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1. Introduction 

This paper looks into designing and implementation of a hybrid system, based on 

genetic algorithms and fuzzy sets theory. The main concepts of hybridization are 

applied on Genetic Fuzzy Software System for Asset Management (GFSSAM) which 

is a hybrid software system, built on previously created and tested Fuzzy Software 

System for Asset Allocation Management (FSSAM), published in [1]. In GFSSAM, 

a genetic algorithm is implemented for finding optimal values of the parameters of 

FSSAM. 

Artificial Intelligence (AI) aims at developing various techniques for knowledge 

presentation and knowledge discovery; intelligent search; dealing with inaccurate 

and/or uncertain data and knowledge; machine learning etc. The hybrid systems of 

AI are designed and created so that the advantages of one or more of AI computing 

paradigms are used to compensate the disadvantages of the others. Genetic fuzzy 

systems are integrated hybrid systems of AI that combine the potential of fuzzy sets 

theory for modeling the reasoning process with the abilities of genetic algorithms for 

finding optimal solutions. 

2. Hybrid systems based on fuzzy sets and genetic algorithms 

Conceptually fuzzy systems are considered to be able to solve non-linear problems 

in a variety of applications such as classification, modeling, management and others. 

Their key feature is the ability to model expert human knowledge but the main 

deficiency of such systems is the lack of ability to learn and adapt. The first attempts 

to add other techniques to fuzzy systems start around 1990. Two types of 
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hybridization are considered to be the most successful and they are neural-fuzzy 

systems and genetic fuzzy systems. 

Genetic processes are applied to fuzzy systems for solving problems of different 

degree of complexity: From the simplest case for optimization of the parameters of a 

fuzzy system to the most complex – for training its rule-base. A reverse approach 

(namely hybridization for improving genetic algorithms with fuzzy tools) is proposed 

by H e r r e r a  et al. [2].  

Two basic approaches exist in creating hybrid systems based on fuzzy sets 

theory and genetic algorithms: 1) fuzzy sets theory is used for modeling the 

components and adjusting the parameters of genetic algorithms and these are called 

fuzzy genetic algorithms (GA_FIS = Genetic Algorithms with Fuzzy Inference 

System); 2) genetic algorithms are used to solve optimization or search problems 

related to fuzzy systems and thus Genetic Fuzzy Systems (GFS) are obtained. 

The process of designing a fuzzy rule-based system can be defined as an 

optimization problem for finding most suitable built-in variables, parameters and 

rules. Moreover, genetic algorithms are a widely used technique for global extrema 

search, as they show the ability to find nearly optimal solutions with the possibility 

of using a priori knowledge concerning the search space. For a fuzzy rule-based 

system a priori knowledge is the information about the type of membership functions, 

fuzzy rules and the architecture of the fuzzy system itself [3].  

Genetic fuzzy rule-based systems 

Fuzzy rule-based systems mimic the decision-making process by handling the 

available information in a human-like manner. The behavior of a fuzzy rule-based 

system depends on three sets of parameters: 1) fuzzy sets, associated with linguistic 

variables that define the semantics of the rules; 2) fuzzy rules, determining how the 

output variables are to be derived, and 3) t-norms and s-norms used for aggregation 

and defuzzification. 

The process of creating a fuzzy system starts with designing the system’s 

architecture, which is a relatively easy task. The most difficult, and requiring 

significant amount of resources, is the stage of setting up the parameters of the system 

so that the obtained output results are feasible. 

Following the general structure of а fuzzy system, each fuzzy software rule-

based system consists of a knowledge base, incorporating the data base and the rule 

base, and an inference machine. A precise description of the inference machine of 

FSSAM is published in [1]. 

The explicit structure of a fuzzy rule-based system follows the logic of the fuzzy 

reasoning process. In the process of hybridization it is a must to determine the number 

of parameters to be optimized. The following are the considerations about that 

number. 

Let 𝑁 be the number of the input fuzzy variables 𝐾𝑖, 𝑖 = 1, 2, 3,… ,𝑁, and 𝑛𝑖 be 

the number of the terms 𝑋𝑖𝑗 of 𝐾𝑖 for each 𝑖, where 𝑗 = 1, 2, 3, … , 𝑛𝑖.  

Let 𝑆 be the number of the output fuzzy variables 𝑄𝑠, 𝑠 = 1, 2, 3, … , 𝑆, and 𝑝𝑠 
be the number of the terms 𝑌𝑠𝑝 of 𝑄𝑠 for each 𝑠, where 𝑝 = 1, 2, 3, … , 𝑝𝑠. 
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Let 𝜇𝑖𝑗(𝑥) be the membership function of the term 𝑋𝑖𝑗 and 𝜇𝑠𝑝(𝑦) be the 

membership function of the term 𝑌𝑠𝑝. 

Then the total number of the membership functions in the knowledge base is 

(1)                                                     𝑁.∑𝑛𝑖

𝑁

𝑖=1

+ 𝑆.∑𝑝𝑠.

