
 123

BULGARIAN ACADEMY OF SCIENCES

CYBERNETICS AND INFORMATION TECHNOLOGIES Volume 18, No 2

Sofia 2018 Print ISSN: 1311-9702; Online ISSN: 1314-4081

DOI: 10.2478/cait-2018-0033

Using Agent-Based Methodologies in Healthcare Information

Systems

Reem Abdalla1, Alok Mishra2
1Department of Modeling & Design of Engineering Systems, Atilim University, Ankara, Turkey
2Department of Software Engineering Atilim University, Ankara, Turkey

E-mails: reemelsaetii@yahoo.com alok.mishra@atilim.edu.tr

Abstract: This paper carries out a comparative analysis to determine the

advantages and the stages of two agent-based methodologies: Multi-agent Systems

Engineering (MaSE) methodology, which is designed specifically for an agent-based

and complete lifecycle approach, while also being appropriate for understanding and

developing complex open systems; Agent Systems Methodology (ASEME) suggests a

modular Multi-Agent System (MAS) development approach and uses the concept of

intra-agent control. We also examine the strengths and weaknesses of these

methodologies and the dependencies between their models and their processes. Both

methodologies are applied to develop The Guardian Angle: Patient-Centered Health

Information System (GA: PCHIS), which is an example of agent-based applications

used to improve health care information systems.

Keywords: Agent-based Methodologies, MaSE, ASEME.

1. Introduction

With the increasing importance of complex software systems in the software

industry, the need for using agent technologies have increasing to facilitate in

large-scale commercial and industrial software systems development. It is of

crucial need for system modelling techniques to support reliable, maintainable

and extensible designs. With these new challenges, software development has

become increasingly difficult. Thus, it is important that software companies develop

tailor made processes for constructing inherently complex and distributed software

to run in such environments and be able to live up to the task. Compared to traditional

software engineering paradigms, Agent Oriented Software Engineering (AOSE)
allows for improved functionalities and security [1-3].

Multi-Agent Systems (MAS) consist of autonomous agents, which interact

within a dynamic environment to accomplish their common individual goals.

Achieving these goals usually requires effective coordination of all the activities

assigned to the agents [20]. The primary advantages of using multi-agent

technologies include: (1) individuals agents take into account the application-specific

 124

nature and environment; (2) local interactions between individuals can be modelled

and investigated; and (3) difficulties in modelling and computation can be organized

as sub layers and/or components. Therefore, MASs provide satisfactory solution to

the issue of distributed control as a computational paradigm. In addition, Artificial

Intelligence (AI) techniques can also be utilized in line with these efforts [22]. With

the increasing importance of complex software systems in the industry, the need for

using agent technologies has become even more paramount for developing in a

sustainable way large-scale commercial and industrial software systems. In line

with these priorities, it is of crucial need for system modelling techniques to support

reliable, maintainable and extensible designs [21].

However, unlike Object-Oriented (OO) technology which uses Unified

Modeling Language (UML), there is no unified method that can be used to develop

agent systems. In this, regard, AOSE can also offer ways for comparing and

assessing agent methodologies to help developers in choosing between the current

and available methodologies [4].

Over the last two decades, health care systems have become increasingly

computer-based [23], requiring the ability to save and organize large amounts of

medical information pertaining to patients. Using agent technologies, this task will

be faster and more reliable [14]. Health care information systems have become more

and more computerized. A large amount of data in this sector needs to be stored and

analyzed, and with the help of computer systems, this task can be done faster and

more efficiently.

The present work is an attempt to analyze the Guardian Angel: Patient-Centered

Health Information System (GA: PCHIS) [5] using two agent methodologies: Multi-

agent Systems Engineering (MaSE) [6, 7] and Agent System Methodology (ASEME)

[8, 9]. These two support the engineering of a large array of open system and allow

for the complexity and knowledge presentation in the MAS to be scaled modularly

to any level required. These methodologies are clearly agent-based, the design is

widely regarded as agent-oriented, and both consider the social aspects associated

with the tasks involved [10-12].

