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Abstract: This paper addresses the analysis of textured images using the symmetric 
positive semi-definite matrix. In particular, a field of symmetric positive semi-
definite matrices is used to estimate the structural information represented by the 
local orientation and the degree of anisotropy in structured and sinusoid-like 
textured images. In order to ensure faithful local structure estimation, an adaptive 
algorithm for the regularization of the extent of gradient fields smoothing is 
proposed. Results obtained on different texture samples show the strength of the 
proposed method in accurately representing the local variation of orientations in 
the underlying textured images, which paves the way towards an accurate analysis 
of the texture structures.  
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1. Introduction  

In image processing, textured images are defined as spatial arrangements of pixels 
intensity describing natural phenomena having repeated patterns with a certain 
amount of randomness [1, 2]. 

The analysis of textured images is a useful area of study in many application 
domains. It is used in image classification, fingerprint examination, identification of 
regions of interest and retrieving similar regions in remote sensing imaging [3-6]. It 
finds solutions too many problems faced in image and video editing and merging 
and it can be seen as an important tool in medical imaging [4, 7, 8]. In computer 
graphics, texture analysis is used to model the surface details [2]. In addition, recent 
researches prove the efficiency of the analysis of textured images in the 
interpretation of seismic data and in texture synthesis applications [9-18]. 

Several methods have been proposed for the analysis of textured images. For 
instance, a Markov Random Field texture modeling method is proposed in [19]. 
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This method is based on the estimation of the local conditional probability density 
function which leads to mathematically capturing the visual characteristics of the 
texture into a statistical model describing the interactions between pixel values. A 
level curves extraction algorithm which consists in retrieving the tangent directions 
and the curvatures of the image sample is proposed in [20]. P o r t i l l a  and 
S i m o n c e l l i  [21] use an over complete complex wavelet transform in order to 
parameterize the model by a set of statistics corresponding to basic functions at 
adjacent locations and scales. X i a n g  et al. [22] use adaptive-fused features and 
gradient-based edge information in order to track objects in images. 

Model-based texture analysis methods consist in building an image model that 
can be used to describe the texture sample where the model parameters confine the 
essential local characteristics of the texture. Model-based methods include the auto-
regressive models [23], Wold models [24], Gabor and wavelet models [25-27], 
fractal models [28], Markov and Gibbs random fields [29-31], etc. In these 
methods, the difficulties reside in choosing the decent model for the underlying 
image and in determining its parameters. 

In order to analyze the orientations of the texture patterns, the method 
proposed in [32] decomposes the image into a flow field, representing the direction 
of anisotropy, and a residual pattern obtained by describing the image in a 
coordinate system built from the flow field. As a preprocessing phase for texture 
synthesis, P e y r é  [9] proposes a grouplet-based method which assumes that the 
geometry of the texture model is an orientation flow that follows the texture 
patterns.  

It has been demonstrated that the use of the structural information can help the 
analysis of textured images, in different application domains, such as image 
synthesis [14], image inpainting [33] and video compression [34]. The structural 
information (i.e., the structure layer) of the textured image is commonly analyzed 
and represented by the symmetric positive semi-definite matrix, also referred to as 
the structure tensor or the second-moment matrix, carrying information about the 
local orientation, the degree of anisotropy and the energy of the underlying image 
[14, 33, 34]. However, the accuracy of this representation raises a crucial enquiry, 
as it is constrained by the extent of gradient fields smoothing used to compute the 
matrices. In other words, a decent size of the gradient smoothing kernel is essential 
to get relevant local structure estimation. This size is usually adjusted for each 
textured image, after several structure layer computation runs, in order to tune the 
symmetric positive semi-definite matrix for relevant representation [14].      

In this paper, we propose a method allowing to adaptively estimate the 
convenient Gaussian kernel size used to smooth the gradient fields leading to a 
relevant symmetric positive semi-definite matrix field. The images under 
consideration are structured textured images as well as non-structured sinusoid-like 
textures. 

The remainder of this paper is organized as follows. The symmetric positive 
semi-definite matrix computation is reviewed in Section 2. The proposed algorithm 
is detailed in Section 3. Practical results are discussed in Section 4. Finally, 
conclusions and prospects are drawn in Section 5. 
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2. Symmetric positive semi-definite matrix  

The Symmetric Positive Semi-Definite Matrix is a matrix derived from the gradient 
of a function where the gradient shows the directions of the greatest degree of 
increase of the scalar field. It allows the local anisotropy around a site of the spatial 
domain to be analyzed, by summarizing the degree to which these directions are 
coherent [35, 36]. In image processing, it is commonly used to represent edge 
information and to describe local patterns [37, 38]. 