𝑆

𝑠=1

 

The numerical values of the input data form a 𝑁-dimensional vector  
𝑥∗ = (𝑥1

∗, 𝑥2
∗, … , 𝑥𝑁

∗  ) with crisp values. This vector is fuzzified by calculating the 

values of the membership functions 𝜇𝑖𝑗(𝑥𝑖
∗) for each 𝑖 and 𝑗. Thus the number of the 

values of the membership functions that are stored in the data base is 

(2)                                                             𝑁.∑𝑛𝑖

𝑁

𝑖=1

. 

The next procedure is the aggregation. Let the 𝑡-norm, defined by the min 

operator, be used for the logical AND operator and the 𝑠-norm is defined by the max 

operator. The 𝑚-th rule 𝑅𝑚 in the rule base has the form 

IF 

{𝐾𝑚1  is   𝑋𝑚1𝑗𝑚1  }  AND  {𝐾𝑚2 is   𝑋𝑚2𝑗𝑚2  } AND … AND {𝐾𝑚𝑘  is   𝑋𝑚𝑘𝑗𝑚𝑘
 } 

THEN  

{𝑄𝑚1   is   𝑌𝑚1𝑗𝑚1  } AND {𝑄𝑚2   is   𝑌𝑚2𝑗𝑚2  } AND … AND {𝑄𝑚𝑙   is   𝑌𝑚𝑙𝑗𝑚𝑙
 } 

for 𝑚 = 1, 2,… ,𝑀, where 𝑀 is the number of rules. 

After the choice and execution of the m-th rule the values of Θ𝑚 and Θ𝑚
𝑜  are 

calculated sequentially according to the following formulae: 

(3)                     𝛩𝑚 = min
𝑘
{ 𝜇𝑚1𝑗𝑚1

(𝑥1
∗), 𝜇𝑚2𝑗𝑚2

(𝑥2
∗),… , 𝜇𝑚𝑘𝑗𝑚𝑘

(𝑥𝑘
∗) },   

(4)                                                             𝛩𝑚
𝑜 = 𝛩𝑚, 

where 𝑤𝑚 is the weight of the m-th rule for 𝑚 = 1, 2,… ,𝑀. 

Once all the rules in the rule-base are executed, the membership degrees  

𝜇𝑠𝑝
𝑚 = Θ𝑚

𝑜  are derived for each term 𝑌𝑠𝑝 of the output variables.  

The aggregation is then obtained by calculating the values: 

(5)                                            𝑃𝑠𝑝 = max
𝑠,𝑝
{ 𝜇𝑠𝑝

1 ,  𝜇𝑠𝑝
2 , … ,  𝜇𝑠𝑝

𝑀  }, 

for each 𝑌𝑠𝑝, where 𝑠 = 1, 2, 3,… , 𝑆 and 𝑝 = 1, 2, 3,… , 𝑝𝑠 . 

The last procedure is defuzzification. Here, a crisp output value is obtained and 

defuzzification is derived by implementing Center of gravity method, Median 

method, Center of max method, Min of max method or Max of max method. 

The applications of fuzzy rules-based systems are various and numerous and 

some of them can be studied in detail in [5-12], etc.  

3. GFSSAM 

The ultimate goal of every decision making process is to find an optimal solution for 

a certain problem when a number of possible solutions exists. Historically, Bellman 

and Zadeh are the first to propose a fuzzy model for decision-making. They treat 
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objectives and goals as fuzzy sets and the solution is calculated by aggregating these 

sets. There are various algorithms for building fuzzy systems and detailed overview 

is proposed in [13-19] and others. 

At the core of genetic fuzzy systems lies the idea that the advantages of 

evolutionary computation and fuzzy systems can be combined. There are different 

ways to apply evolutionary computing to fuzzy systems – genetic algorithms, genetic 

programming or evolutionary strategies can be used in order to obtain a genetic fuzzy 

system. 

GFSSAM aims at an automatic set up of the system’s parameters. In this case 

the fuzzy system architecture, the domains of the linguistic variables and the used 

operators are known in advance. Three distinctive situations exist with regard to the 

fuzzy system knowledge base: 

 The rule base is known, but the fuzzy variables are either unknown or only 

approximated and need optimization; 

 The semantics of fuzzy rules is at least approximately known, but the rules 

themselves are not defined precisely; 

 Neither the fuzzy variables nor the fuzzy rules are known.  

In each of these situations, the genetic algorithm is applied differently.  

In the preliminary stages of designing a genetic fuzzy system the main goal is 

to automate the process of generating knowledge base, which is actually an 

optimization problem or a search problem for an optimal solution. This process 

consists of finding a suitable for the situation knowledge base, and after the 

parameterization of this knowledge base – adjusting the values of the parameters so 

that they are optimal depending on the optimization criteria. 

In case of unknown fuzzy variables and known fuzzy rules, the problem is 

reduced to an optimization problem with constraints on an unlimited domain. If the 

fitness function is smooth, the conventional methods for optimization are applicable 

and generally they are faster than the genetic algorithms. The reason for using genetic 

algorithms in this situation is that first – the fitness function is not smooth, and second 

– a genetic algorithm gives several optimal solutions as an output result.  

3.1. Designing a model of a genetic fuzzy system 

The main objective in designing the model of GFSSAM is to use a genetic algorithm 

optimization on an already existing fuzzy system. The preliminary created system is 

FSSAM which econometric base, architecture and performance are described in 

details in [1, 7]. 

