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Abstract: Signals provided by the ElectroEncephaloGraphy (EEG) are widely used 

in Brain-Computer Interface (BCI) applications. They can be further analyzed and 

used for thinking activity recognition. In this paper we proposed an algorithm that 

is able to recognize five mental tasks using 6 channel EEG data. The main idea is to 

separate the raw EEG signals into several frames and compute their spectrums. 

Next, a second-order derivative of Gaussian is applied to extract features and an 

optimum Gaussian kernel parameters grid search is performed with the help of 

cross-validation. The extracted features are further reduced by Principal 

Component Analysis. The processed data is utilized to train SVM classifier which is 

used for mental tasks recognition afterwards. The performance of the algorithm is 

estimated on publically available dataset. In terms of 5 folds cross-validation we 

obtained an average of 82.7% recognition rate (accuracy). Additional experiments 

were conducted using leave-one-out cross-validation where 67.2% correct 

classification was reported. Comparison to several state-of-the art methods reveals 

the advantages of the proposed algorithm. 

Keywords: ElectroEncephaloGraphy (EEG), Brain Computer Interface (BCI), Fast 

Fourier Transform (FFT), Principal Component Analysis (PCA), Support Vector 

Machine (SVM). 

1. Introduction 

In recent years, the ElectroEncephaloGraphy-based (EEG-based) Brain-Computer 

Interface (BCI) has become one of the most promising areas of research in 

computer science and robotics thanks to neurorehabilitation. Neurorehabilitation is 

a relatively new field and a multi-step system that combines series of therapies from 

the psychological to occupational, teaching or retraining patients on mobility skills, 

communication processes and other aspects of that person’s daily routine [1]. The 

main goal of this complex medical process is the recovery of the patient from a 
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nervous system injury and the minimization and/or compensation for related 

functional alterations or disabilities. There are several common medical conditions 

that are treated by this scientific field, for example: Cerebral palsy, Parkinson's 

disease, Brain injury, Spinal cord injuries, Multiple sclerosis, Stroke, Post-polio 

syndrome and Muscular Dystrophy. What these conditions have in common is the 

presence of damaged communication between the source of movement (brain, 

specific motor cortex) and the actuator of movement (muscles). The human nervous 

system is a highly complex, extremely versatile and dynamic neural network with 

countless inputs and outputs that govern the entire existence of the human being. So 

if the doctors, rehabilitators or the medical personnel in general want to achieve any 

functional improvement, they need to be able to repair or substitute that part of the 

neural network that is not functional in part or in total anymore. Some of their goals 

may be to permanently replace with an appropriate device or artificial limb, or 

repair by retraining and re-learning, the impaired functionality. In either case one 

needs to study the relations between inputs and outputs of the system in order to 

achieve better patient rehabilitation.  

A lot of research from different field experts is put into replacing or regaining 

the lost functionality with the use of emerging technologies such as robotics, 

computer vision, virtual reality and brain-computer interfaces for enhancing the 

disabled user’s independence. The EEG is very important to understand the 

interaction of the different brain areas, study the effect of the abovementioned 

diseases on the neurological processes and build a BCI that can help paraplegic 

individuals [2]. The BCI will use the signals from neuronal activity in the brain to 

interface them with a computer. Thanks to EEG measurement many researchers are 

able to develop new technologies and therapies allowing the assessment of the 

resulting changes in the patient’s brain [3] during their therapy sessions. Thus, the 

development of practical BCIs for disabled people using EEG signals should allow 

them to use all their existing mental and muscle functionalities as control 

possibilities in the system [4, 5]. This method had proved to be effective in helping 

patients with severe motor deficits to control remote devices such as computer 

cursor, artificial limbs or even moving a wheelchair. Various profiles can be built 

and different control strategies could be applied, depending on the condition of the 

patient.  

The rest of the paper is organized as follows: In the next section we provide a 

brief state-of-the-art review of some methods used for mental task recognition 

based on EEG signals. In Section 3 we present the content of the EEG Database [6] 

that we used to perform our investigations. In Section 4 we illustrate and explain the 

proposed algorithm. In Section 5 we give the experimental results. Finally, in 

Section 6, the paper ends with conclusions and discussions. 