The field of symmetric positive Semi-definite Matrices SM of an image I is 
defined as the field of local covariance matrices of the first partial derivatives of I, 
constructed from estimated gradient fields [39]:  
(1)  I  Ix Iy Ix = I*x,  Iy = I*y,  
where x and y are isotropic Gaussian derivatives kernel and “*” denotes the linear 
convolution. 

SM is then expressed as [14]: 
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where G is a Gaussian weighting kernel of standard deviation and [.]T is the 
transpose operator.  

In this paper, the structure layer of a textured image I is represented by the 
field of symmetric positive semi-definite matrices SM which assigns a symmetric 
positive semi-definite matrix SM(z) to each site z of I. 

An eigen decomposition of matrix SM(z) gives two non-negative eigenvalues 
1(z) and 2(z) related to the variations of intensity in the principle direction of the 
gradients in the vicinity of z and in the orthogonal direction, the directions are 
respectively provided by the first and second eigenvectors e1(z) = [e1x(z)  e1y(z)]T 
and e2(z) = [e2x(z)  e2y(z)]T  [13]: 
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The symmetric positive semi-define matrix SM(z) is generally represented by 
its orientation factor (z) calculated from the first eigenvector e1(z) associated to 
1(z) and varying between –π/2 and π/2 [14]: 
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A relevant indicator based on SM(z) is the coherence factor [40], also called 
confidence factor or dispersion indicator, which is obtained from the eigenvalues 
and varies between 0 and 1: 
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It is considered as a measure of the local anisotropy and it characterizes the 
dispersion of the gradient orientation, i.e., the local variation of the image geometry. 
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The energy (or magnitude) of the symmetric positive semi-definite matrix, 
defined as the sum of its eigenvalues (i.e., the expectation of the amplitude of the 
squared gradient), is also an essential factor characterizing the dynamics. In other 
words, the energy at a certain position expresses the local contrast in the vicinity of 
this position [41].  

In the sequel, the field of symmetric positive semi-definite matrices is 
represented by its local orientations and coherence images. An example of 
calculation of a field of symmetric positive semi-definite matrices is presented in 
Figure 1 showing, from upper-left to bottom-right, the “canvas” textured image 
[42], its field of symmetric positive semi-definite matrices represented by the 
orientation and coherence images and the palette used to represent the orientations. 
Note that this palette is used for all the results that follow. All the images are of size 
128×128 and the standard deviation  of the Gaussian weighting kernel G  
(Equation (2)) is of 1.5.  

     

                                   
 

Fig. 1. Example of a field of symmetric positive semi-definite matrices. Upper-left to 
bottom-right: the “canvas” texture [42], the orientation and coherence images of the 

matrices field and the palette of orientations 

It can be seen in Fig. 1 that the lines oriented at 45° (or 135°) of the texture are 
detected by the orientation image revealing the structure at the largest scale. On the 
contrary, the horizontal and vertical stitches of the smallest scale are more difficult 
to highlight because of the smoothing used to compute the fields of matrices. 
Moreover, the coherence image shows that the coherence is high within the local 
regions of approximately same orientations, while the boundaries of those regions, 
marked by a change in the orientation of the patterns, have a smaller coherence.  

3. Adaptive Gaussian kernel size estimation  

As mentioned earlier, the symmetric positive semi-definite matrix SM(z) is 
calculated by gradient field smoothing using a Gaussian weighting kernel G of 
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standard deviation σ. The spatial smoothing makes SM(z) more robust to noise and 
local artifacts. It also allows to spatially distribute the orientation information, 
mainly available on the strong gradient regions (e.g., edges) [43]. 

The Gaussian weighting kernel G is truncated to the interval [–3σ, 3σ], which 
means that the size of G can be expressed as  

(6)    1 2 3 ,G       
where “ ” denotes the rounding up to the nearest integer operator. 

Therefore, the choice of σ is crucial to get relevant local image analysis. It has 
to be chosen according to the size of the patterns of the underlying image, in a way 
to ensure that G is large enough to faithfully reveal the structure information. 
Naturally, it should be on the scale of the largest observed pattern, otherwise the 
structure may be lost [14]. In addition, a high value for σ leads to a smoother SM(z) 
and a less local orientation estimation but a better noise robustness. On the contrary, 
a low σ entails an accurate local analysis but with a high sensitivity to noise [44]. 
This shows the relevance of adaptively estimating a decent size G for the 
Gaussian kernel G. 

