
 20

BULGARIAN ACADEMY OF SCIENCES

CYBERNETICS AND INFORMATION TECHNOLOGIES  Volume 18, No 2

Sofia  2018 Print ISSN: 1311-9702; Online ISSN: 1314-4081

DOI: 10.2478/cait-2018-0025

Genetic Fuzzy System for Financial Management

Penka V. Georgieva
Burgas Free University, 62 San Stefano Str., 8001 Burgas, Bulgaria

E-mail: pgeorg@bfu.bg

Abstract: This paper discusses genetic fuzzy systems – hybrid systems of artificial

intelligence combining the potential of fuzzy sets for modeling approximate

reasoning with the abilities of genetic algorithms for finding optimal solutions. The

use of genetic algorithms for optimizing the parameters of a fuzzy system is

demonstrated on GFSSAM.

Keywords: Genetic fuzzy system, intelligent hybrid systems, financial management,

artificial intelligence.

1. Introduction

This paper looks into designing and implementation of a hybrid system, based on

genetic algorithms and fuzzy sets theory. The main concepts of hybridization are

applied on Genetic Fuzzy Software System for Asset Management (GFSSAM) which

is a hybrid software system, built on previously created and tested Fuzzy Software

System for Asset Allocation Management (FSSAM), published in [1]. In GFSSAM,

a genetic algorithm is implemented for finding optimal values of the parameters of

FSSAM.

Artificial Intelligence (AI) aims at developing various techniques for knowledge

presentation and knowledge discovery; intelligent search; dealing with inaccurate

and/or uncertain data and knowledge; machine learning etc. The hybrid systems of

AI are designed and created so that the advantages of one or more of AI computing

paradigms are used to compensate the disadvantages of the others. Genetic fuzzy

systems are integrated hybrid systems of AI that combine the potential of fuzzy sets

theory for modeling the reasoning process with the abilities of genetic algorithms for

finding optimal solutions.

2. Hybrid systems based on fuzzy sets and genetic algorithms

Conceptually fuzzy systems are considered to be able to solve non-linear problems

in a variety of applications such as classification, modeling, management and others.

Their key feature is the ability to model expert human knowledge but the main

deficiency of such systems is the lack of ability to learn and adapt. The first attempts

to add other techniques to fuzzy systems start around 1990. Two types of

 21

hybridization are considered to be the most successful and they are neural-fuzzy

systems and genetic fuzzy systems.

Genetic processes are applied to fuzzy systems for solving problems of different

degree of complexity: From the simplest case for optimization of the parameters of a

fuzzy system to the most complex – for training its rule-base. A reverse approach

(namely hybridization for improving genetic algorithms with fuzzy tools) is proposed

by H e r r e r a et al. [2].

Two basic approaches exist in creating hybrid systems based on fuzzy sets

theory and genetic algorithms: 1) fuzzy sets theory is used for modeling the

components and adjusting the parameters of genetic algorithms and these are called

fuzzy genetic algorithms (GA_FIS = Genetic Algorithms with Fuzzy Inference

System); 2) genetic algorithms are used to solve optimization or search problems

related to fuzzy systems and thus Genetic Fuzzy Systems (GFS) are obtained.

The process of designing a fuzzy rule-based system can be defined as an

optimization problem for finding most suitable built-in variables, parameters and

rules. Moreover, genetic algorithms are a widely used technique for global extrema

search, as they show the ability to find nearly optimal solutions with the possibility

of using a priori knowledge concerning the search space. For a fuzzy rule-based

system a priori knowledge is the information about the type of membership functions,

fuzzy rules and the architecture of the fuzzy system itself [3].

Genetic fuzzy rule-based systems

Fuzzy rule-based systems mimic the decision-making process by handling the

available information in a human-like manner. The behavior of a fuzzy rule-based

system depends on three sets of parameters: 1) fuzzy sets, associated with linguistic

variables that define the semantics of the rules; 2) fuzzy rules, determining how the

output variables are to be derived, and 3) t-norms and s-norms used for aggregation

and defuzzification.

The process of creating a fuzzy system starts with designing the system’s

architecture, which is a relatively easy task. The most difficult, and requiring

significant amount of resources, is the stage of setting up the parameters of the system

so that the obtained output results are feasible.

Following the general structure of а fuzzy system, each fuzzy software rule-

based system consists of a knowledge base, incorporating the data base and the rule

base, and an inference machine. A precise description of the inference machine of

FSSAM is published in [1].

The explicit structure of a fuzzy rule-based system follows the logic of the fuzzy

reasoning process. In the process of hybridization it is a must to determine the number

of parameters to be optimized. The following are the considerations about that

number.

Let 𝑁 be the number of the input fuzzy variables 𝐾𝑖, 𝑖 = 1, 2, 3,… ,𝑁, and 𝑛𝑖 be

the number of the terms 𝑋𝑖𝑗 of 𝐾𝑖 for each 𝑖, where 𝑗 = 1, 2, 3, … , 𝑛𝑖.

Let 𝑆 be the number of the output fuzzy variables 𝑄𝑠, 𝑠 = 1, 2, 3, … , 𝑆, and 𝑝𝑠
be the number of the terms 𝑌𝑠𝑝 of 𝑄𝑠 for each 𝑠, where 𝑝 = 1, 2, 3, … , 𝑝𝑠.

 22

Let 𝜇𝑖𝑗(𝑥) be the membership function of the term 𝑋𝑖𝑗 and 𝜇𝑠𝑝(𝑦) be the

membership function of the term 𝑌𝑠𝑝.

Then the total number of the membership functions in the knowledge base is

(1) 𝑁.∑𝑛𝑖

𝑁

𝑖=1

+ 𝑆.∑𝑝𝑠.