2. Related work 

Determining the user’s activities is not only necessary for neurorehabilitation but 

according to [7] it is central for ubiquitous computing. The authors have developed 

an unobtrusive and lightweight single electrode BCI system that can be used to 
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recognize with accuracy between 70-100 % different mental activities such as 

reading and relaxing with Bayesian networks. An interesting scenario is presented 

in [8] which deals with feature extraction and classification of horizontal mental 

task pattern on 1-D cursor movement from EEG signals. In this case three neural 

network classifiers are used: learning vector quantization, multilayer neural network 

and probabilistic neural network. M o u s t a f a  and G a d  [9] use Linear Predictive 

Coding and Discrete Wavelet Transform for compression of EEG channels and 

feature extraction combined with Support Vector Machines (SVM) for 

classification of five mental tasks form [6] with an average recognition rate of about 

85%. For the same database H a r i h a r a n et al. [10] propose the stockwell 

transform for feature extraction and then compare three classifiers: k-means nearest 

neighbours, linear discriminant analysis and SVM to test the strength of the 

proposed features.  

All cited in this paper works that share the same database contribute their own 

innovation in the field of mental tasks analysis for different applications either 

neurorehabilitation and BCI or ubiquitous computing. But it should be mentioned 

that direct comparison of their results is difficult due to the lack of uniformity in 

using the number of subjects, performing the types of experiments and presenting 

the results.  
One of the main goals of our work is finding-out an appropriate feature 

extraction process for better analysing EEG signals. A pool of methods for EEG 

feature extraction exists in the literature. The Auto-Regressive (AR) model, The 

Discrete Wavelet Transform (DWT), and the Fast Fourier Transform (FFT) are 

widely used for such purpose. The AR model is mainly used in signal processing 

especially for system identification [11]. Usually, in the AR model, the variable of 

interest is predicted by linear combination of past values of the variable. The feature 

vector is formed from the coefficients of the model and further used in BCI system 

[12]. However, the AR model cannot capture transient features from EEG signals 

[13] and the AR analysis suffers from speed, and hence it is not always applicable 

in real time applications. DWT represents efficiently EEG signals by decomposing 

each signal into frequency sub-bands. On the other hand, the window with varying 

size is the most significant parameter of this method since it ensures the suitable 

time frequency resolution in all frequency ranges [14]. Hence the choice of suitable 

window size might be tricky for building high accurate BCI system. In our work we 

use FFT as preferred method for feature extraction since it provides suitable 

frequency domain representation of the signal, it is fast, and is one of the most 

widely used method in EEG analysis. 

3. Database 

In this study, we have used the publically available database, collected by Keirn and 

Aunon, from the BCI laboratory of Colorado State University [6]. The database 

contains EEG signals recorded from seven subjects, each of which performed at 

least five trials of five pre-defined mental tasks (each trial has duration of  

10 seconds).  
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The mental tasks are:  

1. Baseline (relaxing as much as possible).  

2. Multiplication (calculating multiplication mentally).  

3. Letter-Composing (considering the contents of a letter).  

4. Rotation (imagining rotation of a 3-D object).  

5. Counting (imagining writing a number in order).  

The data were measured by 6 EEG channels and 1 EOG channel (to measure 

the movement of an eye). The electrodes are placed as shown in Fig. 1 and the 

measurements are made with reference to electrically linked mastoids, A1 and A2.  

 
Fig. 1. Electrode placement 

The electrodes are connected to a bank of active filters whose band-pass 

bandwidths are set from 0.1-100 Hz. The data is passed to 12-bit ADC operated at a 

sampling rate of 250 Hz. Thus, for a given task and a subject – 2,500 samples  

(250 Hz  10 s) per channel are recorded (for the whole trial). The experiments in 

this study are conducted for each subject independently. Thus, it is suitable to 

examine the algorithm performance utilizing equal amount of data per person. This 

allows objective comparison of the results among the subjects. Taking into account 

that subjects 2 and 7 completed only five trials, the analyses are performed over the 

EEG signals for the first five trials only for each participant. 

