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Abstract: Researchers all over the world have provided significant and effective 
solutions to detect malicious URLs. Still due to the ever changing nature of cyber-
attacks, there are many open issues. In this paper, we have provided an effective 
hybrid methodology with new features to deal with this problem. To evaluate our 
approach, we have used state-of-the-arts supervised decision tree learning 
classifications models. We have performed our experiments on the balanced 
dataset. The experimental results show that, by inclusion of new features all the 
decision tree learning classifiers work well on our labeled dataset, achieving 98- 
99% detection accuracy with very low False Positive Rate (FPR) and False 
Negative Rate (FNR). Also we have achieved 99.29% detection accuracy with very 
low FPR and FNR using majority voting technique, which is better than the well-
known anti-virus and anti-malware solutions.  
Keywords: Static and dynamic analysis; feature extraction; decision tree learning; 
malicious URLs; Web security. 

1. Introduction 

The World Wide Web (WWW) has become the global platform for millions of 
users all over the world. Today’s Web is well matured and has large application 
area, including e-commerce, online banking, social networking, communication and 
many more. Rich Web based applications are available over the WWW to provide 
such types of services. This is the positive side of this technology. Unfortunately, 
the Web has also become a more dangerous place; the popularity of WWW has also 
attracted hackers, intruders, attackers, etc., to abuse the Internet and users to 
perform illegitimate activity for financial profit. Popular types of attacks using 
malicious URLs include: Drive-by download, phishing, and social engineering and 
spamming [1]. N i e l s  P r o v o s  et al. [2], in 2007 found more than three million 
URLs that launched drive-by-download attacks. According to B i n  L i a n g et al.  
[3], 29 of 90 Websites contained malicious code. According to D a v i d e  C a n a l i  
et al. [4] in particular attackers frequently use drive-by-download exploits to 
compromise a large number of users. 
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To overcome these issues, research community all over the world has applied 
many efficient machine learning approaches and achieved significant detection of 
malicious URLs. These include static analysis approach, dynamic analysis 
approach, blacklisting-based approach and heuristic-based approach [5]. D. P a t i l  
and J. P a t i l  [6] have applied static analysis of URLs approach with 79 static 
features of URLs and domain names and achieved detection rate between 95-99% 
with very low False Positive Rate (FPR) and False Negative Rate (FNR). Also, they 
have applied static analysis approach for the detection of malicious JavaScript code 
in the Webpages with 77 static JavaScript features and achieved detection rate 
between 97-99% with very low FPR and FNR in their next study [7]. But, due to 
the ever changing nature of attack construction techniques applied by the attackers, 
there are still many open issues. To overcome the limitations of above approaches, 
dynamic analysis of URLs is more effective for the detection of today's dynamic 
attack construction techniques used by attackers. Web pages feature selection plays 
an important role in dynamic analysis, for the effective detection of malicious Web 
pages. 

In this paper, we have applied a hybrid methodology, i.e. combination of static 
and dynamic approach for the detection of malicious URLs. We have extracted 
features using static analysis and some dynamic analysis of the URLs. We have 
extracted 117 static and dynamic features, among which 44 are new features to 
identify malicious URLs. We have constructed a balanced labeled dataset of 52,082 
malicious and benign benchmarks URLs. Our dataset consists of equal distribution 
of malicious and benign URLs. It consists of 26,041 benign and 26,041 malicious 
URLs. We have evaluated our methodology using 6 state of the art decision tree 
learning classifiers including, J48 Decision Tree, Simple CART, Random Forest, 
Random Tree, ADTree and REPTree. We have built a multi-model classification 
system for the effective detection of URL as benign or malicious using Majority 
Voting algorithm. Also, we have compared our detection results with 18 well-
known anti-virus and anti-malware solutions. Our experimental results show that, 
by inclusion of new features all decision tree learning classifiers perform well on 
our labeled dataset, achieving 98-99% detection accuracy with very low false 
positives and false negatives, as compared to the well-known anti-virus and anti-
malware solutions. 

The remainder of this paper is organized as follows. Section 2 gives a brief 
related work. Section 3 describes the methodology with feature extraction and 
supervised decision tree learning classifiers. Section 4 describes the experimental 
results. Section 5 gives discussion and limitations of our system. We present our 
conclusions in Section 6. 

2. Related work 
Many researchers all over the world have proposed different approaches for 
classification and detection of malicious URLs given as below.  