𝑆

𝑠=1

The numerical values of the input data form a 𝑁-dimensional vector
𝑥∗ = (𝑥1

∗, 𝑥2
∗, … , 𝑥𝑁

∗) with crisp values. This vector is fuzzified by calculating the

values of the membership functions 𝜇𝑖𝑗(𝑥𝑖
∗) for each 𝑖 and 𝑗. Thus the number of the

values of the membership functions that are stored in the data base is

(2) 𝑁.∑𝑛𝑖

𝑁

𝑖=1

.

The next procedure is the aggregation. Let the 𝑡-norm, defined by the min

operator, be used for the logical AND operator and the 𝑠-norm is defined by the max

operator. The 𝑚-th rule 𝑅𝑚 in the rule base has the form

IF

{𝐾𝑚1 is 𝑋𝑚1𝑗𝑚1 } AND {𝐾𝑚2 is 𝑋𝑚2𝑗𝑚2 } AND … AND {𝐾𝑚𝑘 is 𝑋𝑚𝑘𝑗𝑚𝑘
 }

THEN

{𝑄𝑚1 is 𝑌𝑚1𝑗𝑚1 } AND {𝑄𝑚2 is 𝑌𝑚2𝑗𝑚2 } AND … AND {𝑄𝑚𝑙 is 𝑌𝑚𝑙𝑗𝑚𝑙
 }

for 𝑚 = 1, 2,… ,𝑀, where 𝑀 is the number of rules.

After the choice and execution of the m-th rule the values of Θ𝑚 and Θ𝑚
𝑜 are

calculated sequentially according to the following formulae:

(3) 𝛩𝑚 = min
𝑘
{ 𝜇𝑚1𝑗𝑚1

(𝑥1
∗), 𝜇𝑚2𝑗𝑚2

(𝑥2
∗),… , 𝜇𝑚𝑘𝑗𝑚𝑘

(𝑥𝑘
∗) },

(4) 𝛩𝑚
𝑜 = 𝛩𝑚,

where 𝑤𝑚 is the weight of the m-th rule for 𝑚 = 1, 2,… ,𝑀.

Once all the rules in the rule-base are executed, the membership degrees

𝜇𝑠𝑝
𝑚 = Θ𝑚

𝑜 are derived for each term 𝑌𝑠𝑝 of the output variables.

The aggregation is then obtained by calculating the values:

(5) 𝑃𝑠𝑝 = max
𝑠,𝑝
{ 𝜇𝑠𝑝

1 , 𝜇𝑠𝑝
2 , … , 𝜇𝑠𝑝

𝑀 },

for each 𝑌𝑠𝑝, where 𝑠 = 1, 2, 3,… , 𝑆 and 𝑝 = 1, 2, 3,… , 𝑝𝑠 .

The last procedure is defuzzification. Here, a crisp output value is obtained and

defuzzification is derived by implementing Center of gravity method, Median

method, Center of max method, Min of max method or Max of max method.

The applications of fuzzy rules-based systems are various and numerous and

some of them can be studied in detail in [5-12], etc.

3. GFSSAM

The ultimate goal of every decision making process is to find an optimal solution for

a certain problem when a number of possible solutions exists. Historically, Bellman

and Zadeh are the first to propose a fuzzy model for decision-making. They treat

 23

objectives and goals as fuzzy sets and the solution is calculated by aggregating these

sets. There are various algorithms for building fuzzy systems and detailed overview

is proposed in [13-19] and others.

At the core of genetic fuzzy systems lies the idea that the advantages of

evolutionary computation and fuzzy systems can be combined. There are different

ways to apply evolutionary computing to fuzzy systems – genetic algorithms, genetic

programming or evolutionary strategies can be used in order to obtain a genetic fuzzy

system.

GFSSAM aims at an automatic set up of the system’s parameters. In this case

the fuzzy system architecture, the domains of the linguistic variables and the used

operators are known in advance. Three distinctive situations exist with regard to the

fuzzy system knowledge base:

 The rule base is known, but the fuzzy variables are either unknown or only

approximated and need optimization;

 The semantics of fuzzy rules is at least approximately known, but the rules

themselves are not defined precisely;

 Neither the fuzzy variables nor the fuzzy rules are known.

In each of these situations, the genetic algorithm is applied differently.

In the preliminary stages of designing a genetic fuzzy system the main goal is

to automate the process of generating knowledge base, which is actually an

optimization problem or a search problem for an optimal solution. This process

consists of finding a suitable for the situation knowledge base, and after the

parameterization of this knowledge base – adjusting the values of the parameters so

that they are optimal depending on the optimization criteria.

In case of unknown fuzzy variables and known fuzzy rules, the problem is

reduced to an optimization problem with constraints on an unlimited domain. If the

fitness function is smooth, the conventional methods for optimization are applicable

and generally they are faster than the genetic algorithms. The reason for using genetic

algorithms in this situation is that first – the fitness function is not smooth, and second

– a genetic algorithm gives several optimal solutions as an output result.

3.1. Designing a model of a genetic fuzzy system

The main objective in designing the model of GFSSAM is to use a genetic algorithm

optimization on an already existing fuzzy system. The preliminary created system is

FSSAM which econometric base, architecture and performance are described in

details in [1, 7].

As can be seen from the general scheme of a genetic fuzzy system, presented on

Fig. 1, the genetic algorithm is used for optimization of the fuzzy system’s knowledge

base. The knowledge base of FSSAM consists of the membership functions of the

terms of input and output fuzzy variables, as well as the rule-base.

The design of the hybrid system has to provide the simultaneous tuning of all

parameters of the membership functions by finding optimal values without changing

their type or the rule-base.