The proposed algorithm allows to detect the scale of the largest pattern in the 
textured image, and therefore to estimate a convenient G, which eliminates the 
need of repetitive SM computations with different values of σ in order to reach a 
faithful local structure representation.  

3.1. Case of structured textures 

In the case of structured textured images (i.e., textures showing regular patterns), 
the proposed method operates as follows: 

 The input texture sample I is transformed to a binary image Ib by means of 
thresholding operators following the method in [45]. 

 The position zi
c = (xi

c, yi
c) of the center ci of each pattern IPi (i {1, …, Nr}; 

Nr is the number of patterns in Ib) is determined. 
 The largest distance (IP )i  from the center ci of pattern IPi (i{1, …, Nr}) to 

its borders is calculated.  
 The largest pattern, corresponding to the highest (IP ),i  denoted by IPmax is 

determined.  
 The range of standard deviations which results in a Gaussian kernel having 

the size of the largest pattern observed in Ib(G  = 1+2IPmax) is calculated as   

(7)   max maxIP 1 IP, .
3 3PR  

  
 

 

Therefore, the Gaussian kernel having any standard deviation chosen from RP
, 

is on the scale of the largest pattern in the initial image I. Moreover, a value of σ 
which tends to IPmax/3 is convenient in the case of noisy textured images, in order to 
ensure a high resistance to noise, while a value of σ close to (IPmax – 1)/3 is more 
accurate when dealing with noise free textures and leads to a faithful local structure 
estimation. Fig. 2 shows an illustration of the proposed algorithm. 
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Fig. 2. Illustration of the proposed algorithm. The obtained largest pattern is highlighted in red 

3.2. Case of non-structured sinusoid-like textures 

A non-structured sinusoid-like texture is an image composed of sinusoid waveforms 
that appear like elongated traces, as it is the case for seismic [46, 47] and laminar 
[48] textures for example.  

When dealing with this type of textured images, the obtained binary image Ib 
presents an arrangement of laminar structures (Fig. 3). In this case, a modification 
of the proposed algorithm consists in:    

 Detecting the maximum trace width (ITmax) in Ib using four searching 
directions: vertical, horizontal, first diagonal (i.e., from bottom-left to upper-right) 
and second diagonal (i.e., from upper-left to bottom-right). 

 Computing the acceptable range of standard deviations (RT
) as in the 

original algorithm (Section 3.1) while applying IPmax = ITmax/2 since IPmax 
represents the half size of the Gaussian kernel: 

(8)   max maxIT 2 IT, .
6 6TR  

  
 

 

Fig. 3 illustrates examples of maximum trace width computation on two 
different sinusoid-like textured images.  
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I1                                                           Ib1 

 

 
I2                              Ib2 

 
 

Fig. 3. Non-structured sinusoid-like textures ( 1I  and 2I ) and the corresponding binary 
images (Ib1 and Ib2) showing (in red) the detected trace having the largest width 

4. Results  

In this section, the proposed algorithm is evaluated using different texture samples. 
Fig. 4 presents results obtained on two different structured textures from Brodatz 
database [42]. The first row shows the input structured textures (I1 and I2) and these 
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textures after adding a Gaussian noise of variance 300 (In1 and In2). The second row 
shows the orientation (left) and coherence (right) images of the field of symmetric 
positive semi-definite matrices calculated on In1 and In2 using the median value of 
the acceptable range of standard deviations (RP

) obtained by the proposed algorithm 
(Equation (7)). That is σ = 2.04 and σ = 2.99 for textures In1 and In2, respectively. 
The third to seventh rows show the orientation and coherence images calculated on 
In1 and In2 with σ = 0.5, 1.5, 2.5, 3.5 and 4.5. All the images are of size 256×256.  

It can be clearly seen that a low standard deviation (σ = 0.5) leads to a noisy 
matrix field, with both textures In1 and In2. The standard deviation of 1.5 results in a 
matrix field which is more resistant to noise. However, the smoothing kernel seems 
not large enough to faithfully represent the structures of the underlying exemplars, 
which is highlighted by the distorted patterns present in the orientation and 
coherence images of the fourth row. 