C h o i, Z h u  and L e e  [8] have proposed a method using machine learning to 
detect malicious URLs of all popular attack types like spam, phishing, malware etc. 
and to identify the nature of attack a malicious URL attempts to launch. They have 



 13 

used features like lexical, link popularity, Webpage content, DNS, DNS fluxiness 
and network traffic. They have collected real-life data from various sources like 
benign URLs from DMOZ Open Directory Project, Yahoo!’s directory, Spam 
URLs from jwSpamSpy, Web spam dataset, Phishing URLs from PhishTank and 
Malware URLs from DNS-BH. They have used three machine learning algorithms 
like the Support Vector Machine (SVM) to detect malicious URLs, RAkEL and 
ML-kNN learning algorithms for multi-label classification problem to identify 
attack type. They have evaluated their method on 40,000 benign URLs and 32,000 
malicious URLs and achieved the accuracy of 98% in detection of malicious URLs 
and 93% in identification of attack types.  

E s h e t e, V i l l a f i o r i t a  and W e l d e m a r i a m  [5] have presented a 
lightweight approach, called BINSPECT that combines static analysis and 
emulation. They have used supervised learning techniques in detection of malicious 
Web pages that may launch drive-by-download, phishing, injection and malware 
distribution attacks. They have extracted features like URL features, page-source 
features and social-reputation features. They have collected a malicious dataset of 
71,919 URLs from the malware and phishing blacklist of Google, Phishtank 
database and the malware and injection attack URL list of MalwareURL. The 
benign dataset of 414,000 benign URLs is collected from three popular sources like 
the Alexa Top sites, the Yahoo random URL generation service and the DMOZ 
directory. According to their experimental evaluation, BINSPECT achieved 97% 
accuracy with low false signals.  

L e  et al. [9] have presented a novel two-stage classification model to detect 
malicious Web pages. They have divided the detection process into two stages. In 
the first stage they have estimated the maliciousness of Web pages using static 
features and in the second stage they have used the potential malicious Web pages 
found in the first stage for final identification of malicious Web pages by extracting 
run time features of these Web pages. They have extracted the static features from 
contents or properties of Web pages without rendering fully or executing Web 
pages. Potential run-time features like foreign contents, script contents and exploit 
contents are extracted by rendering Web pages fully and executing them on specific 
systems. They have used scoring algorithm for the classification. They have 
evaluated their scoring algorithm on the dataset of 20,000 benign Web pages for 
training and 13,646 instances of benign and malicious for testing. According to 
their experimental results, this approach reduced 86% of suspicious Web pages 
without missing attacks. 

B a s n e t  and S u n g  [10] have proposed a machine learning based approach 
to detect phishing Web pages. They have used many novel content based features 
and applied cutting-edge machine learning techniques such as 6 batch learning 
algorithms, Random Forests, Support Vector Machines (SVM) with rbf linear 
kernels, Naive Bayes, C4.5, Logistic Regression (LR) and a set of five online 
learning algorithms: Updatable version of Naive Bayes (NB-U), updatable version 
of LogitBoost (LB-U), Perceptron, Passive-Aggressive (PA) and Confidence-
Weighted (CW) algorithms. They have used 179 Web page features such as lexical 
based features, keyword based features, search engine based feature and reputation 
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based features to demonstrate their approach. To conduct all the experiments, they 
used WEKA and CW libraries. The experimental results show that their proposed 
approach can detect phishing Webpages with an accuracy of 99.9%, false positive 
rate of as low as 0.00% and false negative rate of 0.06%. 

M a et al. [11] have explored how to detect malicious Web sites from the 
lexical and host-based features of their URLs. They show that this problem lends 
itself naturally to modern algorithms for online learning. According to them online 
algorithms not only process large numbers of URLs more efficiently than batch 
algorithms, they also adapt more quickly to new features in the continuously 
evolving distribution of malicious URLs. They developed a real-time system for 
gathering URL features and pair it with a real-time feed of labeled URLs from a 
large Web mail provider. According to their experimental analysis, they have 
achieved detection accuracy of 99% over a balanced dataset. 

G a r e r a  et al. [12] have focused on studying the structure of URLs employed 
in various phishing attacks. They described several features that can be used to 
distinguish a phishing URL from a benign one. These features include page based, 
domain based, type based and word based. These features are used to model a 
logistic regression filter that is efficient and has a high accuracy. They have used 
millions of URLs in their experiments and achieved classification accuracy of 
97.3%. 