 24

Fig. 1. Genetic fuzzy system for tuning the knowledge base

3.2. Genetic algorithm

Genetic Algorithm (GA) is an adaptive algorithm, defined by an ordered septenary

of operators and parameters:

GA = (𝒫, 𝐏𝐏,ℱ, 𝒮, Ω,Ψ, 𝜍),
where 𝐏𝐏 is a population with size 𝒫 consisting of chromosomes 𝒄𝒋:

𝒄𝒋 = (𝑐1
𝑗
, 𝑐2
𝑗
, … , 𝑐𝑙

𝑗
) ∈ 𝐏𝐏, 𝑗 = 1, 2, … ,𝒫,

which are 𝑙-dimentional binary vectors (GFSSAM is defined and realized on binary

chromosomes presentation);

ℱ is a function of 𝑙 variables over ℝ+, called fitness function, and

ℱ: 𝒄𝒋 → ℝ+, 𝑗 = 1, 2, … ,𝒫;
𝒮 is a selection operator for choosing 𝑢 parents 𝒑𝒌 from the population 𝐏𝐏, and

𝒮: 𝐏𝐏 → {𝒑𝟏, 𝒑𝟐, … , 𝒑𝒖} ;
Ω is a set of genetic operators,

Ω = {𝛺Cross; 𝛺Mut; … },
where 𝛺Cross is a crossover operator, 𝛺Mut is a mutation operator, generating 𝑣

children 𝒒𝒎 from 𝑢 parents 𝒑𝒌,

Ω: {𝒑𝟏, 𝒑𝟐, … , 𝒑𝒖} → {𝒒𝟏, 𝒒𝟐, … , 𝒒𝒗} ;
Ψ is a removal operator for 𝑣 chromosomes from the 𝑖-th population and then

the 𝑖 + 1 population is obtained according to the formula

𝐏𝐏(𝑖 + 1) = 𝐏𝐏(𝑖) − 𝛹(𝐏𝐏(𝑖)) + {𝒒𝟏, 𝒒𝟐, … , 𝒒𝒗};
𝜍 is a criterion for end.

The 𝒮 and Ω operators are always probabilistic, while Ψ can be either

probabilistic or deterministic.

Every GA is a consecutive computation of populations

𝐏𝐏(0), 𝐏𝐏(1),… , 𝐏𝐏(𝑖), 𝐏𝐏(𝑖 + 1),…
with a randomly chosen initial population 𝐏𝐏(0).

GA can also be described as a procedure for solving an optimization problem:

max{𝐹(𝒄) | 𝒄 ∈ {0, 1}𝑙 } or min{𝐹(𝒄) | 𝒄 ∈ {0, 1}𝑙 },
where 𝐹 is the objective function, 𝒄 ∈ 𝐏𝐏 is a binary vector of length 𝑙, 𝐏𝐏 is the

space of possible solutions of size 𝒫.

Fuzzy Inference machine

Fuzz i f i ca t io n Def uzz i f i ca t io n

Know ledge B ase

Fuzzy Rules Ba se

Mem bership Funct ions

User Inter face Genet i c Alg ori thm

Data

 25

The performance of every GA depends on several parameters (INPUT),

calculates the best population (OUTPUT) and has eight steps.

INPUT: number of generations, population size, number of variables, number of bits,

crossover probability, probability mutation, elitism, the upper limits, lower limits

Generating the initial population

INPUT: population size

OUTPUT: initial population, value of fitness function

Encoding of the population

INPUT: population, population size, number of generations, number of bits,

upper limits, lower limits

OUTPUT: population

Calculating fitness

INPUT: population, population size, number of variables

OUTPUT: values of fitness function

Selection

INPUT: population, values of fitness function, population size

OUTPUT: selected population

Crossover

INPUT: Selected population, crossover probability

OUTPUT: population after crossover

Mutation

INPUT: population after crossover, mutation probability

OUTPUT: population after mutation, number of mutations, matrix of

mutated bits positions

Calculating fitness

INPUT: population after mutation, population size

OUTPUT: values of fitness function of the mutated population

Elitism

INPUT: values of fitness function of the mutated population, population

after mutation

OUTPUT: BEST POPULATION AFTER MUTATION

OUTPUT: BEST POPULATION

3.3. Structure of FSSAM

FSSAM is an independent software system which consists of procedures for data

collection and data storage, asset evaluation and investment portfolios construction.

The system consists of three modules – Data Managing Module (DMM), Q-measure

Fuzzy Logic Module (QFLM), Portfolio Construction Module (PCM), that are

described in full detail in [1]. However, a brief overview of the second module is

needed in this paper.

QFLM is an application based on fuzzy sets theory. Input data are the crisp

numerical values of asset characteristics obtained from DMM – return, risk and

q-ratio. These crisp values are fuzzified and after applying the aggregation rules, a

fuzzy variable (Q-measure) for each of the assets is derived. The output is the

defuzzified crisp value of Q-measure.

 26

The linguistic variables are four: Three input variables and one output variable.

The input linguistic fuzzy variables 𝐾𝑖 are three (𝑁 = 3) and their names correspond

to the characteristics of an asset: 𝐾1 ≜ return, 𝐾2 ≜ Risk and 𝐾3 ≜ 𝑞-ratio. The

term-sets are 𝑇(𝐾1)={X1j}, 𝑇(𝐾2)={X2j}, 𝑇(𝐾3)={X3k } with j=1,..., 5, k =1, 2, 3, and

thus 𝑛1 = 𝑛2 = 5 and 𝑛3 = 3. The output linguistic fuzzy variable is one (𝑆 = 1)
and it is Y≜Q-measure with a term-set 𝑇(𝑌)={Yp} for p=1, ..., 5 and that means that

𝑝1 = 5.

