
 139

BULGARIAN ACADEMY OF SCIENCES

CYBERNETICS AND INFORMATION TECHNOLOGIES Volume 18, No 1

Sofia 2018 Print ISSN: 1311-9702; Online ISSN: 1314-4081

DOI: 10.2478/cait-2018-0012

Neural Network Models for Word Sense Disambiguation:

An Overview

Alexander Popov

Institute of Information and Communication Technologies, Bulgarian Academy of Sciences, 1113

Sofia, Bulgaria

E-mail: alex.popov@bultreebank.org

Abstract: The following article presents an overview of the use of artificial neural

networks for the task of Word Sense Disambiguation (WSD). More specifically, it

surveys the advances in neural language models in recent years that have resulted

in methods for the effective distributed representation of linguistic units. Such

representations – word embeddings, context embeddings, sense embeddings – can

be effectively applied for WSD purposes, as they encode rich semantic information,

especially in conjunction with recurrent neural networks, which are able to capture

long-distance relations encoded in word order, syntax, information structuring.

Keywords: Word sense disambiguation, neural networks, long short-term memory

cells, word embeddings, sense embeddings, context representation.

1. Introduction

1.1. Task definition and applications

Word Sense Disambiguation (WSD) is defined as the task of making automatic

choices with regards to which sense of a word is used in a particular context. This

problem in Natural Language Processing (NLP) is a long-standing one and

concerted work on it dates back to the beginning of the field, starting with the

intensive Machine Translation (MT) research projects in the middle of the last

century (in fact, it is to some extent the difficulty of WSD that stalled advances in

MT and discouraged researchers).

WSD is important for NLP because of the richness and ambiguity of natural

languages. Open-class words often have multiple meanings, either due to polysemy

(i.e., the existence of separate but related senses corresponding to the same word) or

to homonymy (the phenomenon of semantically unrelated concepts being expressed

with the same word). Thus, for instance, “knife” can be used either as a noun (an

instrument for cutting) or as a verb as the product of conversion/zero derivation

(“to knife somebody to death”); if it is a noun, it can have a more specific meaning

(a cutting weapon) or a more general one (“any long thin projection that is

transient” – definition taken from WordNet 3.1). Another ambiguous case is

mailto:author@boulder.nist.gov

 140

illustrated by the classic example from the literature: “bank” can mean the earth on

the side of a river, or it can mean a financial institution, etc.

These ambiguities are important in many respects, as the lexicon stands as a

sort of interface between various levels of linguistic analysis. Ascertaining the

correct sense of a word is obviously linked to tagging it correctly with a part-of-

speech category label; different verb senses have different syntactic

subcategorization frames (i.e., they take a different number and different types of

arguments), they impose selectional restrictions on nouns; noun senses in turn can

combine with different adjectives, they can take on different semantic roles, etc.

Word senses are also important in that they are situated in complex semantic

networks where separate senses are interconnected in a web of lexical relations such

as hypernymy, meronymy, antonymy, synonymy, etc.

Thus, word senses provide an entry into world knowledge (in the shape of

ontologies, for instance) that can be used to enrich the text and make it, to a certain

extent, comprehensible to a machine. Such information is useful when establishing

coreference in texts, identifying lexical chains, etc. WSD is therefore,

unsurprisingly, also important outside of pure linguistic analysis, i.e., when used in

practical applications, such as machine translation, where words and senses across

languages are not mapped in one-to-one relations; it is also a rich resource of

information for building information extraction systems (rule-based or statistical),

for information retrieval, question answering, etc.

There are different ways to precisely define the WSD task. This overview will

focus such variations where there is a lexicon available, providing word senses for

the different words, and the problem at hand is to pick the correct one to be used in

a context. Following the Senseval (http://www.senseval.org/) competitions, there

are two popular variations of this task: the all-words and the lexical sample tasks.

The first one requires that an automatic system disambiguate all open-class words

in a context, while the second focuses on a limited number of words sampled in

some way from a lexicon (therefore usually target words appear alone in the

training and test sentences).