4. Algorithm description 

A general block diagram representing the main steps of the proposed algorithm is 

shown in Fig. 2. 
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Fig. 2. Main steps of the proposed algorithm for mental tasks classification 

The EEG signal from each channel is first normalised to zero mean and 

variance one. Further it is divided into adjacent frames (each one has duration of 1 

second which corresponds to a length of 250 samples). Thus, 10 frames are 

produced per channel. This process is illustrated on Fig. 3. 
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Fig. 3. Frames partitioning of the EEG signal recorded for one channel 

The period of 1 s is chosen as reasonable for practical mental tasks recognition 

purposes. One can be asked to perform some thinking activity for at least one 

second before refocusing mind into another direction. Additional tests in our 

experimental setup showed that the maximum classification performance is reached 

using comparable time periods. The next step is Fast Fourier Transformation (FFT). 

The motivation behind the choice of FFT is inspired by the assumption that there is 

a relation between specific mental task and the distribution of magnitudes of 

specific group of frequencies of the EEG signals. Considering 250 samples for each 

frame and 6 channels data we have to compute 6 spectrums at a time. After 

applying the FFT the resulted spectrum is symmetrical around the zero frequency. 

Thus, only the half part (i.e., 125 samples) is further used in the next steps. The 

spectrum representation for one of the frames (obtained for subject 4) is given on 

Fig. 4. 
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Fig. 4. Result after applying FFT over one frame of EEG signal 

The third step is feature extraction. This is essential part for reaching high 

recognition accuracy. In order to describe the rate of change of spectrum shape we 

convolved the spectrum using second derivative Gaussian filter of size s. The 2nd 

derivative of Gaussian function can be expressed as follows: 
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The choice of suitable kernel parameters (the filter size s and the standard 

deviation σ) is very important for getting higher classification accuracy. We 

evaluated the classification performance for each person (in terms of 5 folds cross-

validation accuracy) using different sets of parameters (s, σ). The analyses are 

presented later-on in Section 5. The results produced by this step are 6 feature 

vectors per frame (i.e., one feature vector per channel). Each feature vector has 125 

dimensional representations. An example illustration of feature bins distribution 

(obtained for the signal from Fig. 4) is depicted in Fig. 5. 
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Fig. 5. Example feature vector bins distribution after applying 2nd order derivative of Gaussian filter 

(s = 40, σ = 20 – see Table 1) 

To form a dataset for analysis, we concatenated all 6 feature vectors in one 

which generates 6125 = 750 dimensional feature vector. Further, we used 

Principal Component Analysis (PCA) to reduce the vector’s size preserving 99% of 

the energy. One of the main advantages of PCA is its ability to reduce the 

dimensionality without much loss of information. The reduced vector after PCA is 

then utilized for training Support Vector Machine (SVM) classifier using LibSVM 

[15]. SVM is supervised learning method, commonly used for regression and 

classification purposes. It builds a discriminant hyper-plane that maximizes the 

margins to distinguish the classes. For the binary classification problem, given a 

training set of dataset-label pairs (xi, yi), where i = 1,…, N and yi = +1 or –1, the 

SVM solves the following optimization problem:  

(2)   T
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w b c

i

w w C 


   

(3)   subject to: yi(wT φ(xi) + b) ≥ 1 – i,  i ≥ 0. 

The training vectors xi can be mapped into a higher dimensional space by the 

function φ. In the non-linear cases, the SVM can create decision boundaries with 

the help of kernel function K(xi, xj)=φ(xi)Tφ(xj) [16]. In our study we use Radial 

Basis Function (RBF) where the optimum parameters are found by grid-search. To 

solve the multi-classification problem we used one-against-one strategy.  

Once the SVM model is built (by processing all EEG training datasets) the 

algorithm can be used in classification/testing mode. In this mode the 

unknown/testing EEG signals are passed through each of the aforementioned steps. 