𝑋𝑖𝑗 ≜

(

Very low 𝑖 = 1, 2 𝑗 = 1
Low 𝑖 = 1, 2 𝑗 = 2
Neutral 𝑖 = 1, 2 𝑗 = 3
High 𝑖 = 1, 2 𝑗 = 4
Very high 𝑖 = 1, 2 𝑗 = 5
Small 𝑖 = 3 𝑗 = 1
Neutral 𝑖 = 3 𝑗 = 2
Big 𝑖 = 3 𝑗 = 3)

, 𝑌𝑗 ≜

(

Bad 𝑗 = 1
Not bad 𝑗 = 2
Neutral 𝑗 = 3
Good 𝑗 = 4
Very good 𝑗 = 5)

.

According to (1) the total number of the membership functions in the knowledge

base is

𝑁.∑𝑛𝑖

𝑁

𝑖=1

+ 𝑆.∑𝑝𝑠

𝑆

𝑠=1

= 3(5 + 5 + 3) + 15 = 44.

The universes of discourse of the linguistic variables are 𝑈𝐾1 = 𝑈𝐾2 = 𝑈𝐾3 =

𝑈𝑌 = 𝑅 and the types of membership functions of the terms, used in the system, are

Gaussian membership function 𝜇G(𝑥) = 𝑒
−
1

2
(
𝑥−𝛽

𝛼
)
2

, Bell membership function

𝜇B(𝑥) =
1

1+|
𝑥−𝛾

𝛼
|
2𝛽 and Sigmoid membership function 𝜇S(𝑥) =

1

1+𝑒−𝛼(𝑥−𝛽)
.

The corresponding type of Membership Functions (MF) and the initial values

of the parameters are shown on Table 1. The overall number of parameters of the

membership functions of the fuzzy functions terms is 37.

Table 1. Type and parameters of membership functions of terms
Terms X11 X12 X13 X14 X15 X21 X22 X23 X24 X25

MF 𝜇S(𝑥) 𝜇G(𝑥) 𝜇G(𝑥) 𝜇G(𝑥) 𝜇S(𝑥) 𝜇S(𝑥) 𝜇G(𝑥) 𝜇G(𝑥) 𝜇G(𝑥) 𝜇S(𝑥)
α –10 –0.4 0 0.4 10 –20 0.1 0.3 0.5 20

β –0.5 0.35 0.42 0.35 0.5 0 0.085 0.1 0.085 0.6

Terms X31 X32 X33

Y1 Y2 Y3 Y4 Y5

MF 𝜇S(𝑥) 𝜇B(𝑥) 𝜇G(𝑥) 𝜇G(𝑥) 𝜇G(𝑥) 𝜇G(𝑥) 𝜇G(𝑥) 𝜇G(𝑥)
α –10 0.25 10 0 0.25 0.5 0.75 0
β 0 2 0.5 0.1 0.1 0.1 0.1 0.1

γ 0.25

For each input variable the degree of membership to the corresponding term is

calculated and also the numerical values of the input data form a 3-dimensional

vector 𝒙∗ = (𝑥1
∗, 𝑥2

∗, 𝑥3
∗). Each coordinate of 𝒙∗ is then fuzzified by calculating the

values of the membership functions 𝜇𝑖𝑗(𝑥𝑖
∗) for each 𝑖 and 𝑗.

The 𝑡-norm, used in the aggregation procedure, is defined by a min operator

while the 𝑠-norm is defined by a max operator. There are 𝑀 = 24 fuzzy rules

 27

implemented in the system, for the 𝑡-norm is used for the logical AND operator.

Under these considerations the 𝑚-th rule 𝑅𝑚 in the rule base has the form

IF {𝐾𝑚1 is 𝑋𝑚1𝑗𝑚1 } AND {𝐾𝑚2 is 𝑋𝑚2𝑗𝑚2 } AND {𝐾𝑚𝑘 is 𝑋𝑚𝑘𝑗𝑚𝑘
 }

THEN {𝑄𝑚1 is 𝑌𝑚1𝑗𝑚1
 },

where 𝑚 = 1, 2,… ,𝑀 and 𝑀 = 24 is the number of the rules.

After the execution of the m-th rule the values of 𝛩𝑚 and 𝛩𝑚
𝑜 are calculated

sequentially according to (3) and (4) for 𝑚 = 1, 2,… , 24. The rule weights are

𝑀 = 24 additional parameters in the fuzzy system.

Finally, FSSAM depends on 37 + 24 = 61 parameters.

After the execution of all the rules in the rule-base the membership degrees are

derived for each term 𝑌1𝑝 of the output variables.

The aggregation is obtained by calculating the values of 𝑃𝑠𝑝 for each 𝑌𝑠𝑝 from

(5) for 𝑠 = 1 and 𝑝 = 1, 2, 3, 4, 5.

In the last procedure, which is defuzzification, a crisp output value is obtained.

In FSSAM the centre of gravity method is implemented by composite trapezoidal

numerical method for approximating the integrals [4].

3.4. Optimization of parameters

The system’s parameters are stored in the knowledge base of the fuzzy system and

form the population of the GA – each of them being a chromosome, stored as a vector.

As the genetic algorithm is used for optimizing the parameters of the fuzzy

system, the objective function is connected with the defuzzified value of the output

variable 𝑄 of FSSAM. The objective function 𝑭 for GFSSAM is defined as a sum of

the squared differences of 𝑘 consecutive values of 𝑄:

(6) 𝐹 = ∑ (𝑄𝑖 − 𝑄𝑗)
2

𝑘

𝑖,𝑗=1
𝑗>𝑖

.