1.2. Traditional approaches to WSD

Despite the relevance of WSD to the automatic analysis of language and the long

tradition of research in the field, as of yet it is not a task that can be handled well

enough for it to make a vital difference. There are a number of reasons for that,

among them: data sparseness (there are too many open-class words with too many

associated senses, so that it is very expensive to annotate wide-coverage corpora),

the difficulty of constructing good lexicons (word sense distinctions can get too

coarse – or fine-grained; consequently, the disambiguation either does not provide

enough expressivity, or it is too imprecise), the difficulty of handling long-distance

context (sometimes, to correctly disambiguate a word you need to look at the other

end of the sentence, or even beyond the sentence boundary).

Several broad families of methods for WSD have been explored: supervised,

unsupervised and knowledge-based (semi-supervised methods like bootstrapping

have also been explored with some good results). Unsupervised models can make

 141

use of large amounts of data, but they are constrained by the fact that they can

merely cluster distinct usages of words – they cannot employ precompiled lexicons

with sense distinctions. Knowledge-based methods are attractive in that they do not

require any data (annotated or raw) other than a lexical resource, such as a

dictionary or a computational lexicon (e.g., WordNet [1]); for instance, the Lesk

algorithm [2] only needs the word sense glosses to compute word overlap with the

words in the context (or with the words in their own glosses, depending on the

version of the algorithm), while in [3] Agirre and Soroa employ a random walk

algorithm to iteratively traverse part of the semantic graph of a lexical resource in

order to determine which of the possible senses in a context are the most probable

to appear together.

Supervised methods have achieved the best results in WSD tasks. They

perform better than knowledge-based ones but need significant amounts of data.

The best-performing system in recent years has been IMS, which uses an SVM to

do the disambiguation, looking at a window-bounded context around the target

word and extracting rich features from it [4]. This system has been used in

conjunction with distributed representations of words derived via neural networks –

T a g h i p o u r and N g [5] demonstrate that the addition of such features increases

its accuracy; a later study [6] explores different ways for more sophisticated

integration of distributed representations as features to IMS (such as fractional

weighting of the vectors and exponential decay weighting, the farther they are from

the target word). Those yield even higher results: F1 scores of 69.9, 75.2 and 89.4

for Senseval 2, 3 and 7, respectively, whereas the original IMS numbers are 65.3,

72.9, and 87.9. Other machine learning algorithms that have been explored for

WSD include: decision lists and trees, naïve Bayes classifiers, k-nearest neighbors

(for a detailed survey see [7]).

In the next two sections, neural network approaches to supervised WSD will

be explored as alternatives to the ones already mentioned. Neural networks have the

advantage of being able to naturally incorporate distributed representations of

words, to learn on their own hidden features and to handle long contexts. The

overview will focus both on ways of representing words and senses via neural

networks and on ways to directly perform classification, given an input context.

2. Embedding words, contexts and word senses for WSD

Before moving to neural models that are designed specifically for the WSD task,

the overview will summarize some of the popular neural network language models

for obtaining distributed representations of linguistic units, since those have

contributed to a wave of significant advances in NLP in recent years. Such

distributed representations, also called embeddings (because the original space is

transformed to a lower-dimensional one), usually of words, are especially

appropriate as input features to a WSD algorithm, because they encode in a tightly-

packed way a host of semantic and grammatical distinctions to which this task

should be sensitive.

 142

2.1. Feedforward neural network language models

The idea of word embeddings has been around since [8]. Word embeddings are in

many ways similar to count-based Language Models (LMs), which have been very

successful in NLP. The latter operate by obtaining maximum likelihood estimations

of the occurrence of particular sequences of words in texts, but are restricted by the

so-called curse of dimensionality: word sequences of larger length are unlikely to

occur often or at all, therefore it is impossible to train LMs based on higher order n-

grams (5-grams is a typical choice). Smoothing is usually applied to fight this

problem, but it is a difficult task in itself. Neural network LMs overcome this

obstacle by performing dimensionality reduction, which allows for the clustering of