3. Methodology 
3.1. Framework of our proposed of Malicious URLs detection system 
Fig. 1 shows the framework of our proposed of malicious URLs detection system. It 
consists of feature extraction phase, training phase and classification phase. The raw 
malicious and benign URLs from benchmarks sources are fed to the feature 
extraction script written in Java.  

 
Fig.1. Framework of our proposed of Malicious URLs detection system 
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We have extracted the 117 static and dynamic features of the benign and 
malicious URLs. These are numeric and binary features. In our dataset preparation, 
we have labeled the benign URLs as –1 and malicious URLs as +1. In the training 
phase, 6 decision tree learning algorithms J48 Decision Tree, Simple CART, 
Random Forest, Random Tree, ADTree and REPTree are trained using our labeled 
dataset. This phase provides 6 trained models, which are used in the testing phase. 
In the testing phase, unknown URLs are tested using the trained model, as benign or 
malicious. We have evaluated 6 trained decision tree learning models on our 
dataset, in terms of detection accuracy, False Positive Rate (FPR), False Negative 
Rate (FNR), precision, recall, F-measure and ROC. Further, we have built a multi-
model classification system for the effective detection of URLs as benign or 
malicious using Majority Voting algorithm. The Majority Voting scheme with 
MAJORITY_VOTING_RULE allows comparison of different models and makes 
the overall result more reliable. 

3.2. Feature extraction 

We have extracted four types of static and dynamic URLs features like, URL 
features, domain name features, Webpage source features and short URLs features. 
We have implemented URLs feature extractor in Java. The URL feature extraction 
is implemented based on the URL class of Java and the features are collected by 
lexical scanning of the URL string. The domain name features extraction is 
implemented based on the domain name extraction and scanning of the domain 
name. The Webpage source features are collected by visiting the page via Selenium 
WebDriver [13] and an instance of Firefox browser so as to capture the details of 
what is rendered (HTML) using a feature extraction engine implemented in Java. 
For each URL visit for feature extraction, a fresh instance of the Firefox browser is 
created to ensure a unique session for each URL. The short URLs features are 
extracted by checking the domain names containing the major URL shortening 
services like bit.ly, goo.gl, tinyurl.com, owl.ly, deck.ly, su.pr and bit.do. The 
expanded URLs are obtained by making query to the URL shortening services. 
After getting the original URL from URL shortening services, we have set a 
threshold value of 30 for the length of URLs i.e. if the length of the returned URL is 
over 30, it is marked as malicious. Also, we have checked the lexical properties of 
the returned URL string for deciding it as benign or malicious. We have checked 
the returned URL string for containing suspicious lexical characters like, _, =, (,), 
%, & and @. 

3.2.1. URL features 
We have extracted 63 URL features from the URL string. Among these features 47 
are from the literature [5, 6, 8, 14-19] and 16 are new features. These are the lexical 
properties of the URLs. Lexical features are the textual properties of the URL itself. 
These features include the general look and feel properties of the URLs. In addition 
to the lexical features, we have checked the presence of suspicious words in the 
URLs. These are numeric and binary features. These URL features are given in 
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Table 1. We have extended the lexical feature set by adding 7 new lexical features. 
These features are important to differentiate malicious URLs from benign ones. 
        Table 1. URL features 

Sr. No Feature name Type 
Features used in the literature 

1 Length of URL numeric 
2 Presence of IP address in Hostname numeric 
3 Length of Query string  in URL numeric 
4 Number of Tokens in URL numeric 
5 Number of Dots (.) characters numeric 
6 Number of Hyphens (-) sign characters numeric 
7 Number of Underscore (_) sign characters numeric 
8 Number of Equal (=) sign characters numeric 
9 Number of Forward slash (/) sign characters numeric 