The optimization is focused on finding the values of the parameters of FSSAM

aiming at achieving stability of the derived estimation and so the optimization

problem is in its essence searching a minimum value of 𝑭.

Coding fuzzy variables. All linguistic variables are defined on intervals and

consist of a finite number of terms with corresponding membership functions. These

variables are initially represented as binary strings.

Coding a finite closed interval [𝒂; 𝒃]. The coding of the interval [𝑎; 𝑏] is

realized with two calculations:

(1) applying the coding function 𝑐𝑚 ,[𝑎;𝑏] defined as follows:

𝑐𝑚 ,[𝑎;𝑏] ∶ [𝑎; 𝑏] ⟶ {0, 1, 2, … , 2𝑚 − 1}

 𝑐(𝑥) = ⌊(2𝑚 − 1).
𝑥 − 𝑎

𝑏 − 𝑎
⌋ ,

where 𝑚 is the length of the binary string and ⌊. ⌋ is the integer part of the number;

(2) the integer 𝑐(𝑥) obtained in (1) is converted into a binary string.

 28

Decoding a finite closed interval [𝒂; 𝒃]. Decoding is also realized with two

calculations:

(1) the binary string is converted to a decimal number;

(2) the corresponding decoding function is 𝑐̃𝑚 ,[𝑎;𝑏] defined as follows:

𝑐̃𝑚 ,[𝑎;𝑏] ∶ {0, 1, 2, … , 2
𝑚 − 1} ⟶ [𝑎; 𝑏] ,

 𝑐̃(𝑥) = 𝑎 +
𝑏 − 𝑎

 2𝑚 − 1
𝑥 .

Thus the condition 𝑐 ∘ 𝑐̃ ≡ 𝑖𝑑
{0,1,2,…, 2𝑚−1}

 is met.

Coding membership functions defined on finite closed interval [𝒂; 𝒃]. One

direct method for coding membership functions, defined on a finite closed

interval of real numbers [𝑎; 𝑏], is by applying a linear interpolation on

equidistant nodes as illustrated on Fig. 2. The nodes are encoded by applying

the function 𝑐𝑚 ,[𝑎;𝑏] and for any membership function the functional values in

the corresponding nodes and their encoding by 𝑐𝑚 ,[0;1] are used.

Fig. 2. Linear interpolation with equidistant nodes for coding a membership function

The problem that occurs after such interpolation is related with the length of

each of the binary strings. For this reason, it is appropriate to look for another

approach. If the membership function is triangular, its encoding may be simplified

by simply coding the three real numbers that define it. If the membership function is

trapezoidal, four parameters are encoded.

Coding the linguistic variables of FSSAM. In order to apply a genetic

algorithm to FSSAM, it is necessary to encode differentiable functions – Gaussian,

Bell and sigmoidal. Instead of encoding functional values as in interpolation, only the

parameters of these functions can be coded which means encoding only two

parameters (𝛼, 𝛽) for the Gaussian and Sigmoid functions and three parameters

(𝛼, 𝛽, 𝛾) for the Bell function. The coding functions 𝑐𝑚,[𝑎;𝑏](𝛼) and 𝑐𝑚,[𝜀;𝛿](𝛽) are

used for coding the parameters of Gaussian function; 𝑐𝑚,[𝑎;𝑏](𝛾), 𝑐𝑚,[𝜀;𝛿](𝛼) and

𝑐𝑚,[𝜀′;𝛿′](𝛽) are used when coding the parameters of Bell function. Similarly,

𝑏 = 𝑥𝑘 𝑥1 𝑥2 𝑎 = 𝑥0

 29

𝑐𝑚,[𝑎;𝑏](𝛽) and 𝑐𝑚,[𝜀;𝛿](𝛼) are used to encode the sigmoidal function parameters. For

each of the functions 𝜀, 𝛿, 𝜀′ and 𝛿′ are the lower and upper limits of the

corresponding parameter.

The range, the coding functions and the binary representation of the terms

𝑋11, 𝑋12, 𝑋13, 𝑋14 and 𝑋15 of the input variable 𝑇(𝑋1) of FSSAM are shown in

Table 2. The terms of the other input variables 𝑇(𝑋2) and 𝑇(𝑋3) and the output

variable 𝑇(𝑌) are encoded analogously.

Table 2. Coding the terms of the input variable 𝑇(𝑋1) of FSSAM

L
in

g
u

is
ti

c

v
ar

ia
b

le

T
er

m

Membership

function

Coding

function

B
in

ar
y

p
re

se
n

ta
ti

o
n

[𝑎; 𝑏] = [0 ; 3] 𝑐8 ,[0;3] = 𝑐(𝑥) = ⌊85𝑥⌋

[𝜀; 𝛿] = [−30 ; 30]
 𝑐8 ,[−30;30] = 𝑐1(𝑥) =

= ⌊4.25𝑥 + 122.5⌋

𝑇(𝑋1)

𝑋11 sig(𝑥;−20; 0.08)
 𝑐1(−20) = 37

𝑐(0.08) = 6

00100101

00000110

𝑋12 gaussian(𝑥; 0.5; 0.4)
𝑐(0.5) = 42

𝑐(0.4) = 34

00101010

00100010

𝑋13 gaussian(𝑥; 1.5; 0.6)
𝑐(1.5) = 127

𝑐(0.6) = 51

01111111

00110011

𝑋14 gaussian(𝑥; 2.5; 0.4)
𝑐(2.5) = 212

𝑐(0.4) = 34

11010100

00100010

𝑋15 sig(𝑥; 20; 2.92)
 𝑐1(20) = 207

𝑐(2.92) = 248

11001111

11111000

In genetic algorithms, chromosomes form a set of genes that are values of

variables, encoded in advance. Each chromosome is actually an acceptable solution

of the problem in interest. The different chromosomes make up the current

generation. Through evolutionary operations (selection, recombination and mutation)

the next generation is reached. In creating a fuzzy genetic system, besides encoding

the variables, it is necessary to encode the fuzzy rules and to define the fitness

function, then repeat the operators of the genetic algorithm.