words; therefore finding the next most probable word no longer relies on having

seen this exact sequence, but rather on having seen similar ones (and similarity is

defined along the reduced dimensions of the embedding space).
[9] used a multilayer feedforward neural network to train such a model and

obtain distributed representations. The models proposed achieved significantly

better results on the perplexity measure than n-gram models, after being trained on

corpora of 1 and 15 million words. However, training in this way takes a lot of time

and makes experimental work very challenging. In a later work R o n a n and

W e s t o n [10] obtained word embeddings using a convolutional neural network,

which was also trained to perform a host of other NLP tasks such as POS tagging,

chunking, named entity recognition, semantic role labeling. Fig. 1 provides a visual

example of a feedforward network for obtaining embeddings.

Fig. 1. A feedforward network that projects a context of n words before the target one, does

computations in the hidden layer and then outputs probabilities for the different possible realizations

of the target word (from [11])

2.2. Recurrent neural network language models

Further improvements to neural network language models have been proposed

subsequently, such as, most significantly, using a Recurrent Neural Network (RNN)

for learning. Such a model has obvious advantages over a feedforward architecture:

it avoids the restriction of a window-based approach, has the capability of keeping

an unlimited history, as well as of a short-term memory. Another advantage,

particularly useful in the case of WSD, is the ability to compress whole contexts

into low-dimensional vectors, not merely separate words.

 143

Fig. 2. Graphic representation of a recurrent neural network (from [11])

An RNN operates via a hidden layer that has connections to itself, i.e., it has

access to its own memory, which is being updated as the time series progresses.

This is analogous to having a very deep feedforward neural network with one

hidden layer per time slice (Fig. 2 gives a visual representation of the idea).

Additional modifications have been proposed – in order to fight the problem of the

vanishing gradients, whereby the backpropagated error gradients grow too small

with longer sequences and learning becomes impossible. There are two popular

modifications of RNNs proposed in the literature that tackle this issue: Long Short-

Term Memory (LSTM) cells and Gated Recurrent Units (GRUs). An LSTM cell

[12] is internally more complex than the vanilla hidden layer of a simple RNN. It

has a cell state that is modified selectively, according to which past and present

input information is considered the most relevant by the cell. This is accomplished

by special gates that regulate the network’s focus on the current input and its

decisions to forget unnecessary past information; there is also an output gate that

controls what is being passed forward. Here is a variant of the equations that define

the gates and the cell state (taken from [13]; for a visual representation, see Fig. 3).

Fig. 3. A graphic representation of an LSTM cell (from [13])

 144

(1) it = (Wxixt + Whiht–1 + Wcict–1 + bi),

(2) ft = (Wxixt + Whfht–1 + Wcfct–1 + bf),

(3) ct = ftct–1 ittanh(Wxcxt + Whcht–1 + bc),

(4) ot = (Wxoxt + Whoht–1 + Wcoct + bo),

(5) ht = ottanh(ct),

where i is the input gate, f is the forget gate, c is the cell state, o is the output gate

and h is the next state that the hidden layer passes along (as output or as memory);

σ is the sigmoid activation function and tanh is the hyperpolic tangent.
GRUs [14] are similar to LSTMs, but are conceptually simpler in that they

have fewer parameters and lack an output gate.

2.3. Shallow neural network language models

The most significant breakthrough in producing distributed representations of

words came with [15]. That work introduced simpler neural architectures that are

trainable in reasonable time, due to the fact that they do not have hidden

non-linear layers (i.e., no non-linear activation functions are used on the single

hidden layer of the network). These shallow networks are less powerful than

deep feedforward neural nets, let alone RNNs, but they compensate with

much greater speed. It turns out that by training on large data (on the order of

billions of words; e.g., the pre-trained Google vectors (Downloadable from:

https://code.google.com/archive/p/word2vec/) distributed freely online are trained

on 100 billion words) these simple networks can achieve good representations for

individual words. This is demonstrated through experiments on word similarity and

relatedness datasets, as well as on analogy making. Simple arithmetical operations

on the vectors give impressive and immediately tangible results that suggest the

representations do encode particular semantic features in the shared space

(e.g., “France” – “Paris” + “Berlin” = “Germany”, where the names stand for the

respective word vectors).