10 Number of Question Mark sign (?)characters numeric 
11 Presence of “secure” word in URL string binary 
12 Presence of “account” word in URL string binary 
13 Presence of “webscr” word in URL string binary 
14 Presence of “login” word in URL string binary 
15 Presence of “ebayisapi” word in URL string binary 
16 Presence of “signin” word in URL string binary 
17 Presence of “banking” word in URL string binary 
18 Presence of “confirm” word in URL string binary 
19 Presence of “blog” word in URL string binary 
20 Presence of “logon” word in URL string binary 
21 Presence of “signon” word in URL string binary 
22 Presence of “login.asp” word in URL string binary 
23 Presence of “login.php” word in URL string binary 
24 Presence of “login.htm” word in URL string binary 
25 Presence of “.exe” word in URL string binary 
26 Presence of “.zip” word in URL string binary 
27 Presence of “.rar” word in URL string binary 
28 Presence of “.jpg” word in URL string binary 
29 Presence of “.gif” word in URL string binary 
30 Presence of “viewer.php” word in URL string binary 
31 Presence of “link=” word in URL string binary 
32 Presence of “getImage.asp” word in URL string binary 
33 Presence of “plugins” word in URL string binary 
34 Presence of “paypal” word in URL string binary 
35 Presence of “order” word in URL string binary 
36 Presence of “dbsys.php” word in URL string binary 
37 Presence of “config.bin” word in URL string binary 
38 Presence of “download.php” word in URL string binary 
39 Presence of “.js” word in URL string binary 
40 Presence of “payment” word in URL string binary 
41 Presence of “files” word in URL string binary 
42 Presence of “css” word in URL string binary 
43 Presence of “shopping” word in URL string binary 
44 Presence of “mail.php” word in URL string binary 
45 Presence of “.jar” word in URL string binary 
46 Presence of “.swf” word in URL string binary 
47 Presence of “.cgi” word in URL string binary 
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        Table 1 (c o n t i n u e d) 
Sr. No Feature name Type 

New features 
1 Number of Semicolon (;) sign characters numeric 
2 Number of Open Parenthesis (() sign characters numeric 
3 Number of Close Parenthesis()) sign characters numeric 
4 Number of Mod Sign (%) sign characters numeric 
5 Number of Ampersand Sign (&) sign characters numeric 
6 Number of At the Rate Sign (@) sign characters numeric 
7 Number of Digits in the URL numeric 
8 Entropy of URL string real 
9 Presence of “.php” word in URL string binary 

10 Presence of “abuse” word in URL string binary 
11 Presence of “admin” word in URL string binary 
12 Presence of “.bin” word in URL string binary 
13 URL without “www” binary 
14 Presence of “personal” word in URL string binary 
15 Presence of “update” word in URL string binary 
16 Presence of “verification” word in URL string binary 

 
 Shannon entropy of URLs 
To demonstrate the randomness factor in URLs, we have used Shannon 

Entropy as a measure: higher the entropy, higher is the randomness of the instance 
under consideration. We calculated the entropy measure of each benign and 
malicious URL separately [20]. The Shannon entropy of the URL string is 
calculated using following equation: 

(1)    
0

( ) ( ) log ( ),
n

i b i
i

H x p x p x


   

where H(x) is the Shannon entropy of string x, b is the base of the logarithm used, 
and p(x) is the probability mass function. 

Table 2 show the average entropy of malicious and benign URLs used in our 
dataset. From the table it is clear that, malicious URLs have high entropy as 
compare to benign URLs. It shows that there is more randomness factor in 
malicious URLs, to mark it as malicious. 

Table 2. Average entropy of benign and malicious URLs used in our dataset 
Sr. No Average entropy of Benign URL string Average entropy of Malicious URL string 

1 3.87 4.14 
 
 Suspicious word based features of the URLs 
We have added seven new suspicious words in the URL feature set. The word-

based features are binary. We tested if the given word is present or absent in a URL. 
We have used string matching algorithm by Knuth-Morris-Pratt (KMP) to find the 
presence or absence of the suspicious word in the URL [21]. The frequency 
distribution of these new suspicious word-based features is given in Table 3. It is 
clear from the Table 3 that the frequency of the suspicious word features in the 
malicious URLs is higher than that of benign URLs. Hence, these features help to 
identify malicious URLs from benign URLs. 
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Table 3. Distribution of word based features 

Sr. 
No Feature name 

Distribution of word based 
features presence in URLs 

Benign (%) Malicious (%) 
1 Presence of “.php” word in URL string 0.03 35.66 
2 Presence of “abuse” word in URL string 0.01 5.51 
3 Presence of “admin” word in URL string 0.04 6.45 
4 Presence of “.bin” word in URL string 0.08 0.13 
5 Presence of “personal” word in URL string 0.03 0.19 
6 Presence of “update” word in URL string 0.15 2.2 
7 Presence of “verification” word in URL string 0.00 0.72 

3.2.2. Domain name features 
We have used 18 domain name features, among these seven are taken from the 
literature [6, 8, 5, 12, 18, 22] and 11 are new features. We have extracted the 
domain names from the URL string a script written in Java. These are numeric, 
binary and real value features. The domain name features are given in Table 4. 