Before the genetic algorithm is started, parameters that affect its operators are

initially declared. These parameters are the number of generations, population size,

number of variables, number of bits for coding a variable, crossover probability pc,

mutation probability pm, degree of elitism, upper and lower limits. The upper and

lower limits are intervals in which the variables of the fitness function can change.

Then a random population of candidate-solutions for the optimization problem

is generated. Chromosomes need to be decoded from binary to real values. Once a

population has been formed, the fitness of each of its individuals is calculated

according to (6).

According to the obtained values of the fitness function, the most suitable

individuals are selected and the operator selection is performed on them.

Selection. In nature, the selection of individuals is done through natural choice

– the more an individual is adapted to the environment, the greater is his chance of

surviving and creating offspring, thus transmitting his genetic information to the next

generation. In evolutionary algorithms, the selection of the best individuals (parents)

 30

is based on the fitness function, which gives an assessment of the individual. There

are a variety of selection methods. In GFSSAM the roulette wheel selection algorithm

is chosen for selection operator and thus the probability for selecting a chromosome

equals the quotient of the value of the fitness function for this specific chromosome

and the sum of the values of the fitness function of all the chromosomes in the

population. In this method, a circle is divided into N sectors proportionally to the

probability of selection of the individuals. Each time the roulette rotates, an individual

is selected and accordingly individuals with higher fitness values have

proportionately greater probabilities of being selected.

Once the parents are selected, reproduction for creating a new generation begins

by performing recombination.

Crossover. The first operator in creating a new generation is crossover

(recombination), in which the genes of the parents form an entirely new chromosome.

Typically, the crossover operator needs two parent and aims at designing a new

hromosome that is better than the two parents. Crossover is performed at a point

chosen with crossover probability pc where parents exchange their gene information

and so form a new individual (child).

Mutation. The newly created by selection and crossover generation can be

mutated. In biological species mutations alter DNA, these changes being caused

mainly by errors in copying the parents genes. In genetic algorithms, mutation is a

change of the value in a gene in the offspring, randomly selected with probability pm.

Additionally, а matrix, indicating on which gene the mutation is performed, is also

created.

For the newly created generation, the fitness function values are re-calculated

and the elitism check is performed because some fit individuals and their genetic

material may be lost due to selection, crossover and/or mutation. In order to preserve

their good genes, the genetic material must be kept in the algorithm. This process is

called elitism.

4. Results

After the successful implementation of the GFSSAM hybrid system in MatLab,

experimental tests have been carried out. The tests aim at studying the behavior of

the parameters of the fuzzy system while changing the parameters of the genetic

algorithm and finding the optimal solutions. The results presented in this paper are

conducted on real data from BSE-Sofia.

A variety of tests have been performed for all 37 parameters of the therms of the

input and output fuzzy variables. In the tests four parameters of GA have been

changed and at the same time the changes of the respective change in the fuzzy system

have been followed up. In addition, the convergence of GA has been recorded.

In this section, the behavior PAR1, which is the value of 𝛼 of the Gaussian

function of term Y1 of the fuzzy variable Q-measure is presented in details.

 31

At the end of the section the obtained results for PAR1, PAR2, PAR3, PAR4,

PAR5 are the values of the parameter 𝛼 of the Gaussian function of the corresponding

terms Y1, Y2, Y3, Y4 and Y5 of the fuzzy variable Q-measure are summarized.

The rest of the parameters of the fuzzy variables have been studied analogically.

The initial values are PAR1 = 0; PAR2 = 0.25; PAR3 = 0.5; PAR4 = 0.75;

PAR5 = 1 and the corresponding calculated defuzzified value of the output variable

is Q = 0.7746. The value of the fitness function F is denoted with y.

Results obtained after changing nGen. The number of generations (nGen),

needed for finding optimal solutions, is one of the most important parameters

of GA, because it is directly connected with the cost of the algorithm. Values

of nGen have been increased from 2 up to 2000, while the other three

parameters (nPop, pc, pm) of GA have been kept constant. On Table 3 the

change of PAR1 and y for nGen=2, 5, 10, 50 are presented.

Table 3. Changes in PAR1 and y corresponding to changes in nGen
nGen nPop pm pc PAR1 y

2 6 0.1 0.75 0.0005 0.0955

5 6 0.1 0.75 0.0006 –0.0192

10 6 0.1 0.75 0.0004 0.0292

50 6 0.1 0.75 0.0004 –0.0295

As can be seen from the table above, the increase in number of generations does

not improve the accuracy of the obtained result. What is more, after the tenth

generation the value of PAR1 practically does not change with respect to the desired

precision (four decimal digits).

The conclusion here is that there is no need to continue the genetic algorithm

after the 50th generation.

The convergence of the process for obtaining optimal values for PAR1

corresponding to the change in nGen = 2, 5, 10, 50 is shown in Fig. 3.