2. MaSE methodology

The MaSE process [6, 7] includes seven steps split into two phases: the analysis phase
which in itself consists of three steps: capturing goals, applying use cases, and

refining the roles; and the design phase that covers four steps: Creating agent

classes, constructing conversations, assembling agent classes, and system design.

2.1. Analysis stage

The first step in the analysis stage is capturing goals, which takes the primary

system specifications and converts them into an organized collection of system goals.

It is shown in Fig. 1.

 125

Fig. 1. Goal hierarchy diagram

Applying use cases is an inter-agent conversation and establishes the true

backbone of a MAS because it enables the formation of a distributed process as a

powerful agent methodology. The use case models capture such cases from early

system requirements and restructure them as a sequence diagram (Fig. 2). A sequence

diagram describes a sequence of messages exchanged among multiple agent roles.

However, to assign the relationship between multiple roles and one agent is not

trivial. Many design quality factors need to be considered [24]. Software quality has

long been a critical issue for software developers [25, 26]. First, use cases are

extracted from the system requirements in the analysis stage to describe a series of

events that determine the behavior of the desired system.

A sequence diagram is used to define a minimum set of messages that should be

passed among the roles. If a message is exchanged between two roles, then there

should be a corresponding connection path between the two. The communication path

created among the roles by independent agent classes imply that there must be a

conversation among agent classes to pass the message.

Refining roles converts the goals in the goal hierarchy diagram into more useful

forms for building MAS roles.

Roles are constructing blocks used to capture system goals and determine the

agents’ classes in the design stage. The role is an abstract description of the expected

function of the enterprise and covers the goals of the target system to which it has

been assigned [16, 17]. The general shift of goals into roles is one-to-one, and every

goal maps to one role [10].

 126

Fig. 2. GA:PCHIS sequence diagram

Refining roles converts the goals in the goal hierarchy diagram into more useful

forms for building MAS roles.

Roles are constructing blocks used to capture system goals and determine the

agents' classes in the design stage. The role is an abstract description of the expected

function of the enterprise and covers the goals of the target system to which it has

been assigned [16, 17]. The general shift of goals into roles is one-to-one, and every

goal maps to one role [10].

Fig. 3. Traditional role model for the GA:PCHIS

Fig. 3 shows a traditional role model for the GA:PCHIS. The lines among the

roles in this model refer to possible connection paths. These paths are derived from

the sequence diagrams developed in the previous step. Fig. 4 shows clearer and more

complete version of the role model, which contains information on the interactions

among role tasks. The goals related with each role are represented under the role

name. Also illustrated are the tasks related to each role, used to determine each role’s

behavior.

PDA
Home

Computer
provider Hospital

request

communicate

acknowledge request

update medical

history

patient

notify the

PDA

upload data

access medical

history

alternative

treatment plan

send resent data

register medical data

 127

Fig. 4. GA:PCHIS role model

2.2. The design stage

The design stage of the MaSE translates the agent classes to actual agents. It describes

the numbers, types, and locations of agents within a system by using a deployment

diagram. Since most of the work has been done in the previous stage, the design of

the system, in essence, is the simplest stage within MaSE.

The main objective of this step is to construct a number of agent classes

determined from the component roles; constructing conversations using

communication task diagrams as a type of finite state machine, where every

conversation is depicted by two communication class diagrams; one is for the initiator

of the conversation and the other for the responder. Each diagram displays the

sequence of the messages exchanged between the initiator and the responder.

3. ASEME methodology

The ASEME methodology [8, 9, 15] consists of three steps: requirements, design,

and implementation. It also covers a modular agent development method and offers

the concepts of intra-agent control to determine the agent’s behavior by formatting

the various modules which execute this tasks. In addition, the Inter-Agent Control

(IAC) defines the protocols that control the coordination of the agents’ society.

3.1. Requirements analysis

At this stage, the participating actors are identified along with their respective goals.

Furthermore, information is collected about the specific requirements that dictate the

expected system functions. Initially, the analyst determines which actors will act in

the system. Next these actors are related with their goals. As a final stage, the specific

requirements associated with each goal of each actor are defined [15]. Fig. 5 describes

the actor diagram for the target system.