Fig. 4. The CBOW and Skip-gram architectures (from [15])

The aforementioned work introduced two simple architectures for obtaining

word embeddings: CBOW and Skip-gram. CBOW projects a number of words

around the target word to the lower-dimensional space and sums their vectors, then

it maps the context to a vocabulary-sized vector and obtains a probability

 145

distribution over it (via a softmax function); the training procedure aims to optimize

the network with respect to the correct target word. The Skip-gram model is similar,

only it attempts the reverse – to predict the surrounding context on the basis of a

single word in its center (the two architectures are graphically represented

in Fig. 4). The final step in these models – the softmax function – is very expensive

with large vocabularies (those can grow up to hundreds of thousands or even

millions of words when training on large corpora). One way to alleviate this is by

using a hierarchical softmax [15], which represents the vocabulary as a Huffman

binary tree, or negative sampling [16], which compares the probability for the

correct target word with a small number of sampled incorrect ones.

2.4. Embedding word senses

Word embeddings, even though they are powerful features, are not perfectly suited

to all NLP tasks. On one hand, in some cases similar distributed information on

other levels of analysis could be more useful: morpheme-wise or character-wise, for

example. On the other, word embeddings in many cases bundle together

information about multiple word senses that can encode subtly or widely divergent

meanings. Regarding the first observation, there is a number of works that have

explored embedding words on the character level (e.g., [17]) or on the level of

individual morphological elements (e.g., [18]). There have also been a number of

attempts to derive sense embeddings, i.e., distributed representations of word senses

rather than of word forms.
Producing sense embeddings in the same way as word embeddings is difficult,

as not enough annotated data is available and the construction of such resources is

prohibitively expensive in large quantities. Here are discussed a few methods for

the creation of sense embeddings that attempt to get around this problem. In the

next section some further strategies are introduced that make use of recurrent neural

networks.
One way to approach the task is to automatically annotate large enough

corpora with word senses (SemCor [19], the largest annotated lexical resource, has

around 200K annotated word senses, while word embeddings are usually trained on

billions of words). [20] presents one such attempt, in which the BabelNet

(http://www.babelnet.org/) sense inventory (a merger of several resources, most

notably WordNet and Wikipedia) is used to tag a training corpus: a dump of

Wikipedia. The Babelfy (http://www.babelfy.org/) tool, which employs a random

walk on graph algorithm, is used to perform the disambiguation stage; the senses

annotated with a high enough confidence score are selected as final, otherwise the

procedure backs off to the most frequent sense. The senses annotated with high

confidence account for about half of the content words in the sense inventory. This

automatically generated corpus of several billion words is fed into the word2vec

tool (https://code.google.com/archive/p/word2vec/) (more specifically to the

CBOW algorithm) and sense embeddings are produced from it. The vector

representations are tested on word and relational similarity datasets, giving state-of-

the-art results, thus suggesting that sense embeddings can indeed offer more

nuanced information than word embeddings.

 146

Another possible approach is via utilizing already existent word embeddings

and inferring the sense embeddings from them. For instance, J o h a n s s o n and

P i n a [21, 22] use lemma embeddings produced via the Skip-gram method and

interpret those as convex combinations of the different possible senses per each

lemma. The method minimizes a neighborhood metric between sense nodes, based

on the relational structure of lexical resources (e.g., the hypernymy relations in

WordNet). Thus, only word/lemma embeddings and a computational lexicon are

needed to create the sense embeddings under this strategy.
Still another way for obtaining sense embeddings is AutoExtend [23]. This

work adds to the paradigm of word embeddings the concepts of synset and lexeme

emeddings (synsets being sets of interchangeable synonyms and lexemes being

pairings of words and synsets). It builds on the idea that a lexical resource can be

used to impose constraints on embeddings and therefore to allow a system to extend

word embeddings to embeddings of other data types. Words are interpreted as the

sums of their lexemes, and synsets, analogously, as the sums of their attendant

lexemes. In this way, words, lexemes and synsets are situated in the same

embedding space. The learning of the embeddings itself is accomplished via an

autoencoding framework where the input and output layers of the autoencoder are

the word embeddings and the hidden layer gives the synset embeddings. Lexeme

embeddings are defined by the transition from word to synset embeddings.

