NSGA2 uses the greedy method for finding 

objective of response time along with fitness values, this avoids fronts to fall in local 

optima.  
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Fig. 6 represents the Pareto fronts for Energy consumption vs. Operational cost. 

Here also G-NSGA2 has shown significant improvement and average gain because 

of elasticity in cost value of G-NSGA2 and good combination of evolutionary 

algorithm with the local search heuristic to achieve the optimal result. 

Table 2. Parameter Setting 

Specifications  Values  

Population Size  500 

Maximum  Iterations 200 

Crossover Probability (Pc)  0.7  

Mutation Probability (Pm)  0.6  

Crossover Type  Two point Crossover  

Mutation Type  Swap Mutation  

Tournament group size 2 

 

6. Conclusion 

In this article, we presented the problem of VM selection and scheduling of workload 

with the objectives of minimization in response time, operational cost and energy 

consumption. We proposed a novel multi-objective G-NSGA2 strategy, capable of 

computing trade off solutions between response time, operational cost and energy 

consumption. This strategy trusts on empirical models for predicting the energy 

consumption and operational cost of workload. We compared G-NSGA2 with 

NSGA-II, the contemporary Multiobjective algorithm for optimising VM response 

time, energy consumption and operational cost. The experiments presented that G-

NSGA2 calculated Pareto sets of higher quality than NSGA-II. Finally, we analysed 

the G-NSGA2’s response to peak workloads and for matching trade-offs in 

objectives. 
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