When nGen = 5 the value of y is closest to 0 and this is reached in the third

generation which is actually the best result.

a) nGen = 2 b) nGen = 5 c) nGen = 10 d) nGen = 50

Fig. 3. Convergence in obtaining optimal values of PAR1 for nPop = 6; pm = 0.1, pc = 0.75

Results obtained after changing nPop. The change in values of PAR1 and y

corresponding to increase in the population size, while the other factors are constant)

is shown on Table 4. It is important to note that a crossover error occurs for

nGen = 10, nPop = 5, pm = 0.1, pc = 0.75 the algorithm cannot be executed. Tests with

other odd values of nPop (such as 7, 9, 19) have been also conducted and the

crossover operator could not be executed as well.

0

0.001

0 20 40 60

 32

Table 4. Changes in PAR1 and y corresponding to changes in nPop

nGen nPop pm pc PAR1 y

10 5 0.1 0.75
Impossible to

execute

10 10 0.1 0.75 0.161 0.003

10 20 0.1 0.75 0.0467 0.003

10 30 0.1 0.75 –0.0344 0.006

The convergence of the process for obtaining optimal values for PAR1

corresponding to the change in nPop = 10, 20, 30 is shown in Fig. 4.

a) nPop = 10 b) nPop = 20 c) nPop = 30

Fig. 4. Convergence in obtaining optimal values of PAR1 for nGen = 10; pc = 0.75; pm = 0.1

The conclusion is that the genetic algorithm performs well enough even with

relatively small population size.

Results obtained after changing pc . Table 5 shows the change in values of

PAR1 and y according to the crossover probability pc. Smaller values of pc lead to

better results both in minimal value of y and in convergence.

Table 5. Changes in PAR1 and y corresponding to changes in pc

nGen nPop Pm Pc PAR1 y

10 6 0.1 0.25 –0.0127 0.0002

10 6 0.1 0.5 –0.0582 0.0004

10 6 0.1 0.75 –0.1121 0.0004

10 6 0.1 0.9 –0.1 0.0006

The convergence of the process for obtaining optimal values for PAR1

corresponding to the change in pc = 0.25, 0.5, 0.75, 0.9 is shown in Fig. 5.

a) pc = 0.25 b) pc = 0.5 c) pc = 0.75 d) pc = 0.9

Fig. 5. Convergence in obtaining optimal values of PAR1 for nGen = 10, nPop = 6; pm = 0.1

-0.2

0

0 0.5 1

-1

0

1

0 10 20 30 40

 33

The test results lead to the conclusion that smaller values of crossover

probability lead to faster convergence, for instance the convergence when pc = 0.25

is reached just after the third generation.

Results obtained after changing pm . The change in values of PAR1 and y due

to change of the mutation probability pm is shown in Table 6.

Table 6. Changes in PAR1 and y corresponding to changes in pm

nGen nPop pm Pc PAR1 y

10 6 0.05 0.75 0.003 –0.0275

10 6 0.2 0.75 0.0837 0.0003

10 6 0.5 0.75 –0.0765 0.003

10 6 0.8 0.75 0.0079 0.0005

The convergence of the process for obtaining optimal values for PAR1

corresponding to the change in pm = 0.05, 0.2, 0.5, 0.8 is shown in Fig. 6.

a) pm = 0.05 b) pm = 0.2 c) pm = 0.5 d) pm= 0.8

Fig. 6. Convergence in obtaining optimal values of PAR1 for nGen = 10, nPop = 6; pc = 0.75

The conclusion that smaller values of mutation probability lead to faster

convergence is in line with the theoretical research in the area of evolutionary

computation.

The convergence of the vectors of the fitness function 𝑭 due to change in

population size is shown in Fig. 7.

a) nPop = 6 b) nPop = 20

Fig. 7. Convergence in obtaining optimal values of PAR1 for nGen = 10, pc = 0.75, pm = 0.2

After the conducted experimental tests the conclusion is drawn: the fastest

convergence for PAR1 and y is reached at nGen = 10, nPop = 6, pm = 0.1 and

pc = 0.25, which means that the genetic algorithm finds satisfactory results at lower

values of its parameters: number of generations, population size, mutation probability

and crossover probability.

-0.2
0

0.2

0 0.5 1

 34

Summarized results. The optimal values of the parameters PAR1, PAR2,

PAR3, PAR4, PAR5 and y, the corresponding minima of the fitness function 𝑭 and

the parameters of GA at which least time is reached, are shown in Table 7.

Table 7. Optimized values of PAR1, PAR2, PAR3, PAR4, PAR5 and y

nGen nPop pm pc PAR1 PAR2 PAR3 PAR4 PAR5 y

10 20 0.2 0.75 0.0549 0.3435 0.4027 0.8634 1 0.0006

20 20 0.05 0.5 –0.0137 0.1944 0.3785 0.8727 1.0824 0.0006

12 8 0.02 0.2 –0.1225 0.1480 0.4074 0.7670 1.0653 0.0005

10 8 0.5 0.05 0.0764 0.1679 0.3866 0.8616 1 0.0006

When the results are analysed only with regard to the obtained of the fitness

function 𝐹 = 𝑦, the conclusion is as follows: an optimal value (𝑦 ≤ 0.0006) and the

corresponding optimized values of the parameters of the fuzzy system are reached at

several combinations of GA parameters and they are:

 nGen = 10, nPop = 20, pc = 0.75 and pm = 0.2;

 nGen = 20, nPop = 20, pc = 0.5 and pm = 0.05;

 nGen = 12, nPop = 8, pc = 0.2 and pm = 0.02;

 nGen = 10, nPop = 8, pc = 0.05 and pm = 0.5.

Generally, in order to reach optimal values the number of generations does not

need to exceed 20, the population volume does not need to exceed 20, but with

smaller values of these two parameters it is necessary to decrease the crossover

probability of crossing pc and to increase the mutation probability pm.