Additional constraints are defined via the WordNet relations in order to force

similar synsets to stay close in the embedding space.
Finally, there is at least one more line of work that offers an alternative

opportunity for producing training corpora for word2vec-style embedding creation.

[24] employs the PageRank algorithm [25] in order to traverse the relational

structure of WordNet and simultaneously with that to emit series of artificial

“sentences” – i.e., the algorithm hops along connected vertices and emits their IDs,

until the hops are terminated (a probability variable ensures this), then it initiates a

new sequence-hopping (each one is a new “sentence”). This particular work

replaces the vertex IDs with associated lemmas for the synsets and uses the corpus

to train lemma embeddings, which are shown to be competitive with “regular” word

embeddings on the word similarity and relatedness tasks. However, nothing

precludes the analogous creation of synset embeddings in the exact same manner.

This approach is attractive in that it requires no manually-annotated data and

because it allows different graph topologies to be tested for the creation of the

corpora (which should force the resultant embeddings to encode different semantic

relations; this is demonstrated in [26]).

3. Recurrent neural networks for WSD

As discussed previously, RNNs are powerful mechanisms for modeling sequential

data, which is especially relevant when analyzing language. Being able to keep a

trace of arbitrarily long contexts is crucial for more complex NLP tasks where long-

distance dependencies need to be modeled. The variants already mentioned of

RNNs – LSTMs and GRUs – make this possible in practice by allowing the

 147

network to learn how to selectively focus on relevant knowledge seen at separate

time steps. A relatively simple modification to RNNs can render them even more

powerful with regards to language processing – making them bidirectional. This

means using two RNNs in tandem – one reading the input sequence (e.g., sentence)

in natural order, the other doing it in reverse. Thus, at each time step the

representations of the forward and the backward RNNs can be concatenated, which

in effect combines information about preceding and following context.

Bidirectional LSTMs have been successfully applied to different NLP tasks, such as

POS tagging [27], chunking [28], NER [29], dependency parsing [30], etc.
The following subsections summarize some ways in which RNNs have been

applied to WSD.

3.1. Using RNNs for context embedding

One of the usages of RNNs for WSD is a simple extension of the ideas presented in

Section 2: To transform input contexts into vectors in an embedding space. The

context vectors can then be compared to the possible word sense vectors for the

target word that is to be disambiguated. Context embedding can be accomplished in

different ways, the simplest of them being the bag-of-words approach, which

simply averages the word embeddings in a particular context. This strategy loses

any information about word order and is thus not very effective (See, however,

[31], where word embeddings are trained with the specific task of sentence

representation – the network tries to predict neighboring sentences on the basis of

the context. This gives competitive results and is very fast compared to more

sophisticated methods.).
Word-order-information-preserving context representations that use

embeddings include weighting the word embeddings [32] or combining vectors in

an order dictated by the parse trees of context sentences [33]. L e and M i k o l o v

[34] in turn use a network that learns word embeddings and simultaneously with

that learns paragraph embeddings, where the latter are used as additional features to

context words for the prediction of target words; paragraph embeddings in this

work operate as a sort of global memory that influences the classification.
Recurrent neural networks fit naturally in this research paradigm – they

preserve word order information without requiring any additional information about

the context, such as syntactic parses; their major disadvantage is their relatively

slow speed. [35] presents context2vec (Fig. 5), which uses a bidirectional LSTM to

learn word and context embeddings simultaneously. Instead of merely averaging the

word vectors in the context like in CBOW, the Bi-LSTM encodes two contexts –

one to the left and one to the right of the target word – and concatenates them, feeds

them to a MultiLayer Perceptron (MLP) and finally uses the output of the MLP to

obtain an objective function with regards to the embedding of the target word.
The word-centered contexts obtained in this way can be used for WSD as

outlined above – context embeddings are produced for each of the tagged instances

per sense of the target word; then the context embedding for the target word is

compared via a similarity metric to the different example contexts (essentially an

application of the k-nearest-neighbor algorithm with k=1). The authors evaluated

 148

context2vec on the Senseval-3 lexical sample dataset and obtained results almost on

par with the best-scoring systems at the time (see also [36] for an evaluation on the