As can be seen from the general scheme of a genetic fuzzy system, presented on 

Fig. 1, the genetic algorithm is used for optimization of the fuzzy system’s knowledge 

base. The knowledge base of FSSAM consists of the membership functions of the 

terms of input and output fuzzy variables, as well as the rule-base. 

The design of the hybrid system has to provide the simultaneous tuning of all 

parameters of the membership functions by finding optimal values without changing 

their type or the rule-base. 
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Fig. 1. Genetic fuzzy system for tuning the knowledge base 

3.2. Genetic algorithm 

Genetic Algorithm (GA) is an adaptive algorithm, defined by an ordered septenary 

of operators and parameters: 

GA = (𝒫, 𝐏𝐏,ℱ, 𝒮, Ω,Ψ, 𝜍), 
where 𝐏𝐏 is a population with size 𝒫 consisting of chromosomes 𝒄𝒋: 

𝒄𝒋 = (𝑐1
𝑗
, 𝑐2
𝑗
, … , 𝑐𝑙

𝑗
) ∈ 𝐏𝐏, 𝑗 = 1, 2, … ,𝒫, 

which are 𝑙-dimentional binary vectors (GFSSAM is defined and realized on binary 

chromosomes presentation); 

ℱ is a function of 𝑙 variables over ℝ+, called fitness function, and 

ℱ: 𝒄𝒋 → ℝ+, 𝑗 = 1, 2, … ,𝒫; 
𝒮 is a selection operator for choosing 𝑢 parents 𝒑𝒌 from the population 𝐏𝐏, and 

𝒮: 𝐏𝐏 → {𝒑𝟏, 𝒑𝟐, … , 𝒑𝒖}  ; 
Ω is a set of genetic operators, 

Ω = {𝛺Cross;  𝛺Mut; … }, 
where 𝛺Cross is a crossover operator,  𝛺Mut is a mutation operator, generating 𝑣 

children 𝒒𝒎  from 𝑢 parents 𝒑𝒌, 

Ω: {𝒑𝟏, 𝒑𝟐, … , 𝒑𝒖} → {𝒒𝟏, 𝒒𝟐, … , 𝒒𝒗} ; 
Ψ is a removal operator for 𝑣 chromosomes from the 𝑖-th population and then 

the 𝑖 + 1 population is obtained according to the formula 

𝐏𝐏(𝑖 + 1) = 𝐏𝐏(𝑖) − 𝛹(𝐏𝐏(𝑖)) + {𝒒𝟏, 𝒒𝟐, … , 𝒒𝒗}; 
𝜍 is a criterion for end. 

The 𝒮 and Ω operators are always probabilistic, while Ψ can be either 

probabilistic or deterministic. 

Every GA is a consecutive computation of populations  

𝐏𝐏(0), 𝐏𝐏(1),… , 𝐏𝐏(𝑖), 𝐏𝐏(𝑖 + 1),…  
with a randomly chosen initial population  𝐏𝐏(0). 

GA can also be described as a procedure for solving an optimization problem: 

max{𝐹(𝒄)  |  𝒄 ∈ {0, 1}𝑙  }   or  min{𝐹(𝒄) | 𝒄 ∈ {0, 1}𝑙  }, 
where 𝐹 is the objective function,  𝒄 ∈ 𝐏𝐏   is a binary vector of length 𝑙, 𝐏𝐏 is the 

space of possible solutions of size 𝒫. 

Fuzzy  Inference  machine  

Fuzz i f i ca t io n  Def uzz i f i ca t io n  

Know ledge B ase  

 

Fuzzy Rules  Ba se  

Mem bership  Funct ions  

User Inter face  Genet i c  Alg ori thm 

Data  
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The performance of every GA depends on several parameters (INPUT), 

calculates the best population (OUTPUT) and has eight steps. 

INPUT: number of generations, population size, number of variables, number of bits, 

crossover probability, probability mutation, elitism, the upper limits, lower limits 

Generating the initial population 

INPUT: population size  

OUTPUT: initial population, value of fitness function 

Encoding of the population 

INPUT: population, population size, number of generations, number of bits, 

upper limits, lower limits 

OUTPUT: population 

Calculating fitness 

INPUT: population, population size, number of variables 

OUTPUT: values of fitness function 

Selection 

INPUT: population, values of fitness function, population size 

OUTPUT: selected population 

Crossover 

INPUT: Selected population, crossover probability  

OUTPUT: population after crossover 

Mutation 

INPUT: population after crossover, mutation probability 

OUTPUT: population after mutation, number of mutations, matrix of 

mutated bits positions  

Calculating fitness 

INPUT: population after mutation, population size 

OUTPUT: values of fitness function of the mutated population 

Elitism 

INPUT: values of fitness function of the mutated population, population 

after mutation  

OUTPUT: BEST POPULATION AFTER MUTATION 

OUTPUT: BEST POPULATION  

3.3. Structure of FSSAM 

FSSAM is an independent software system which consists of procedures for data 

collection and data storage, asset evaluation and investment portfolios construction. 