Table 4. Domain name features 
Sr. 
No Feature name Type Description 

Features used in the literature 
1 Length of Domain Name numeric Length of the domain name string 
2 Domain Name contains IP 

address? binary It is 1 if domain contains IP address 

3 Is Domain is TLD? binary It is 1 if domain is a top-level domain 
4 Number of Sub-Domains numeric No of sub-domains in the domain name 

string 
5 Number of Yahoo links for 

domain numeric No of Yahoo search results for the 
domain name 

6 Number of Bing links for 
domain numeric No of Bing search results for the domain 

name 
7 Alexa Rank of domain numeric Alexa ranking of the domain name 

New features 
1 Domain Name is Valid? binary It is 1 if domain name is a valid domain 

name 
2 Entropy of Domain Name 

string real Shannon entropy of the domain name 
string 

3 Number of tokens in Domain 
Name numeric No of tokens in the domain name string 

4 Length of Longest Domain 
Token numeric Length of longest domain name token 

5 Entropy of Longest Domain 
token real Shannon entropy of the longest domain 

token 
6 Average length of domain 

token real Average length of domain token 

7 Number of tokens in Path numeric No of tokens in the domain name path 
string 

8 Length of Longest Path Token numeric Length of longest domain path token 
9 Average length of path token real Average length of domain path token 

10 Domain Name contains 
suspicious https? binary It is 1 if domain name contains suspicious 

string “https” 
11 Domain Name contains 

suspicious www? binary It is 1 if domain name contains suspicious 
string “www” 
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 Shannon entropy of domain name 
We have used Shannon entropy to demonstrate the randomness factor in 

domain names of malicious and benign URLs. High entropy indicates the more 
suspicious nature of the URL. The Shannon entropy of the domain name string is 
calculated using (1). Table 5 show the average entropy of malicious and benign 
domain names and longest domain tokens used in our dataset. 
 
Table 5. Average entropy of benign and malicious URL domain names and longest domain tokens 

Sr. 
No 

Average entropy 
of benign URL 
domain name 

Average entropy 
of malicious URL 

domain name 

Average entropy of 
longest domain token in 

benign URL 

Average entropy of 
longest domain token 

in malicious URL 
1 3.25 3.37 2.52 2.89 

It is clear that the entropy of domain names and longest tokens in domain 
names of malicious URLs is higher than benign URLs. This indicates that there is 
more randomness factor in malicious URLs, to mark it as malicious. 

3.2.3. Web page source features 
For the effective detection of malicious Web pages, we have used the Web page 
source features. We have rendered the Web pages with the help of Selenium 
WebDriver and an instance of Firefox browser, every time for a new URL the Web 
page is loaded. We have written a script in Java and Selenium WebDriver, which 
extracts the Web page source features. We have extracted 34 such features among 
which 19 features are taken from literature [5, 8, 12, 14, 22, 23] and 15 are new 
features. These are numeric, binary and real value features. These features are given 
in Table 6. 
              Table 6. Web page source features 

Sr. No Feature name Type 
Features used in the literature 

1 Number of Blank Lines in a Web Page numeric 
2 Number of Blank Spaces in a Web Page numeric 
3 Number of Words in a Web Page numeric 
4 Average Length of Words in a Web Page real 
5 Number of iFRames in a Web Page numeric 
6 Number of JavaScript in a Web Page numeric 
7 Number of embed Tag in a Web Page numeric 
8 Number of object Tag in a Web Page numeric 
9 Number of meta Tag in a Web Page numeric 

10 Number of div Tag in a Web Page numeric 
11 Number of body Tag in a Web Page numeric 
12 Number of form Tag in a Web Page numeric 
13 Title Tag present? in a Web Page binary 
14 Number of anchor Tag in a Web Page numeric 
15 Number of Hidden elements in a Web Page numeric 
16 Number of External JavaScript Files in a Web Page numeric 
17 Number of Links in a Web Page numeric 
18 Number of Internal Links in a Web Page numeric 
19 Number of External Links in a Web Page numeric 
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Table 6 (c o n t i n u e d) 
Sr. No Feature name Type 

New features 
1 Number of image Tag in a Web Page numeric 
2 Number of span Tag in a Web Page numeric 
3 Number of input Tag in a Web Page numeric 
4 Number of CSS styles in a Web Page numeric 
5 Number of audio Tag in a Web Page numeric 
6 Number of applet Tag in a Web Page numeric 
7 The size of Webpage numeric 
8 Credit card number word present? in a Web Page binary 
9 log word present?, in a Web Page binary 