 128

Fig. 5. GA:PCHIS actor diagram

3.2. Analysis phase

There are certain concepts involved in an analysis [9, 15]. In the following these

concepts are introduced and explained in brief:
Roles. Human and agent roles can correspond to the actors of the requirements

analysis phase as concrete roles. These roles are initially represented in the use case

diagram and, then, moved to the roles model, which includes the role name, the inter-

agent protocols which the role participates in, and its liveness model as shown in

Fig. 6.

show

reports

user

providerregister patient

data

collect patient

reports

treatment

sickness

analyzing

patient reports

patient

PDA

record patient

patient

preference

offer advice

manage

therapy

option

monitor patient

condition

home

computer
parent receive data load data

upload to

hospital

make

suggestion

manager

hospital

physician

ask patient

diagnostic

conditions

diagnostic

conditions

manage

medical

records

keep medical

history

update

get update

from home

computer

 129

Fig. 6. The role model, including three liveness formulas

Use-Cases. The use case model shows the relation between the system and its

environment while also defining the system functionality. Use cases are derived

from the goals of the actor diagram in the previous phase (Fig. 7).

Fig. 7. GA:PCHIS use case diagram

Capabilities. In general, an agent’s capabilities describe what the agent can

actually achieve. The capabilities derived from the use case diagram are related to

the tasks and can be done by the role itself or through interaction with other roles.

Functionalities. A functionality is associated with the various types of

technologies used to implement reasoning mechanisms.

Activities. Each capability is broken down into simple activities.

Agent Interaction Protocols. A protocol is implemented as a capability.

Liveness model. This is a process model which shows the dynamic behavior of

the roles in the system.

register patient

data

analyzing patient

reports

collect patient

reports

treatment

sickness

show reports

provider

user

PDA

record patient

data

keep well

patient

preference

manage therapy

option

monitor patient

condition

patient

offer advice

get update from

home computer

hospital

manager

physician

hospital computer

manage medical

records

keep medicl

history update

ask patient

diagnostic

conditions

show medical

reports

home computer

receive data

parent

load data

make suggestion

upload data to

hospital

ROLE: PDA

Protocols: get patient data involves Store patient's information.

Liveness:

agent = (data schedules) ω //(monitor patient condition) ω

data schedules =downloaded data. store data.

monitor patient condition = get patient data. data schedules. monitors

progress*, data update.

 130

4. Results and discussion

4.1. MaSE

MaSE is the first methodology used in this paper, in its latest form, and updated as it

appears in [6, 7]. This methodology is constructed based on the application of

current techniques for the OO. As a software engineering approach, agents are

described as finite state machines. The focus is on communication modeling, and

the control flow is also presented within a very clear plan.

In the MaSE methodology, every agent acts as a software process that interacts

with another agent or software process to accomplish a common overall goal. Even

though some agents are intelligent and designed efficiently while others are not, all

are treated equally; that is, they all work in the same manner to achieve the required

goal. MaSE can also be regarded as an environmental and deployment model.

In MaSE, several software agent applications are encapsulated and all their

external interfaces are closed by an agent involved in the system communication

protocol. However, one limitation of MaSE is that the open systems are not taken

into consideration in the process, as a result of which agents cannot be created,

deleted or moved during implementation. Also, in exchange for multicast, the

interactions among the agents of a target system are to be on a one-to-one basis. For

this reason, systems employing MaSE are not considered as extensive.

Goal analysis, initially performed in the MaSE process, enhances goal

preservation through the stages of analysis and design. The role and modeling of the

agent class is facilitated by focusing upon assigning a clear goal, each of which is

intended to be fulfilled. Also, there are tasks that belong to the custom goals of the

roles.

4.2. ASEME

The second methodology used in this study was ASEME. To build MAS, this

methodology uses model-driven techniques. The different models included are

represented using meta-models with the Eclipse Modeling Framework (EMF).

ASEME uses the Agent Modelling Language (AMOLA), which describes both

syntax and semantics for building MAS models, in this way supporting the analysis

and design phases of the software development process. AMOLA also copes with the

individual and societal side of the agents, describing how protocols and capabilities

can be used in the agents' design. In ASEME the guidelines are missing because the

authors depend only on automated model transformations. The same is true for tasks

to be done at each stage of development.