Senseval all-words lexical tasks, which puts context2vec almost as high as the IMS

system, the best-scorer in that study). [37] is similar to context2vec, but produces

generic sentence representations that are not related to a specific target word.

Fig. 5. The context2vec architecture (from [35])

Another similar study directly related to WSD is [38] (Fig. 6). The authors

train an LSTM language model to predict a held-out word. The last state of the

hidden layer encodes the context of the word. The context representations are again

compared to the possible sense embedding for the target word (obtained by running

the example sentences for the senses through the LSTM and then averaging them) –

via cosine similarity. This study improves its results additionally by enriching in a

semi-supervised manner the number of example sentences, thus better

approximating the decision boundary between different senses (as the nearest

neighbor algorithm assumes a spherical shape for the sense clusters, which often

hurts its performance due to the low number of available examples).
Note that with all of the discussed approaches, it would be possible to use

sense embedding obtained in different ways – for instance, one of those outlined at

the end of the previous section.

Fig. 6. A neural network with an LSTM hidden layer that encodes a context with regards to a hidden

word (represented via the ϕ sign). The final hidden state is the context representation, which is then

used to choose the hidden word (from [38])

 149

3.2. Direct WSD with RNNs

K a g e b a c k and S a l o m o n s s o n [39] (Fig. 7) also use LSTMs for WSD, but do

not calculate similarity between a context and pre-calculated sense embedding.

Rather, their system directly classifies synsets. The architecture uses a Bi-LSTM to

encode a representation of the target word – the forward and backward RNNs

provide the left and right contexts, which are concatenated and put through a non-

linearity, and finally a softmax function carries out the classification phase. This

approach is obviously designed to deal with a single target word per pass. All words

share the Bi-LSTM parameters, so that the model can be improved after the

processing of each training case, but separate words have their own models for

compressing the representations to vectors of the necessary length (to match the

number of synsets) and for the softmax classification. The study reports state-of-

the-art results on the Senseval-2 and 3 lexical sample tasks. It uses a number of

regularization techniques, most notably dropword – randomly hiding words in the

input sequences, so as to make the model more robust to overfitting.

Fig. 7. A Bi-LSTM centered on a word at position n. The accumulated left and right contexts are

concatenated and the result is used for classification. The final layer is a softmax activation function

that is parameterized with regards to separate words (from [39])

4. Conclusion

This article has surveyed recent advances in artificial neural network architectures,

with regards to their use for solving the word sense disambiguation task. It has

provided an overview of different ways for obtaining distributed word

representations and on how to extend this idea to representing other elements of

text, such as word senses and contexts. It has also examined a number of successful

applications of recurrent neural networks to the disambiguation task. RNNs are

uniquely well-suited to deal with the rich and long-reaching dependencies that

determine and reflect the use of word senses; therefore they are rightly being

explored as one of the most promising approaches to making advances in the field.

R e f e r e n c e s

1 . M i l l e r, G. A. WordNet: A Lexical Database for English. – Communications of the ACM,

Vol. 38, 1995, No 11, pp. 39-41.
2 . L e s k, M. Automatic Sense Disambiguation Using Machine Readable Dictionaries: How to Tell

a Pine Cone from an Ice Cream Cone. – In: Proc. of 5th Annual International Conference on

Systems Documentation, ACM, 1986.

 150

3 . A g i r r e, E., A. S o r o a. Personalizing Pagerank for Word Sense Disambiguation. – In: Proc. of

12th Conference of the European Chapter of the Association for Computational Linguistics.