10 pay word present?, in a Web Page binary 
11 free word present?, in a Web Page binary 
12 access word present?,  in a Web Page binary 
13 bonus word present?, in a Web Page binary 
14 click word present?, in a Web Page binary 
15 Entropy of Webpage real 

3.2.4. Short URLs features 

Today Online Social Networks (OSN) like Twitter, Facebook, WhatsApp, etc., are 
widely used by millions of users all over the world for communication. Due to the 
text limitation on OSN, URL shortening services like bit.ly, goo.gl, tinyurl.com, 
owl.ly, deck.ly, su.pr, bit.do, etc., are widely used; however they are not free from 
risks [24]. It is also applicable to the Webpages. To deceive the legitimate users’ 
attackers often use such types of URL shortening services to hide their original 
identity. Considering this in mind, we have extracted two features of short URLs. 
We have written an URL expander script in Java, once we get the short URL with 
above URL shortening services; our expander script returns the original URL. We 
have set the threshold of ≥30 characters for the length of the URL and designed 
following rules:  
 

1. if (expandedURL_length >= 30 && contains suspicious characters) 
2. { 
3.     URL — > malicious 
4.  } 
5.   else 
6.  { 
7.     URL — > benign 
8.  } 
 
Also, to decide the URL is malicious or benign we have extracted the lexical 

features, i.e., is URL contains suspicious characters like, _, =, (,), %, & and @. 
These are numeric and binary features and given in Table 7. 
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Table 7. Short URLs features 
Sr. No Feature name Type 

1 Length of expanded URL numeric 
2 Is URL is malicious? binary 

3.3. Decision tree methods used for Malicious URLs detection 

The problem of identifying malicious URLs is an instance of binary classification. 
For a given URL, the data point dx R represents its feature vector with d features. 
Let the set of training sample data be {(x1, y1), …, (xi, yi), …, (xn, yn)}, where xi 
denotes the i-th feature vector; y{–1, +1} is the label of the i-th feature vector, 
denoting whether the feature vector represents a benign or not; and n is the size  
of the data set. During testing, if the predicted label ŷ = +1 but the actual label  
y = –1, then the error is a false positive. If ŷ = –1 but y = +1, then the error is 
a false negative.  

3.3.1. Decision tree learning 

Owing to space limitations, the detail discussion of these algorithms is out of the 
scope of this paper. We have given the short description of each algorithm is as 
follow. 

 J48 Decision Tree: J48 Decision tree learning is one of the most widely 
used techniques for classification. J48 is slightly modified C4.5 in WEKA. The 
C4.5 algorithm generates a classification-decision tree for the given dataset by 
recursive partitioning of data. The decision is grown using depth-first strategy. The 
algorithm considers all the possible tests that can split the data set and selects a test 
that gives the best information gain [35]. 

 Simple CART: Classification and regression trees are machine-learning 
methods for constructing prediction models from data. The models are obtained by 
recursively partitioning the data space and fitting a simple prediction model within 
each partition [36]. 

 Random Forest: Random forest is a combination of tree predictors such that 
each tree depends on the values of a random vector sampled independently and with 
the same distribution for all trees in the forest. It is an effective classifier in 
prediction. Random forest generally exhibits a substantial performance 
improvement over the single tree classifier such as CART and C4.5 [37]. 

 Random Tree: With k random features at each node, a random tree is a tree 
drawn at random from a set of possible trees. Here “at random” means that each 
tree in the set of trees has an equal chance of being sampled. Random trees can be 
generated efficiently and the combination of large sets of random trees generally 
leads to accurate models [38]. 

 ADTree: An alternating decision tree (ADTree) is a machine learning 
method for classification. It is introduced by F r e u n d  and M a s o n  [39]. An 
ADTree consists of an alternation of decision nodes, which specify a predicate 
condition and prediction nodes, which contain a single number. An instance is 
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classified by an ADTree by following all paths for which all decision nodes are true 
and summing any prediction nodes that are traversed. 

 REPTree: REPTree is a fast decision tree classifier which builds a 
decision/regression tree using information gain as the splitting criterion and prunes 
it using reduced-error pruning. It only sorts values for numeric attributes once. 
Missing values are dealt with by splitting the corresponding instances into pieces 
(i.e., as in C4.5) [40]. 