On the other hand, a very high standard deviation (σ = 4.5) results in over-
smoothed fields that fail to represent the structure variations of the input samples. 
On the contrary, the standard deviations of 2.04 (for texture In1) and 2.99  
(for texture In2), chosen from the range of standard deviations obtained by the 
proposed algorithm, lead to matrix fields that faithfully represent the structures and 
local patterns of the exemplars. The resulting orientation and coherence images are 
noise-free with no over-smoothing effect. 

Table 1 presents the Peak Signal-to-Noise Ratio (PSNR) computed between 
the coherence images obtained with the proposed algorithm on the noisy textures In1 
and In2 (Fig. 4) and those obtained with the same algorithm on the noiseless texture 
samples (I1 and I2).  

Table 2 presents the Coefficient of Correlation (CoC) computed between the 
coherence images obtained with σ = 3.5 and 4.5 and the coherence images obtained 
using the standard deviation given by the proposed approach (2.04 for In1 and 2.99 
for In2).  

Note that this metric gives information about edge preservation, and therefore, 
it is used to measure the extent of accurate local analysis.  

It can be observed in Tables 1 and 2 that the PSNR increases with the increase 
of the standard deviation of the Gaussian weighting kernel used to compute the 
matrix. This verifies that a larger weighting kernel is more resistant to noise and 
artifacts. In other words, the noise effect on the matrix field becomes more 
negligible when the standard deviation increases.  

On the other hand, the CoC decreases with the increase of σ, which expresses a 
loss in the precision of local structure estimation. This example confirms the trade-
off between the resistivity to noise and the accuracy of local analysis, which 
highlights the relevance of the proposed approach. 
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Fig. 4. Results of the proposed algorithm on two structured textures from Brodatz database 
[42]. 1st row: the original structured exemplars (I1 and I2) and these exemplars after adding 

a Gaussian noise (In1 and In2). 2nd row: orientation (left) and coherence (right) images of 
the field of symmetric positive semi-definite matrices calculated on In1 and In2 using the 
standard deviations obtained by the proposed algorithm. 3rd to 7th rows: orientation and 

coherence images calculated with σ = 0.5, 1.5, 2.5, 3.5 and 4.5 
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Table 1. Peak Signal-to-Noise Ratio between the coherence images obtained by the proposed 
algorithm on In1 and In2 and those obtained with the same algorithm on I1 and I2 (Fig. 4) 

Standard deviation (σ) 
PSNR 

I1/In1 I2/In2 

0.5 16.2032 17.0124 
1.5 17.1154 19.2651 
2.5 30.1225 22.5301 
3.5 32.0321 25.7587 
4.5 33.6514 28.1131 

 

Table 2. Coefficient of Correlation between the coherence images obtained with σ = 3.5 and 4.5, and 
the coherence images obtained with the proposed approach (Fig. 4) 

Standard deviation (σ) 
CoC 

In1 In2 

3.5 0.9251 0.8984 
4.5 0.8801 0.7729 

Fig. 5 presents results obtained with the proposed algorithm using non-
structured sinusoid-like textures. The first row shows the exemplars (I3, I4 and I5). 
The second, third and fourth rows show the orientations of the matrix fields 
calculated using σ = 1, σ = 4 and the median value of TR  (Equation (8)) obtained 
by the proposed algorithm; 2.33 for I3, 3.2 for I4 and 3.12 for I5.  

In all the results, the standard deviation of 1 leads to a noisy matrix field. As 
the Gaussian weighting kernel is not large enough to capture the variation of 
orientations in the sample texture, the orientation images show distorted patterns 
and artifacts. With textures I3 and I4, the standard deviation of 4 results in over-
smoothed orientation images, while the proposed approach results in orientation 
images that locally represent the structural variations in the input samples. In other 
words, the adaptation of the weighting kernel to the scale of the underlying texture 
patterns leads to a faithful representation of its structure layer. For texture I5, the 
matrix fields obtained with σ = 3.12 and σ = 4 are both of acceptable quality in 
terms of robustness to noise. However, the proposed method remains advantageous 
in complexity gain, by eliminating the need of repetitive runs of matrix computation 
with different values for the standard deviation, in order to obtain an acceptable 
quality. 