The system consists of three modules – Data Managing Module (DMM), Q-measure 

Fuzzy Logic Module (QFLM), Portfolio Construction Module (PCM), that are 

described in full detail in [1]. However, a brief overview of the second module is 

needed in this paper. 

QFLM is an application based on fuzzy sets theory. Input data are the crisp 

numerical values of asset characteristics obtained from DMM – return, risk and  

q-ratio. These crisp values are fuzzified and after applying the aggregation rules, a 

fuzzy variable (Q-measure) for each of the assets is derived. The output is the 

defuzzified crisp value of Q-measure. 
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The linguistic variables are four: Three input variables and one output variable. 

The input linguistic fuzzy variables 𝐾𝑖 are three (𝑁 = 3) and their names correspond 

to the characteristics of an asset: 𝐾1 ≜ return, 𝐾2 ≜ Risk and 𝐾3 ≜ 𝑞-ratio. The 

term-sets are 𝑇(𝐾1)={X1j}, 𝑇(𝐾2)={X2j}, 𝑇(𝐾3)={X3k } with j=1,..., 5, k =1, 2, 3, and 

thus  𝑛1 = 𝑛2 = 5 and 𝑛3 = 3. The output linguistic fuzzy variable is one (𝑆 = 1) 
and it is Y≜Q-measure with a term-set 𝑇(𝑌)={Yp} for p=1, ..., 5 and that means that 

𝑝1 = 5. 

𝑋𝑖𝑗 ≜

(

 
 
 
 
 
 

Very low    𝑖 = 1, 2 𝑗 = 1
Low     𝑖 = 1, 2 𝑗 = 2
Neutral      𝑖 = 1, 2 𝑗 = 3
High    𝑖 = 1, 2 𝑗 = 4
Very high    𝑖 = 1, 2 𝑗 = 5
Small 𝑖 = 3 𝑗 = 1
Neutral        𝑖 = 3    𝑗 = 2
Big        𝑖 = 3    𝑗 = 3 )

 
 
 
 
 
 

,            𝑌𝑗 ≜

(

 
 

Bad    𝑗 = 1
Not bad    𝑗 = 2
Neutral    𝑗 = 3
Good 𝑗 = 4
Very good 𝑗 = 5)

 
 
. 

According to (1) the total number of the membership functions in the knowledge 

base is 

𝑁.∑𝑛𝑖

𝑁

𝑖=1

+ 𝑆.∑𝑝𝑠

𝑆

𝑠=1

= 3(5 + 5 + 3) + 15 = 44. 

The universes of discourse of the linguistic variables are 𝑈𝐾1 = 𝑈𝐾2 = 𝑈𝐾3 =

𝑈𝑌 = 𝑅 and the types of membership functions of the terms, used in the system, are 

Gaussian membership function 𝜇G(𝑥) = 𝑒
−
1

2
(
𝑥−𝛽

𝛼
)
2

, Bell membership function 

𝜇B(𝑥) =
1

1+|
𝑥−𝛾

𝛼
|
2𝛽 and Sigmoid membership function 𝜇S(𝑥) =

1

1+𝑒−𝛼(𝑥−𝛽)
.  

The corresponding type of Membership Functions (MF) and the initial values 

of the parameters are shown on Table 1. The overall number of parameters of the 

membership functions of the fuzzy functions terms is 37. 

Table 1. Type and parameters of membership functions of terms 
Terms X11 X12 X13 X14 X15 X21 X22 X23 X24 X25 

MF 𝜇S(𝑥) 𝜇G(𝑥) 𝜇G(𝑥) 𝜇G(𝑥) 𝜇S(𝑥) 𝜇S(𝑥) 𝜇G(𝑥) 𝜇G(𝑥) 𝜇G(𝑥) 𝜇S(𝑥) 
α –10 –0.4 0 0.4 10 –20 0.1 0.3 0.5 20 

β –0.5 0.35 0.42 0.35 0.5 0 0.085 0.1 0.085 0.6 

Terms X31 X32 X33 

 

Y1 Y2 Y3 Y4 Y5 

 
MF 𝜇S(𝑥) 𝜇B(𝑥) 𝜇G(𝑥) 𝜇G(𝑥) 𝜇G(𝑥) 𝜇G(𝑥) 𝜇G(𝑥) 𝜇G(𝑥) 
α –10 0.25 10 0 0.25 0.5 0.75 0 
β 0 2 0.5 0.1 0.1 0.1 0.1 0.1 

γ  0.25       

 

For each input variable the degree of membership to the corresponding term is 

calculated and also the numerical values of the input data form a 3-dimensional 

vector 𝒙∗ = (𝑥1
∗, 𝑥2

∗,  𝑥3
∗ ). Each coordinate of 𝒙∗ is then fuzzified by calculating the 

values of the membership functions 𝜇𝑖𝑗(𝑥𝑖
∗) for each 𝑖 and 𝑗.  

The 𝑡-norm, used in the aggregation procedure, is defined by a min operator 

while the 𝑠-norm is defined by a max operator. There are 𝑀 = 24 fuzzy rules 
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implemented in the system, for the 𝑡-norm is used for the logical AND operator. 