3.3.2. Majority voting 

We have used WEKA’s vote algorithm to obtain the final decision on, whether the 
URL as malicious or benign. Voting is the simplest ensemble algorithm and is often 
very effective. It can be used for classification or regression problems. It works by 
creating two or more sub-models, in our case 6 models. Each sub-model makes 
predictions which are combined using MAJORITY_VOTING_RULE. The 
following Fig. 2 gives the working of the majority voting algorithm. It is a meta-
classifier for combining similar or conceptually different machine learning 
classifiers for classification via majority voting. In majority voting, we predict the 
final class label as the class label that has been predicted most frequently by the 
classification models. Here, we predict the class label ŷ via majority voting of each 
classifier Cj [26, 27]: 
(2)    ŷ =mode {C1(x), C2(x),..., Cm(x)},  
where ŷ predicted class label and C1(x), C2(x),..., Cm(x) classification models. 

 
Fig. 2. Majority voting algorithm 

4. Experimental setup and evaluation 
4.1. Data source and dataset 

We have collected URLs from the benchmark sources of URLs for both malicious 
and benign URLs and divided the dataset into a ratio of 66:34 as training and a 
testing set, i.e., 66% for training and 34% for testing. The dataset of benign URLs is 
collected from the Alexa Top sites [28]. We collected 26,041 benign URLs from the 
above source of benign URLs. For the malicious dataset, we have collected URLs 
from three benchmark sources, like the malware and phishing blacklist of the 
PhishTank database of verified phishing pages [29], the malware and injection 
attack URL list of Malware Domain List [30] and Spam domain blacklist by 
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jwSpamSpy [31]. We collected 26,041 malicious URLs from the above benchmark 
sources of malicious URLs including 8,976 phishing URLs, 11,297 malware URLs 
and 5,721 spam URLs. We have constructed a balanced dataset consisting of equal 
instances of malicious and benign URLs. The breakdown of the dataset is shown in 
Table 8. 
                                    Table 8. Dataset for training and testing 

Task Benign Malicious Total 
Training 17,187 17,187 34,374 
Testing 8,854 8,854 17,708 

Total 52,082 

4.2. Evaluation results 

4.2.1. Evaluation measures 

We have evaluated the performance of 6 decision tree learning classifiers on our 
URL dataset shown in Table 8. We have used the Weka API of all the learning 
classifiers, in our experiments [25]. To obtain the best classification results we have 
used the majority voting scheme. To decide the best performing classifier, we have 
used the confusion matrix, which contains actual and predicted classifications done 
by a classification algorithm [32]. We have used the following confusion matrix 
given in Table 9. 

Table 9. Confusion matrix for actual and predicted benign and malicious URLs 
Predicted 

Actual  Positive Negative 

Positive TP FN 
Negative FP TN 

Using the above confusion matrix we have calculated following measures, to 
evaluate the performance of the classifiers. A binary classifier predicts all data 
instances of a test dataset as either positive or negative. This classification (or 
prediction) produces four outcomes – true positive, true negative, false positive and 
false negative. 

 True Positive (TP): correct positive (malicious URL) prediction 
 False Positive (FP): incorrect positive (malicious URL) prediction 
 True Negative (TN): correct negative (benign URL) prediction 
 False Negative (FN): incorrect negative (benign URL) prediction 
Based on the above confusion matrix, the classifier performance measures like 

accuracy, FPR, FNR, precision, recall and F-measure is calculated using the 
following equations: 

(3)   TP TNAccuracy ,
TP TN FN FF




  
 

(4)   FPFPR ,
TN FP




  

(5)    FNFNR ,
TP FN



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(6)   TPPrecision ,
TP FP




  

(7)   TPRecall ,
TP FN




  

(8)   2 Precision RecallF-measure .
Precision Recall
 




  

4.2.2. Significance of new features    

To verify whether the features we have introduced are important in enhancing the 
effectiveness of analysis and detection of malicious URLs, we compared the 
classification accuracy, False Positive Rate (FPR), False Negative Rate (FNR), 
precision, recall, F-measure and ROC of the classifiers with and without our newly 
introduced features on our URL dataset. As shown in Table 10, the use of new 
features improved the overall performance of all the classifiers, as shown with (↑) 
for improved accuracy.  