Once the reduced feature vector is produced it is further classified by SVM. 
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5. Experimental results 

5.1. Finding optimal filter parameters 
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(a) Subject 1, sopt = 120, σopt =50, Accmax= 92% (b) Subject 2, sopt = 160, σopt =40, Accmax= 86,4% 
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(c) Subject 3, sopt = 20, σopt =30, Accmax= 61,6% (d) Subject 4, sopt = 40, σopt =20, Accmax= 88% 
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(e) Subject 5, sopt = 40, σopt =30, Accmax= 82,8% (f) Subject 6, sopt =98 100, σopt =30, Accmax= 82% 
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(g) Subject 7, sopt = 140, σopt =60, Accmax= 86% 

Fig. 6. Optimum filter parameter grid search via 5-fold cross-validation accuracy for each subject 
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As mentioned earlier we applied a grid search to find-out the optimal filter 

kernel parameters for each subject individually. Especially, the size of the kernel s 

is in the range from 20 up to 120 with an increment of 20. The parameter σ is 

between 10 and 60 and the increment is 10. The results of these analyses are 

illustrated in Fig. 6a-g. 

It can be seen that the pair of kernel parameters (optimum size sopt and 

optimum standard deviation σopt) which gives the maximum cross-validation 

Accuracy (Accmax) varies among the different persons. This means that for real 

applications of the algorithm, the optimum parameters should be found for a given 

user prior building the SVM model. In general (considering all subjects) from  

Fig. 6, it can be observed that the lowest accuracy performances are reported for the 

smallest standard deviations and the influence of variation of σ over the recognition 

accuracy is higher than that of s. The results from these investigations are presented 

in Table 1. The maximum accuracy is obtained for Subject 1 (92%) and the 

minimum – for Subject 3 (61.6%). The recognition rate is 82.7% on average. The 

optimum parameters found are further used for the experiments reported in the next 

subsection. 

Table 1.  5-fold cross-validation accuracy obtained with the optimum filter parameters 

Subject sopt σopt Accuracy, % 

1 120 50 92 

2 160 40 86,4 

3 20 30 61,6 

4 40 20 88 

5 40 30 82.8 

6 100 30 82 

7 140 60 86 

5.2. Performance evaluation 

In order to investigate the recognition performance of our algorithm in more 

realistic situations, we applied leave-one-trial-out cross-validation strategy for each 

subject individually. This means that at a time we used four of all five trials, 

available for a given subject, as a training data and the remaining one – as a testing 

data and calculate the recognition accuracy. Further we repeat the same procedure 

four times, each time considering different trial set for testing (and the remaining 

trails for training) and then the classification accuracy is evaluated based on the 

average over the five trials. This experimental setup makes it possible to perform a 

deep and realistic analysis of the algorithm performance since it represents as close 

as possible to the real environment scenario where one can be asked to train the 

system in several trials and further utilizes it in recognition mode. It should be noted 

that the authors of the most of the state-of-the-art papers do not separate their 

training/testing sets by trials but perform cross-validation randomly using training 

and testing samples from a specific trial. We calculate the average recognition 

accuracy for all seven subjects using the first five trials. Since each trial contains 10 

datasets (for a specific task) we have a total of 50 datasets per task. This gives  

50 datasets per task  5 tasks = 250 datasets for training/testing per person.  
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Table 2. Confusion matrices (in number of datasets) per tasks and subjects obtained by 

leave-one trial out cross-validation (the best results are underlined) 

Task Predicted tasks 
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B M LC R C 

B 44 5 1 0 0 

M 11 38 1 0 0 

LC 0 0 50 0 0 

R 0 0 0 39 11 

C 0 0 0 14 36 
 

Task Predicted tasks 

A
ct

u
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 t
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k
s  

B M LC R C 

B 37 2 6 0 5 

M 3 43 2 0 2 

LC 10 0 33 0 7 

R 0 4 0 40 6 

C 8 6 5 2 29 
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LC 5 3 27 10 5 
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B 40 0 1 9 0 
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C 1 1 3 5 40 
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d. Subject 4 
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B 25 4 13 4 4 

M 3 33 5 9 0 

LC 10 3 30 2 5 

R 6 7 3 34 0 

C 4 0 3 2 41 
 

e. Subject 5 

 

f. Subject 6 

 

Task Predicted tasks 

A
ct

u
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k
s  

B M LC R C 

B 32 5 4 0 9 

M 4 33 0 13 0 

LC 13 0 32 0 5 

R 0 15 0 33 2 

C 5 1 2 0 42 
 

g. Subject 7 

In Table 2 we give the confusion matrices (in number of datasets) obtained for 

each person. It can be seen that for Subject 1, the Letter-Composing (LC) task is 

recognized correctly for all 50 datasets. A similar amount of confusion (11 from 50 

cases in total) is reported for the pairs Baseline (B) – Multiplication (M) tasks and 