Under these considerations the 𝑚-th rule 𝑅𝑚 in the rule base has the form  

IF {𝐾𝑚1  is   𝑋𝑚1𝑗𝑚1  }  AND  {𝐾𝑚2  is   𝑋𝑚2𝑗𝑚2  }  AND {𝐾𝑚𝑘  is   𝑋𝑚𝑘𝑗𝑚𝑘
 }  

THEN  {𝑄𝑚1   is   𝑌𝑚1𝑗𝑚1
 }, 

where 𝑚 = 1, 2,… ,𝑀 and 𝑀 = 24 is the number of the rules. 

After the execution of the m-th rule the values of 𝛩𝑚   and 𝛩𝑚
𝑜  are calculated 

sequentially according to (3) and (4) for 𝑚 = 1, 2,… , 24. The rule weights are  

𝑀 = 24 additional parameters in the fuzzy system.  

Finally, FSSAM depends on 37 + 24 = 61 parameters. 

After the execution of all the rules in the rule-base the membership degrees are 

derived for each term 𝑌1𝑝 of the output variables. 

The aggregation is obtained by calculating the values of 𝑃𝑠𝑝 for each 𝑌𝑠𝑝 from 

(5) for 𝑠 = 1 and 𝑝 = 1, 2, 3, 4, 5. 

In the last procedure, which is defuzzification, a crisp output value is obtained. 

In FSSAM the centre of gravity method is implemented by composite trapezoidal 

numerical method for approximating the integrals [4]. 

3.4. Optimization of parameters 

The system’s parameters are stored in the knowledge base of the fuzzy system and 

form the population of the GA – each of them being a chromosome, stored as a vector. 

As the genetic algorithm is used for optimizing the parameters of the fuzzy 

system, the objective function is connected with the defuzzified value of the output 

variable 𝑄 of FSSAM. The objective function 𝑭 for GFSSAM is defined as a sum of 

the squared differences of 𝑘 consecutive values of 𝑄: 

(6)                                                   𝐹 = ∑ (𝑄𝑖 − 𝑄𝑗)
2

𝑘

𝑖,𝑗=1
𝑗>𝑖

.  

The optimization is focused on finding the values of the parameters of FSSAM 

aiming at achieving stability of the derived estimation and so the optimization 

problem is in its essence searching a minimum value of 𝑭. 

Coding fuzzy variables. All linguistic variables are defined on intervals and 

consist of a finite number of terms with corresponding membership functions. These 

variables are initially represented as binary strings. 

Coding a finite closed interval [𝒂; 𝒃]. The coding of the interval [𝑎; 𝑏] is 

realized with two calculations: 

(1) applying the coding function 𝑐𝑚 ,[𝑎;𝑏] defined as follows: 

𝑐𝑚 ,[𝑎;𝑏] ∶  [𝑎; 𝑏]  ⟶ {0, 1, 2, … ,  2𝑚 − 1} 

 𝑐(𝑥) = ⌊( 2𝑚 − 1).
𝑥 − 𝑎

𝑏 − 𝑎
⌋  ,  

where 𝑚 is the length of the binary string and ⌊. ⌋ is the integer part of the number; 

(2) the integer 𝑐(𝑥) obtained in (1) is converted into a binary string. 
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Decoding a finite closed interval [𝒂; 𝒃]. Decoding is also realized with two 

calculations: 

(1) the binary string is converted to a decimal number; 

(2) the corresponding decoding function is 𝑐̃𝑚 ,[𝑎;𝑏] defined as follows: 

𝑐̃𝑚 ,[𝑎;𝑏] ∶   {0, 1, 2, … ,  2
𝑚 − 1}    ⟶  [𝑎; 𝑏] , 

      𝑐̃(𝑥)  =   𝑎 + 
𝑏 − 𝑎

 2𝑚 − 1
𝑥   . 

Thus the condition 𝑐 ∘ 𝑐̃ ≡ 𝑖𝑑
{0,1,2,…, 2𝑚−1}

    is met. 

Coding membership functions defined on finite closed interval [𝒂; 𝒃]. One 

direct method for coding membership functions, defined on a finite closed 

interval of real numbers [𝑎; 𝑏], is by applying a linear interpolation on 

equidistant nodes as illustrated on Fig. 2. The nodes are encoded by applying 

the function 𝑐𝑚 ,[𝑎;𝑏] and for any membership function the functional values in 

the corresponding nodes and their encoding by 𝑐𝑚 ,[0;1] are used. 

 

Fig. 2. Linear interpolation with equidistant nodes for coding a membership function 

The problem that occurs after such interpolation is related with the length of 

each of the binary strings. For this reason, it is appropriate to look for another 

approach. If the membership function is triangular, its encoding may be simplified 

by simply coding the three real numbers that define it. If the membership function is 

trapezoidal, four parameters are encoded. 