The first row of Fig. 6 shows five different input textures and the second row 
shows the orientations of the matrix fields calculated on these textures using a 
standard deviation chosen randomly from the acceptable range of standard 
deviation obtained by the proposed algorithm; PR  (for textures I6, I7, I9 and I10) and 

TR  (for texture I8). It can be clearly seen that the obtained fields are artifact-free 
and they succeed in detecting the variation of orientations in textures I6 and I7.  
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Fig. 5. Results of the proposed algorithm on non-structured sinusoid-like textures. 1st row: 
the exemplars. 2nd, 3rd and 4th rows: the orientations of the matrix fields calculated using  

σ = 1, σ = 4 and the standard deviations obtained by the proposed algorithm 
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The elongated traces oriented at 45° in texture I8 are detected as well, revealing 
the laminar structure at the largest scale. However, structure fluctuations are noticed 
in the upper-left of the orientation image. The proposed algorithm fails to capture 
the largest pattern in textures I9 and I10 due to the lack of discontinuities between the 
overlapping patterns, and therefore leads to irrelevant and over-smoothed matrix 
fields. Using a more accurate thresholding operator could be a possible solution in 
this case. 

 

 

Fig. 6. Results of the proposed algorithm. 1st row: The input textures. 2nd row: The orientation image 
of the matrix fields calculated on the textures of the 1st row, using a value chosen randomly from the 

obtained acceptable range of standard deviations 

Fig. 7 presents results obtained on a set of ten textures of different types taken 
from B r o d a t z  [42] database; structured, laminar, stochastic, isotropic and 
anisotropic. In each result, the input texture is shown on the left and the orientation 
image of the symmetric positive semi-definite matrix obtained by the proposed 
approach is on the right. It can be seen in all the results that the method succeeds in 
well representing the structures of the texture patterns. For instance, the periodic 
repetitions of the structured patterns in textures I12, I14, I16 and I19 are clearly 
respected. The same applies to the stochastic distribution of the patterns in textures 
I13, I15 and I17 and for the laminar structures of textures I11 and I18. Finally, the 
whole set of orientations ranged between –π/2 and π/2, and present in texture I20, is 
well detected by the positive semi-definite matrix. 

Table 3 presents a comparison between the PSNR and CoC values obtained by 
the proposed approach and by the methods proposed in [14, 44, 48] using 44 
textures (I21 to I64) taken from SIPI database [49]. PSNR and CoC metrics are 
calculated between the coherence images of the original texture and that of a noisy 
version of this texture. A Gaussian noise of variance 300 is used. It can be clearly 
seen that in most of the results the proposed approach leads to higher PSNR values 
than those obtained with the other methods. This shows that the proposed algorithm 
succeeds in adaptively estimating the extent of gradient fields smoothing while 
retaining edges and shape features of the texture, which is verified by the obtained 
high CoC values.      
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Fig. 7. Results of the proposed algorithm. In each result: Input texture (left) and orientation image 
obtained by the proposed approach (right) 

A comparison between PSNR and CoC mertics obtained by the proposed 
approach and by the methods proposed in [14, 44, 48] is summarized in the graphs 
of Fig. 8. The metrics are computed on the coherence images of the 115 textures of 
B r o d a t z  [42] database using an added Gaussian noise of variance 300. We can 
clearly observe from the graphs that the PSNR objective measure depict the 
outperformance of the proposed algorithm with respect to the other methods, in 
terms of adapting the symmetric positive semi-definite matrix to the input texture.  
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Table 3. PSNR and CoC values between the coherence images of SIPI textures [49] and noisy 
versions of these textures, obtained using the proposed approach, the methods in [14, 44, 48] 

Texture PSNR CoC 
Proposed [14] [44] [48] Proposed [14] [44] [48] 