With regard to the last conclusion, it is advisable to use the following values (or

close to them) as parameters of the genetic algorithm:

 nGen = 50, nPop = 8, pc = 0.75 and pm = 0.1.

5. Conclusion

GFSSAM, presented in this paper, is a genetic fuzzy rule-based system, implemented

in MatLab. The major goal in creating the system is finding optimal values of the

fuzzy system parameters. Genetic algorithms are successfully applied to various

problems in different areas. Because their potential to bring flexibility, they are

suitable for optimizing fuzzy systems for decision-making in diagnostics, monitoring

and management.

The hybridization of the genetic algorithm and the fuzzy system is considered

successful because the behavior of the system with the found optimal values of the

parameters is stable and reliable on the basis of the results obtained. Another

important result from this research, undoubtedly proven by the experimental tests, is

that a large number of generations or population size is not a requirement for solving

this optimization problem.

An interesting follow-up to this research is the creation of a genetic fuzzy system

aiming at optimization of the architecture of the fuzzy system and in particular the

number and type of fuzzy rules.

 35

Acknowledgements: This research is partially supported by the project D14-2305 “Modern software

engineering products for scientific research – training for lecturers and students in Faculty of Computer

Science and Engineering and Faculty of Business Studies, Burgas Free University”, “University

Research Fund”, BFU 2017/2018.

R e f e r e n c e s

1. G e o r g i e v a, P. V. FSSAM: A Fuzzy Rule-Based System for Financial Decision Making in Real

Time. Handbook of Fuzzy Sets Comparison – Theory, Algorithms and Applications. Science

Gate Publishing, 2016, pp. 121-148.

2. H e r r e r a, F., M. L o z a n o, E. H e r r e r a-V i e d m a, J. V e r d e g a y. Fuzzy Tools to Improve

Genetic Algorithms. – In: Proc. of European Congress on Intelligent Techniques and Soft

Computing, Aachen, Germany, 1994, pp. 1532-1539.

3. P e n e v a, V., I. P o p c h e v. Fuzzy Logic Operators in Decision-Making. – International Journal

Cybernetics and Systems, Robert Trappl, Ed., Vol. 30, 1999, No 6, pp. 725-745.

4. G e o r g i e v a, P. V., I. P o p c h e v, S. S t o y a n o v. A Multi-Step Procedure for Asset Allocation

in Case of Limited Resources. – Cybernetics and Information Technologies, Vol. 15, 2015,

No 3, pp. 41-51.

5. P e n e v a, V., I. P o p c h e v. Multicriteria Decision Making Based on Fuzzy Relations. –

Cybernetics and Information Technologies, Vol. 8, 2008, No 4, pp. 3-12.

6. G e o r g i e v a , P. V. Applying FSSAM for Currency Rates Forecasting. – In: Transactions on

Machine Learning and Artificial Intelligence, Manchester, SSE UK, Vol. 4, 2016, No 3,

pp. 30-40.

7. G e o r g i e v a, P. V. Fuzzy Rule-Based Systems for Decision-Making. – Engineering Sciences,

BAS, Vol. LIII, 2016, No 1, pp. 5-16.

8. M a v r o v, D., I. R a d e v a, K. A t a n a s s o v, L. D o u k o v s k a, I. K a l a y k o v. InterCriteria

Software Design: Graphic Interpretation within the Intuitionistic Fuzzy Triangle. – In:

International Symposium on Business Modeling and Software Design (BMSD’15), Milano,

2015, pp. 279-283.

9. P e n e v a, V., I. P o p c h e v. Fuzzy Multi-Criteria Decision Making Algorithms. – Compt. Rend.

Acad. bulg. Sci., Vol. 63, 2010, No 7, pp. 979-991.

10. Z a f a r i, A. Developing a Fuzzy Inference System by Using Genetic Algorithm and Expert

Knowledge. Netherlands, Enschede, 2014.

11. Z a d e h, L. A Theory of Approximate Reasoning. – Machine Intelligence, Vol. 9, 1979,

pp. 149-194.

12. P o p c h e v, I., P. G e o r g i e v a. A Fuzzy Approach for Solving Multicriteria Investment

Problems. – In: Innovative Techniques in Instruction Technology, e-Learning, e-Assessment,

and Education. M. Iskander, Ed. Springer Science+Business Media B. V., 2008,

pp. 427-431.

13. S u g e n o, M. Industrial Applications of Fuzzy Control. Japan, Elsevier Science Pub, Co., 1985.

14. M e l i n, P., O. C a s t i l l o, E. R a m í r e z. Analysis and Design of Intelligent Systems Using Soft

Computing Techniques. – Series: Advances in Soft Computing, Vol. 41, 2007.

15. J a n g, R. Fuzzy Inference Systems. NJ, Prentice-Hall, 1997.

16. G o l d b e r g, D., K. D e b. A Comparative Analysis of Selection Schemes Used in Genetic

Algorithms. – In: Foundations of Genetic Algorithms, Los Altos, Morgan Kaufmann, 1991,

pp. 69-93.

17. P o p c h e v, I., V. P e n e v a. An Algorithm for Comparison of Fuzzy Sets. – Fuzzy Sets and

Systems, Elsevier Science Publishers, Norht-Holland, Amsterdam, Vol. 60, 1993, No 1,

pp. 59-65.

18. R a d e v a, I. Multicriteria Fuzzy Sets Application in Economic Clustering Problems. – Cybernetics

and Information Technologies, Vol. 17, 2017, No 3, pp. 29-46.

19. R a d e v a, I. Multi-Criteria Models for Cluster Design. – Cybernetics and Information

Technologies, Vol. 13, 2013, No 1, pp. 18-33.

Received 11.01.2018; Second Version 26.02.2018; Accepted 15.03.2018