Coding the linguistic variables of FSSAM. In order to apply a genetic 

algorithm to FSSAM, it is necessary to encode differentiable functions – Gaussian, 

Bell and sigmoidal. Instead of encoding functional values as in interpolation, only the 

parameters of these functions can be coded which means encoding only two 

parameters (𝛼, 𝛽) for the Gaussian and Sigmoid functions and three parameters 

(𝛼, 𝛽, 𝛾) for the Bell function. The coding functions 𝑐𝑚,[𝑎;𝑏](𝛼) and 𝑐𝑚,[𝜀;𝛿](𝛽) are 

used for coding the parameters of Gaussian function; 𝑐𝑚,[𝑎;𝑏](𝛾), 𝑐𝑚,[𝜀;𝛿](𝛼) and 

𝑐𝑚,[𝜀′;𝛿′](𝛽) are used when coding the parameters of Bell function. Similarly, 

𝑏 = 𝑥𝑘 𝑥1 𝑥2 𝑎 = 𝑥0 
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𝑐𝑚,[𝑎;𝑏](𝛽) and 𝑐𝑚,[𝜀;𝛿](𝛼) are used to encode the sigmoidal function parameters. For 

each of the functions 𝜀, 𝛿, 𝜀′ and 𝛿′ are the lower and upper limits of the 

corresponding parameter.  

The range, the coding functions and the binary representation of the terms 

𝑋11, 𝑋12, 𝑋13, 𝑋14 and 𝑋15 of the input variable 𝑇(𝑋1) of FSSAM are shown in  

Table 2. The terms of the other input variables 𝑇(𝑋2) and 𝑇(𝑋3) and the output 

variable 𝑇(𝑌) are encoded analogously. 

Table 2. Coding the terms of the input variable 𝑇(𝑋1) of FSSAM 

L
in

g
u

is
ti

c 

v
ar

ia
b

le
 

T
er

m
 

Membership  

function 

Coding  

function 

B
in

ar
y
 

p
re

se
n

ta
ti

o
n
 

[𝑎; 𝑏] = [0 ;  3] 𝑐8 ,[0;3] = 𝑐(𝑥) = ⌊85𝑥⌋ 

[𝜀; 𝛿] = [−30 ;  30] 
 𝑐8 ,[−30;30] = 𝑐1(𝑥) = 

= ⌊4.25𝑥 + 122.5⌋ 

𝑇(𝑋1) 

𝑋11 sig(𝑥;−20; 0.08) 
 𝑐1(−20) = 37 

𝑐(0.08) = 6 

00100101 

00000110 

𝑋12 gaussian(𝑥;  0.5;  0.4) 
𝑐(0.5) = 42 

𝑐(0.4) = 34 

00101010 

00100010 

𝑋13 gaussian(𝑥;  1.5;  0.6) 
𝑐(1.5) = 127 

𝑐(0.6) = 51 

01111111 

00110011 

𝑋14 gaussian(𝑥;  2.5;  0.4) 
𝑐(2.5) = 212 

𝑐(0.4) = 34 

11010100 

00100010 

𝑋15 sig(𝑥; 20; 2.92) 
 𝑐1(20) = 207 

𝑐(2.92) = 248 

11001111 

11111000 

In genetic algorithms, chromosomes form a set of genes that are values of 

variables, encoded in advance. Each chromosome is actually an acceptable solution 

of the problem in interest. The different chromosomes make up the current 

generation. Through evolutionary operations (selection, recombination and mutation) 

the next generation is reached. In creating a fuzzy genetic system, besides encoding 

the variables, it is necessary to encode the fuzzy rules and to define the fitness 

function, then repeat the operators of the genetic algorithm. 

Before the genetic algorithm is started, parameters that affect its operators are 

initially declared. These parameters are the number of generations, population size, 

number of variables, number of bits for coding a variable, crossover probability pc, 

mutation probability pm, degree of elitism, upper and lower limits. The upper and 

lower limits are intervals in which the variables of the fitness function can change.  

Then a random population of candidate-solutions for the optimization problem 

is generated. Chromosomes need to be decoded from binary to real values. Once a 

population has been formed, the fitness of each of its individuals is calculated 

according to (6).  

According to the obtained values of the fitness function, the most suitable 

individuals are selected and the operator selection is performed on them.  

Selection. In nature, the selection of individuals is done through natural choice 

– the more an individual is adapted to the environment, the greater is his chance of 

surviving and creating offspring, thus transmitting his genetic information to the next 

generation. In evolutionary algorithms, the selection of the best individuals (parents) 
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is based on the fitness function, which gives an assessment of the individual. There 

are a variety of selection methods. In GFSSAM the roulette wheel selection algorithm 

is chosen for selection operator and thus the probability for selecting a chromosome 

equals the quotient of the value of the fitness function for this specific chromosome 

and the sum of the values of the fitness function of all the chromosomes in the 

population. In this method, a circle is divided into N sectors proportionally to the 

probability of selection of the individuals. Each time the roulette rotates, an individual 

is selected and accordingly individuals with higher fitness values have 

proportionately greater probabilities of being selected.  

Once the parents are selected, reproduction for creating a new generation begins 

by performing recombination. 

Crossover. The first operator in creating a new generation is crossover 

(recombination), in which the genes of the parents form an entirely new chromosome. 

Typically, the crossover operator needs two parent and aims at designing a new 

hromosome that is better than the two parents. Crossover is performed at a point 

chosen with crossover probability pc where parents exchange their gene information 

and so form a new individual (child). 