4.3. MaSE & ASME

MaSE illustrates, for the first time, both inter and intra-agent communications that

should be integrated. However, MaSE models alone cannot provide a modeling

technique for analyzing systems and allowing for model transformation in between

the analysis and design stages. The concurrent tasks model is determined from the

 131

goal hierarchy tree and from sequence diagrams in a manner that cannot be

automated. In ASEME the model transformation process is typical [18, 19].

 For obtaining the design stage intra-agent control from the analysis phase

liveness model, MaSE offers simple rules but the guidelines are missing because the

authors rely only on the paradigm shifts [18]. Agents in MaSE are associated with

the target system goals, while ASEME defines agent types which arise from the actors

of the requirements stage. Finally, ASEME allows for greater implementation

possibilities, while in MaSE agents are executed using AgentTool as in [19].

5. Conclusion

The main aim of this case study was to achieve greater functionality and flexibility

in such type of complex open systems as health care information systems. The

successful use of the two selected agent methodologies in designing the GA: PCHIS

indicates that they are practical and usable.

The notation of the two methodologies is generally acceptable and both have a

strong modeling language in terms of satisfying different criteria such as those of
systematic transitions, modularity and ease of comprehension.

Regarding the processes, from the software development lifecycle point of view,

both of the methodologies include the specification and analysis design as well as

detailed design to some extent. Additionally, the selected methodologies provide

techniques and adequate support for abstractions, allowing for the complexity and

knowledge in the MAS to scale modularly to any arbitrary level required.

Moreover, there are distinctive features, such as Model-Driven Engineering

(MDE), documentation of non-functional requirements phases in ASEME and

deployment model in MaSE.

The evaluation of the AOSE method shows that most effort has been dedicated

to requirements, design, and implementation phases. However, advances are still

needed in all stages of the software lifecycle. With regard to the future work, it

includes increasing the number of agent-oriented methodologies and adding other

evaluation methods towards the assessment. In doing so, the work can be improved

by involving supplementary models and techniques.

R e f e r e n c e s

1. B r a d S h a w, J. Introduction to Software Agents. – In: Software Agents, J. BradShaw, Ed. Menlo

Park, California, AAAI Press, 1997, pp. 3-46.

2. W o o l d r i d g e, M., N. R. J e n n i n g s. Intelligent Agents: Theory and Practice. – The Knowledge

Engineering Review, Vol. 10, 1995, No 2, pp. 115-152.

3. H o a, K. D., W. M i c h a e l. Towards a Next-Generation AOSE Methodology. – Science of

Computer Programming, Vol. 78, 2013, No 6, pp. 684-694.

4. M a n s u r a, H. Metrics for Evaluating Agent Oriented Software Engineering Model. – In:

IEEE/OSA/IAPR International Conference on Informatics, Electronic &Vision, Dhaka,

Bangladesh, 4 October 2012. DOI: 10.1109/ICIEV.2012.6317459.

5. E r i c s s o n, N i k o l a T e s l a d. d. Technical Description. – Integrated Health Care Information

System. Croatia, April 2004.

https://doi.org/10.1109/ICIEV.2012.6317459

 132

6. D e L o a c h, S. A., M. F. W o o d. Multiagent Systems Engineering: The Analysis Phase. – Technical

Report, Air Force Institute of Technology, AFIT/EN-TR-00-02, June 2000.

7.W o o d, M. F. Multiagent Systems Engineering: A Methodology for Analysis and Design of

Multiagent Systems. MS Thesis, AFIT/GCS/ENG/00M-26. School of Engineering, Air Force

Institute of Technology (AU), Wright-Patterson AFB, Ohio, USA, 2000.

8. S p a n o u d a k i s, N. The Agent Systems Engineering Methodology (ASEME). Ph. D. Thesis, Paris

Descartes University, 2009.

9. S p a n o u d a k i s, N. I., P. M o r a i t i s. The Agent Modeling Language (Amola). – In:

AIMSA’2008, LNCS (LNAI). Vol. 5253. D. Dochev, M. Pistore, P. Traverso, Eds. Heidelberg,

Springer, 2008, pp. 32-44.