Rotation (R) – Counting (C). However in the worst case (Counting) 36 from 50 

datasets are correctly recognized. Considering the other six subjects we can see 

disordered distribution of confusion between the certain pairs of tasks.  It is also 

viewed that the best accuracy is reached for different tasks among the different 

persons. 
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Table 3.  Confusion matrices (in number of datasets) per tasks and subjects obtained by leave-one 

trial out cross-validation (the best results are underlined) 

          Subject 

Task 
S1 S2 S3 S4 S5 S6 S7 

Average 

accuracy 

for each 

task 

Standard 

deviation 

for each 

task 

Baseline 80.0 63.8 39.0 66.7 58.5 52.1 59.3 59.9 12.7 

Multiplication 88.4 78.2 52.1 81.3 54.0 70.2 61.1 69.3 14.1 

Letter 

composing 
96.2 71.7 44.3 88.6 71.7 55.6 84.2 73.2 18.4 

Rotation 73.6 95.2 48.8 58.2 72.1 66.7 71.7 69.5 14.5 

Counting 76.6 59.2 51.3 67.8 40.0 82.0 72.4 64.2 14.9 

Average 

accuracy for 

each subject 

82.9 73.6 47.1 72.5 59.3 65.3 69.7 67.2 

 
Standard 

deviation for 

each subject 

9.2 14.1 5.5 12.2 13.4 12.0 10.1  

Despite these disordering observations, we see promising results for the 

Subject 1. Probably this would mean that the success of recognition is hidden in the 

person’s ability to fully concentrate the mind to certain mental task.  

To summarize the results of the experiments, we compute the recognition 

accuracy in two manners: averaging the recognition rates by subjects and by tasks. 

The results of these investigations are presented in Table 3 and graphically in  

Fig. 7. 
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Fig. 7. Graphical representation of average accuracy per task and subject obtained by leave-one trial 

out cross-validation 

Obviously, the best recognition rate is obtained for Subject 1 (82.9%). The 

worst case is reached for Subject 3 with recognition rate of 47.1%. However, the 

standard deviation of accuracies does not exceed 13.4. Averaging the results among 

the different Subjects shows that the highest recognition rate is obtained for the 

letter-composing task (73.2%) and the lowest one – for the Baseline task (59.3%). 

The last observation probably can be explained by the assumption that the full 

relaxing is difficult to be achieved, which causes misleading brain waves to produce 

wrong results.  
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5.3. Accuracy comparison to another works 

Comparing the results of our experiments conducted to some of state-of-the-art 

works shows significant improvements in terms of classification accuracy. For 

example the algorithm presented in [17] was evaluated on the same brain data and 

the average recognition rate is only 30%. The proposed method in our paper reaches 

more than twice higher accuracy (67.2%). In another work L i a n g  et. al. [18] 

presented a framework for classification of mental tasks from EEG signals using 

extreme learning machine. It can be seen that without further post-processing the 

optimum average classification rate is 56.07% (which is above 10% less than the 

one obtained in our experiments). Even after their suggested post-processing step 

they reported comparable rate of 67.6%. This shows the potential of our method to 

be further improved using appropriate post-processing. 

6. Conclusion 

We propose a method and algorithm for mental task recognition using EEG signals. 

In terms of 5-fold cross-validation accuracy (Section 5.1) we reached 82.7% correct 

classification. We conducted additional experiments by using leave-one-trial-out 

cross-validation strategy, where the average accuracy rate is 62.7%. The 

experimental results showed that our algorithm provided recognition accuracy 

higher than the conventional methods. This improvement in the mental tasks 

classification can provide a better communication pathway between the brain and 

the machines, which in turn will help to develop more reliable assistive devices 

such as brain wave controlled wheel chairs, prostatic limbs and smart living 

environment for patients with brain injuries. We have started working on combining 

the EEG with EMG signals for estimating and classifying mental and muscle 

fatigue. 
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