Association for Computational Linguistics, 2009.
4 . Z h o n g, Z., H. T. N g. It Makes Sense: A Wide-Coverage Word Sense Disambiguation System

for Free Text. – In: Proc. of ACL 2010 System Demonstrations. Association for

Computational Linguistics, 2010.
5 . T a g h i p o u r, K., H. T. N g. Semi-Supervised Word Sense Disambiguation Using Word

Embeddings in General and Specific Domains. – HLT-NAACL, 2015.
6 . I a c o b a c c i, I., M. T. P i l e h v a r, R. N a v i g l i. Embeddings for Word Sense

Disambiguation: An Evaluation Study. – ACL, Vol. 1, 2016.
7 . N a v i g l i, R. Word Sense Disambiguation: A Survey. – ACM Computing Surveys (CSUR),

Vol. 41, 2009, No 2, p. 10.
8 . H i n t o n, G. E., J. L. M c c l e l l a n d, D. E. R u m e l h a r t. Distributed Representations,

Parallel Distributed Processing. – Explorations in the Microstructure of Cognition, Vol. 1,

Foundations, 1986.
9 . B e n g i o, Y., R. D u c h a r m e, P. V i n c e n t, C. J a u v i n. A Neural Probabilistic Language

Model. – Journal of Machine Learning Research, Vol. 3, February 2003, pp. 1137-1155.
1 0 . R o n a n, C., J. W e s t o n. A Unified Architecture for Natural Language Processing: Deep

Neural Networks with Multitask Learning. – In: Proc. of 25th International Conference on

Machine Learning, ACM, 2008.
1 1 . M i k o l o v, T., M. K a r a f i á t, L. B u r g e t, J. C e r n o c k ý, S. K h u d a n p u r. Recurrent

Neural Network Based Language Model. – Interspeech, Vol. 2, 2010.
1 2 . H o c h r e i t e r, S., J. S c h m i d h u b e r. Long Short-Term Memory. – Neural Computation,

Vol. 9, 1997, No 8, pp. 1735-1780.
1 3 . G r a v e s, A., A.-R. M o h a m e d, G. H i n t o n. Speech Recognition with Deep Recurrent

Neural Networks. – IEEE International Conference on Acoustics, Speech and Signal

Processing (ICASSP’13), IEEE, 2013.
1 4 . C h o, K., B. V. M e r r i ë n b o e r, D. B a h d a n a u, Y. B e n g i o. On the Properties of Neural

Machine Translation: Encoder-Decoder Approaches. – arXiv preprint arXiv:1409.1259,

2014.
1 5 . M i k o l o v, T., K. C h e n, G. C o r r a d o, J. D e a n. Efficient Estimation of Word

Representations in Vector Space. arXiv preprint arXiv:1301.3781, 2013.
1 6 . M i k o l o v, T., I. S u t s k e v e r, K. C h e n, G. C o r r a d o, J. D e a n. Distributed

Representations of Words and Phrases and Their Compositionality. – In: Advances in Neural

Information Processing Systems, 2013.
1 7 . C h e n, X., L. X u, Z. L i u, M. S u n, H. B. L u a n. Joint Learning of Character and Word

Embeddings. – In: IJCAI, 2015.
1 8 . T h a n g, L., R. S o c h e r, C. D. M a n n i n g. Better Word Representations with Recursive

Neural Networks for Morphology. – In: CoNLL, 2013.
1 9 . M i l l e r, G. A., C. L e a c o c k, R. T e n g i, R. T. B u n k e r. A Semantic Concordance. –

In: Proc. of Workshop on Human Language Technology, Association for Computational

Linguistics, 1993.
2 0 . I a c o b a c c i, I., M. T. P i l e h v a r, R. N a v i g l i. SensEmbed: Learning Sense Embeddings

for Word and Relational Similarity. – ACL, Vol. 1, 2015.
2 1 . J o h a n s s o n, R., L. N. P i n a. Embedding a Semantic Network in a Word Space. – HLT-

NAACL, 2015.
2 2 . J o h a n s s o n, R., L. N. P i n a. Combining Relational and Distributional Knowledge for Word