10. I g l e s i a s, C. A., M. G a r i j o, J. C. G o n z a l e z. A Survey of Agent-Oriented Methodologies. –

In: Intelligent Agents V (Atal’98), LNAI 1555. J. P. Muller, M. P. Singh, A. Rao, Eds. Berlin,

Springer-Verlag, 1999.

11. T v e i t, A. A Survey of Agent-Oriented Software Engineering. First NTNU CSGS, 2001.

12. W e i s s, G. Agent Oriented Software Engineering. Knowledge Engineering Review. – In: Second

International Workshop on Agent-Oriented Software Engineering (AOSE’02), Vol. 16, 2001,

No 4, pp. 101-108.

13. L a w, D. Methods for Comparing Methods: Techniques in Software Development. NCC

Publications, 1988.

14. S z o l o v i t s, P., J. D o y l e, W. J. L o n g. Guardian Angel: Patient-Centered Health Information

Systems. Tech Report MIT/LCS/TR-604, 2004.

15. S p a n o u d a k i s, N. I., P. M o r a i t i s. Using ASEME Methodology for Model-Driven Agent

Systems Development. – In: AOSE XI, LNCS. Vol. 6788. D. Weyns, M. P. Gleizes, Eds.

Springer, 2011, pp. 106-127.

16. K e n d a l l, E. A. Agent Software Engineering with Role Modelling. – In: LNCS. Vol. 1957, 18

June 2002.

https://link.springer.com/bookseries/558
17. K i n n y, D., M. G e o r g e f f, A. R a o. A Methodology and Modelling Technique for Systemsof

BDI Agents. Agents Breaking Away. – In: Proc. of 7th European Workshop on Modelling

Autonomous Agents in a Multi-Agent World (MAAMAW’96). Lecture Notes in Artificial

Intelligence. Vol. 1038. Berlin Heidelberg, Springer-Verlag, 1996. pp. 56-71.

18. G o m e z-S a n z, J. J., F. R u b e n. Understanding Agent-Oriented Software Engineering

Methodologies. – The Knowledge Engineering Review, Vol. 30, 2015, No 4, pp. 375-393.

19. S p a n o u d a k i s, N., P. M o r a i t i s. The Agent Systems Methodology (ASEME): A Preliminary

Report. –In: Proc of 5th European Workshop on Multi-Agent Systems, Hammamet, Tunisia,

December. (EUMAS’07), 13 December 2007, pp. 13-14.

20. J u a n, A., S. C a r l e s, A. J o s e p l i , L. M a i t e, R. I n m a c u l a d a. Towards Next Generation

Coordination Infrastructures. – The Knowledge Engineering Review, Vol. 30, 2015, No 4,

pp. 435-453.

21. M e h d i, D. Programming Multi-Agent Systems. –The Knowledge Engineering Review, Vol. 30,

2015, No 4, Cambridge University Press, pp. 394-418.
22. J i n g, X i e, C h e n-C h i n g L i u. Multi-Agent Systems and Their Applications. – Journal of

International Council on Electrical Engineering, Vol. 7, 2017, No 1, pp. 188-197.

23. A b d a l l a, R., A. M i s h r a. Application of Agent Methodology in Health Care Information System

in TEM Journal (Technology Education, Management). – Informatics, Vol. 6, 2017, No 1,

pp. 147-152.

24. Y u, L., A. M i s h r a. Multiple-Role Agent Based Distributed Computing. – Technics Technologies

Education Management, Vol. 8, 2013, No 1, pp. 238-243.

25. M i s h r a, D., A. M i s h r a. Simplified Software Inspection Process in Compliance with

International Standards. – Computer Standards & Interfaces, Vol. 31, 2009, No 4, pp. 763-771.

26. M i s h r a, D., A. M i s h r a. Software Quality Assurance Models in SME – A Comparison. –

International Journal of Information Technology and Management, Vol. 5, 2006, No 1,

pp. 4-20.

Received 19.01.2018; Second Version 09.04.2018; Accepted 20.04.2018

https://www.inderscience.com/browse/index.php?journalID=18