I21 30.142 29.431 30.022 30.001 0.927 0.821 0.887 0.822 
I22 31.021 30.457 29.992 30.958 0.905 0.823 0.904 0.901 
I23 30.112 30.114 29.812 29.539 0.981 0.901 0.971 0.902 
I24 31.002 31.011 30.992 30.058 0.899 0.823 0.889 0.821 
I25 29.222 29.131 29.182 29.118 0.995 0.901 0.902 0.899 
I26 30.832 30.158 30.732 30.558 0.898 0.803 0.881 0.811 
I27 33.877 30.232 32.527 32.336 0.905 0.898 0.901 0.829 
I28 32.939 31.558 32.133 32.858 0.991 0.901 0.927 0.911 
I29 31.112 31.131 31.099 31.044 0.987 0.773 0.787 0.721 
I30 29.232 29.058 29.002 28.758 0.904 0.893 0.901 0.859 
I31 33.222 33.131 31.282 32.987 0.904 0.901 0.887 0.829 
I32 31.132 31.008 31.002 31.258 0.914 0.823 0.889 0.899 
I33 32.992 30.535 32.922 32.531 0.901 0.893 0.884 0.867 
I34 33.932 33.058 32.132 32.778 0.899 0.703 0.727 0.828 
I35 28.242 28.048 28.012 28.258 0.825 0.901 0.911 0.801 
I36 31.932 29.558 29.132 29.752 0.887 0.783 0.777 0.801 
I37 33.554 32.536 32.994 32.535 0.914 0.903 0.887 0.901 
I38 33.032 32.328 32.737 32.238 0.978 0.913 0.927 0.922 
I39 28.992 28.057 28.012 28.158 0.995 0.944 0.967 0.947 
I40 29.932 28.858 29.139 28.708 0.972 0.948 0.916 0.924 
I41 29.292 28.930 28.122 28.530 0.987 0.946 0.951 0.947 
I42 31.732 30.754 30.932 31.008 0.978 0.911 0.924 0.951 
I43 30.932 29.998 29.902 30.858 0.985 0.944 0.923 0.913 
I44 29.932 28.878 28.132 29.258 0.979 0.901 0.914 0.927 
I45 28.992 27.534 27.122 27.797 0.988 0.947 0.961 0.937 
I46 28.932 27.778 28.002 27.778 0.984 0.912 0.902 0.938 
I47 33.832 32.058 31.902 32.958 0.989 0.907 0.971 0.972 
I48 34.432 33.058 34.002 34.058 0.898 0.801 0.802 0.891 
I49 30.002 29.539 30.001 29.031 0.887 0.804 0.811 0.899 
I50 31.002 29.758 29.932 29.778 0.857 0.814 0.801 0.894 
I51 31.112 29.535 30.222 31.002 0.978 0.894 0.814 0.887 
I52 33.332 32.759 32.002 33.058 0.905 0.901 0.911 0.921 
I53 30.222 29.539 29.722 29.537 0.914 0.845 0.864 0.812 
I54 32.112 32.131 32.079 32.054 0.975 0.903 0.887 0.891 
I55 31.587 30.264 30.472 30.719 0.991 0.893 0.907 0.901 
I56 31.112 30.758 30.002 31.008 0.992 0.903 0.902 0.889 
I57 29.992 28.539 28.122 29.989 0.899 0.823 0.881 0.871 
I58 32.002 31.008 31.002 29.788 0.905 0.883 0.877 0.801 
I59 32.122 32.101 32.009 32.004 0.975 0.903 0.911 0.964 
I60 31.012 29.788 29.992 29.078 0.977 0.911 0.887 0.801 
I61 30.113 30.133 30.099 30.034 0.984 0.901 0.907 0.881 
I62 32.022 29.758 30.072 31.758 0.895 0.803 0.811 0.799 
I63 33.122 32.544 32.992 32.539 0.847 0.801 0.814 0.829 
I64 33.332 32.058 33.302 33.008 0.991 0.903 0.917 0.941 
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Fig. 8. PSNR and CoC values between the coherence images of B r o d a t z  [42] textures and noisy 
versions of these textures, obtained using the proposed approach, the methods in [14, 44, 48] 

This outperformance does not come at the expense of high frequency 
components loss, which is verified by the obtained high CoC metric values. In fact, 
the proposed approach leads to higher CoC values than those obtained with the 
other algorithms in approximately 94% of the results.   

5. Conclusions and prospects  

We have proposed a method for the size adaptation of symmetric positive semi-
definite matrices, used to analyse local patterns in structured and non-structured 
sinusoid-like textures. In this method, the scale of the largest pattern observed in the 
underlying textured image is first estimated, then it is used to compute a decent size 
for the Gaussian weighting kernel of the matrix, leading to relevant structure layer 
estimation.  

The influence of the weighting kernel size on the accuracy of local analysis 
was studied. The approach was materialized on a set of different textures. The 
obtained results show that even when dealing with noisy texture samples, the 
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algorithm outperforms existing methods while leading to noise-free matrix fields 
with no over-smoothing effect, and therefore it succeeds in accurately representing 
the exemplar’s structure.  

In addition, the proposed algorithm is advantageous in automatically 
estimating the decent weighting kernel size, and therefore eliminating the need of 
repetitive matrix field computations with different values for the standard deviation 
of the weighting kernel. 

As for future perspectives, objective evaluation metrics have to be developed. 
In addition, we aim at reinforcing the use of more accurate thresholding methods 
for a better structure extraction in textured images showing overlapping patterns. 
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