Sense Disambiguation. – In: Proc. of 20th Nordic Conference of Computational Linguistics,

NODALIDA 2015, 11-13 May 2015, Vilnius, Lithuania, No 109, Linköping University

Electronic Press, 2015.
2 3 . S a s c h a, R., H. S c h ü t z e. Autoextend: Extending Word Embeddings to Embeddings for

Synsets and Lexemes. – arXiv preprint arXiv:1507.01127, 2015.
2 4 . J o s u, G., A. S o r o a, E. A g i r r e. Random Walks and Neural Network Language Models on

Knowledge Bases. – In: HLT-NAACL, 2015.
2 5 . P a g e, L., S. B r i n, R. M o t w a n i, T. W i n o g r a d. The PageRank Citation Ranking:

Bringing Order to the Web. Stanford InfoLab, 1999.

 151

2 6 . S i m o v, K., P. O s e n o v a, A. P o p o v. Comparison of Word Embeddings from Different

Knowledge Graphs. – In: International Conference on Language, Data and Knowledge.

Springer, Cham, 2017.
2 7 . W a n g, P., Y. Q i a n, F. K. S o o n g, L. H e, H. Z h a o. Part-of-Speech Tagging with

Bidirectional Long Short-Term Memory Recurrent Neural Network. – arXiv preprint

arXiv:1510.06168, 2015.
2 8 . W a n g, P., Y. Q i a n, F. K. S o o n g, L. H e, H. Z h a o. A Unified Tagging Solution:

Bidirectional LSTM Recurrent Neural Network with Word Embedding. – arXiv preprint

arXiv:1511.00215, 2015).
2 9 . H u a n g, Z., W. X u, K. Y u. Bidirectional LSTM-CRF Models for Sequence Tagging. – arXiv

preprint arXiv:1508.01991, 2015.
3 0 . W a n g, W., B. C h a n g. Graph-Based Dependency Parsing with Bidirectional LSTM. – ACL,

Vol. 1, 2016.
3 1 . K e n t e r, T., A. B o r i s o v, M. d e R i j k e. Siamese Cbow: Optimizing Word Embeddings for

Sentence Representations. – arXiv preprint arXiv:1606.04640, 2016.
3 2 . C h e n, X., Z. L i u, M. S u n. A Unified Model for Word Sense Representation and

Disambiguation. – EMNLP, 2014.
3 3 . S o c h e r, R., C. C. L i n, C. M a n n i n g, A. Y. N g. Parsing Natural Scenes and Natural

Language with Recursive Neural Networks. – In: Proc. of 28th International Conference on

Machine Learning (ICML’11), 2011.
3 4 . L e, Q., T. M i k o l o v. Distributed Representations of Sentences and Documents. – In: Proc. of

31st International Conference on Machine Learning (ICML’14), 2014.
3 5 . M e l a m u d, O., J. G o l d b e r g e r, I. D a g a n. Context2vec: Learning Generic Context

Embedding with Bidirectional LSTM. – CoNLL, 2016.
3 6 . R a g a n a t o, A., J. C a m a c h o-C o l l a d o s, R. N a v i g l i. Word Sense Disambiguation: A

Unified Evaluation Framework and Empirical Comparison. – Proc. of EACL, 2017.
3 7 . K i r o s, R., Y. Z h u, R. R. S a l a k h u t d i n o v, R. Z e m e l, R. U r t a s u n, A. T o r r a l b a,

S. F i d l e r. Skip-Thought Vectors. – Advances in Neural Information Processing Systems,

2015.
3 8 . Y u a n, D., J. R i c h a r d s o n, R. D o h e r t y, C. E v a n s, E. A l t e n d o r f. Semi-Supervised

Word Sense Disambiguation with Neural Models. – arXiv preprint arXiv:1603.07012, 2016.
3 9 . K å g e b ä c k, M., H. S a l o m o n s s o n. Word Sense Disambiguation Using a Bidirectional

LSTM. – arXiv preprint arXiv:1606.03568, 2016.

Received 01.07.2017; Second Version 06.10.2017; Accepted 23.10.2017