Mutation. The newly created by selection and crossover generation can be 

mutated. In biological species mutations alter DNA, these changes being caused 

mainly by errors in copying the parents genes. In genetic algorithms, mutation is a 

change of the value in a gene in the offspring, randomly selected with probability pm. 

Additionally, а matrix, indicating on which gene the mutation is performed, is also 

created.  

For the newly created generation, the fitness function values are re-calculated 

and the elitism check is performed because some fit individuals and their genetic 

material may be lost due to selection, crossover and/or mutation. In order to preserve 

their good genes, the genetic material must be kept in the algorithm. This process is 

called elitism. 

4. Results 

After the successful implementation of the GFSSAM hybrid system in MatLab, 

experimental tests have been carried out. The tests aim at studying the behavior of 

the parameters of the fuzzy system while changing the parameters of the genetic 

algorithm and finding the optimal solutions. The results presented in this paper are 

conducted on real data from BSE-Sofia. 

A variety of tests have been performed for all 37 parameters of the therms of the 

input and output fuzzy variables. In the tests four parameters of GA have been 

changed and at the same time the changes of the respective change in the fuzzy system 

have been followed up. In addition, the convergence of GA has been recorded.  

In this section, the behavior PAR1, which is the value of 𝛼 of the Gaussian 

function of term Y1 of the fuzzy variable Q-measure is presented in details.  
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At the end of the section the obtained results for PAR1, PAR2, PAR3, PAR4, 

PAR5 are the values of the parameter 𝛼 of the Gaussian function of the corresponding 

terms Y1, Y2, Y3, Y4 and Y5 of the fuzzy variable Q-measure are summarized.  

The rest of the parameters of the fuzzy variables have been studied analogically. 

The initial values are PAR1 = 0; PAR2 = 0.25; PAR3 = 0.5; PAR4 = 0.75;  

PAR5 = 1 and the corresponding calculated defuzzified value of the output variable 

is Q = 0.7746. The value of the fitness function F is denoted with y.  

Results obtained after changing nGen. The number of generations (nGen), 

needed for finding optimal solutions, is one of the most important parameters 

of GA, because it is directly connected with the cost of the algorithm. Values 

of nGen have been increased from 2 up to 2000, while the other three 

parameters (nPop, pc, pm) of GA have been kept constant. On Table 3 the 

change of PAR1 and y for nGen=2, 5, 10, 50 are presented.  
 

Table 3. Changes in PAR1 and y corresponding to changes in nGen 
nGen nPop pm pc PAR1 y 

 

2 6 0.1 0.75 0.0005 0.0955 

5 6 0.1 0.75 0.0006 –0.0192 

10 6 0.1 0.75 0.0004 0.0292 

50 6 0.1 0.75 0.0004 –0.0295 

 

As can be seen from the table above, the increase in number of generations does 

not improve the accuracy of the obtained result. What is more, after the tenth 

generation the value of PAR1 practically does not change with respect to the desired 

precision (four decimal digits). 

The conclusion here is that there is no need to continue the genetic algorithm 

after the 50th generation. 

The convergence of the process for obtaining optimal values for PAR1 

corresponding to the change in nGen = 2, 5, 10, 50 is shown in Fig. 3.  

When nGen = 5 the value of y is closest to 0 and this is reached in the third 

generation which is actually the best result. 

 

 
a) nGen = 2                          b) nGen = 5                         c) nGen = 10                          d) nGen = 50 

Fig. 3. Convergence in obtaining optimal values of PAR1 for nPop = 6; pm  = 0.1, pc  = 0.75 

 

Results obtained after changing nPop. The change in values of PAR1 and y 

corresponding to increase in the population size, while the other factors are constant) 

is shown on Table 4. It is important to note that a crossover error occurs for  

nGen = 10, nPop = 5, pm = 0.1, pc = 0.75 the algorithm cannot be executed. Tests with 

other odd values of nPop (such as 7, 9, 19) have been also conducted and the 

crossover operator could not be executed as well.  
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Table 4. Changes in PAR1 and y corresponding to changes in nPop 

nGen nPop pm pc PAR1 y  

10 5 0.1 0.75 
Impossible to 

execute 

10 10 0.1 0.75 0.161 0.003 

10 20 0.1 0.75 0.0467 0.003 

10 30 0.1 0.75 –0.0344 0.006 

 

The convergence of the process for obtaining optimal values for PAR1 

corresponding to the change in nPop = 10, 20, 30 is shown in Fig. 4.  

 
a) nPop = 10                                        b) nPop = 20                                        c) nPop = 30 

Fig. 4. Convergence in obtaining optimal values of PAR1 for nGen = 10; pc  = 0.75; pm  = 0.1 

 

The conclusion is that the genetic algorithm performs well enough even with 

relatively small population size. 

Results obtained after changing pc . Table 5 shows the change in values of 

PAR1 and y according to the crossover probability pc. Smaller values of pc lead to 

better results both in minimal value of y and in convergence. 

Table 5. Changes in PAR1 and y corresponding to changes in pc 

nGen nPop Pm Pc PAR1 y 

 

10 6 0.1 0.25 –0.0127 0.0002 

10 6 0.1 0.5 –0.0582 0.0004 

10 6 0.1 0.75 –0.1121 0.0004 

10 6 0.1 0.9 –0.1 0.0006 

 

The convergence of the process for obtaining optimal values for PAR1 

corresponding to the change in pc = 0.25, 0.5, 0.75, 0.9 is shown in Fig. 5.  
 

 
a) pc = 0.25                      b) pc = 0.5                       c) pc = 0.75                      d) pc = 0.9 

Fig. 5. Convergence in obtaining optimal values of PAR1 for nGen = 10, nPop = 6; pm = 0.1 
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The test results lead to the conclusion that smaller values of crossover 

probability lead to faster convergence, for instance the convergence when pc = 0.25 

is reached just after the third generation. 

Results obtained after changing pm . The change in values of PAR1 and y due 

to change of the mutation probability pm is shown in Table 6. 

Table 6. Changes in PAR1 and y corresponding to changes in pm 

nGen nPop pm Pc PAR1 y 

 

10 6 0.05 0.75 0.003 –0.0275 

10 6 0.2 0.75 0.0837 0.0003 

10 6 0.5 0.75 –0.0765 0.003 

10 6 0.8 0.75 0.0079 0.0005 

 

The convergence of the process for obtaining optimal values for PAR1 

corresponding to the change in pm = 0.05, 0.2, 0.5, 0.8 is shown in Fig. 6. 

 
a) pm = 0.05                    b) pm = 0.2                      c) pm = 0.5                       d) pm= 0.8 

Fig. 6. Convergence in obtaining optimal values of PAR1 for nGen = 10, nPop = 6; pc  = 0.75 
 

The conclusion that smaller values of mutation probability lead to faster 

convergence is in line with the theoretical research in the area of evolutionary 

computation. 

The convergence of the vectors of the fitness function 𝑭 due to change in 

population size is shown in Fig. 7. 

 
a) nPop = 6    b) nPop = 20 

Fig. 7. Convergence in obtaining optimal values of PAR1 for nGen = 10, pc = 0.75, pm = 0.2 

After the conducted experimental tests the conclusion is drawn: the fastest 

convergence for PAR1 and y is reached at nGen = 10, nPop = 6, pm = 0.1 and  

pc = 0.25, which means that the genetic algorithm finds satisfactory results at lower 

values of its parameters: number of generations, population size, mutation probability 

and crossover probability.  
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Summarized results. The optimal values of the parameters PAR1, PAR2, 

PAR3, PAR4, PAR5 and y, the corresponding minima of the fitness function 𝑭 and 

the parameters of GA at which least time is reached, are shown in Table 7. 

Table 7. Optimized values of PAR1, PAR2, PAR3, PAR4, PAR5 and y 

nGen nPop pm pc PAR1 PAR2 PAR3 PAR4 PAR5 y 

10 20 0.2 0.75 0.0549 0.3435 0.4027 0.8634 1 0.0006 

20 20 0.05 0.5 –0.0137 0.1944 0.3785 0.8727 1.0824 0.0006 

12 8 0.02 0.2 –0.1225 0.1480 0.4074 0.7670 1.0653 0.0005 

10 8 0.5 0.05 0.0764 0.1679 0.3866 0.8616 1 0.0006 

 

When the results are analysed only with regard to the obtained of the fitness 

function 𝐹 = 𝑦, the conclusion is as follows: an optimal value (𝑦 ≤ 0.0006) and the 

corresponding optimized values of the parameters of the fuzzy system are reached at 

several combinations of GA parameters and they are: 

 nGen = 10, nPop = 20, pc = 0.75 and pm = 0.2; 

 nGen = 20, nPop = 20, pc = 0.5 and pm = 0.05; 

 nGen = 12, nPop = 8, pc = 0.2 and pm = 0.02; 

 nGen = 10, nPop = 8, pc = 0.05 and pm = 0.5. 

Generally, in order to reach optimal values the number of generations does not 

need to exceed 20, the population volume does not need to exceed 20, but with 

smaller values of these two parameters it is necessary to decrease the crossover 

probability of crossing pc and to increase the mutation probability pm. 

With regard to the last conclusion, it is advisable to use the following values (or 

close to them) as parameters of the genetic algorithm: 

 nGen = 50, nPop = 8, pc = 0.75 and pm = 0.1. 

5. Conclusion 

GFSSAM, presented in this paper, is a genetic fuzzy rule-based system, implemented 

in MatLab. The major goal in creating the system is finding optimal values of the 

fuzzy system parameters. Genetic algorithms are successfully applied to various 

problems in different areas. Because their potential to bring flexibility, they are 

suitable for optimizing fuzzy systems for decision-making in diagnostics, monitoring 

and management. 

The hybridization of the genetic algorithm and the fuzzy system is considered 

successful because the behavior of the system with the found optimal values of the 

parameters is stable and reliable on the basis of the results obtained. Another 

important result from this research, undoubtedly proven by the experimental tests, is 

that a large number of generations or population size is not a requirement for solving 

this optimization problem. 

An interesting follow-up to this research is the creation of a genetic fuzzy system 

aiming at optimization of the architecture of the fuzzy system and in particular the 

number and type of fuzzy rules. 
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