Table 10. Overall contribution of new features on the accuracy of classifiers 

Classifier Accuracy without 
new features (%) 

Accuracy with new 
features (%) Change (%) 

J48 Decision Tree 98.51 99.03 0.53 (↑) 
SimpleCart 98.31 99.15 0.84  (↑) 
Random Forest 98.98 99.44 0.46 (↑) 
Random Tree 97.83 98.18 0.35 (↑) 
ADTree 98.02 98.48 0.45 (↑) 
REPTree 98.31 99.19 0.89 (↑) 
Majority Voting 98.68 99.29 0.61(↑) 

 
Table 11. Detailed performance analysis of machine learning classifiers on our URL 
dataset with and without new features 

Classifier Accuracy (%) FPR FNR ROC 
Without new features 

J48 Decision Tree 98.51 0.029 0.000 0.995 
SimpleCart 98.31 0.033 0.001 0.999 
Random Forest 98.98 0.020 0.000 0.998 
Random Tree 97.83 0.040 0.004 0.979 
ADTree 98.02 0.039 0.000 1.000 
REPTree 98.31 0.033 0.001 0.999 
Majority Voting 98.68 0.026 0.000 0.987 

With new features 
J48 Decision Tree 99.03 (↑) 0.018 (↓) 0.002 (↑) 0.998 (↑) 
SimpleCart 99.15 (↑) 0.016(↓) 0.001 0.998(↓) 
Random Forest 99.44 (↑) 0.011 (↓) 0.000 1.000 (↑) 
Random Tree 98.18 (↑) 0.032 (↓) 0.004 0.982 (↑) 
ADTree 98.48 (↑) 0.029 (↓) 0.001 (↑) 1.000 
REPTree 99.19 (↑) 0.014 (↓) 0.002 (↑) 0.998 (↓) 
Majority Voting 99.29 (↑) 0.014 (↓) 0.000 0.993(↑) 
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As shown in Table 11, by the inclusion of new features the FPR and FNR of 
classifiers is decreased. The FPR of all seven classifiers is decreased as shown with 
(↓). The FNR of four of the seven classifiers remains same on both the features set 
with new features and without new features. The FNR of three of the seven 
classifiers is slightly increased using new features. Also the ROC area of four of the 
seven classifiers is increased by using the new features, while it remains same for 
one of the seven classifiers on both the features set with new and without new 
features. It is slightly decreased for SimpleCart and REPTree classifiers. The 
overall performance analysis of all the seven classifiers shows that, it is good 
indication that our new introduced features are enhancing the effectiveness of 
analysis and detection of malicious URLs. 

Table 12 shows the overall performance of seven classifiers in terms of 
precision, recall and f-measure with and without inclusion of new features in our 
URL dataset. It is clear from the table, that there is a significant improvement in all 
the three performance measures for all 7 classifiers with the inclusion of new 
features as shown with (↑). 

 
Table 12. Performance analysis of machine learning classifiers in terms of precision, recall and  
F-measure on our URL dataset with and without new features 

Classifier Precision Recall F-measure 
Without new features 

J48 Decision Tree 0.986 0.985 0.985 
SimpleCart 0.984 0.983 0.983 
Random Forest 0.990 0.990 0.990 
Random Tree 0.979 0.978 0.978 
ADTree 0.981 0.980 0.980 
REPTree 0.984 0.983 0.983 
Majority Voting 0.987 0.987 0.987 

With new features 
J48 Decision Tree 0.990 (↑) 0.990 (↑) 0.990 (↑) 
SimpleCart 0.992(↑) 0.992(↑) 0.992(↑) 
Random Forest 0.994 (↑) 0.994 (↑) 0.994 (↑) 
Random Tree 0.982 (↑) 0.982 (↑) 0.982 (↑) 
ADTree 0.985 (↑) 0.985 (↑) 0.985 (↑) 
REPTree 0.992 (↑) 0.992 (↑) 0.992 (↑) 
Majority Voting 0.993 (↑) 0.993 (↑) 0.993 (↑) 

4.2.3. Comparison with antivirus and anti-malware softwares and services 

To verify the effectiveness of our approach for the analysis and detection of 
malicious URLs, we compared the classification accuracy of 18 well-known 
antivirus and anti-malware softwares and services with our approach, as shown in 
Table 13. We have used the VirusTotal public API v2.0 in our Java program [33]. 
VirusTotal, a subsidiary of Google, is a free online service that analyzes files and 
URLs enabling the identification of viruses, worms, trojans and other kinds of 
malicious content detected by antivirus engines and website scanners. We have 
used the Vigneswar Rao’s, VirusTotal public API v2.0 client implementation in 
Java, to design our script written in Java [34]. Virus Total’s public API lets to 
upload and scan files, submit and scan URLs, access finished scan reports and make 
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automatic comments on URLs and samples without the need of using the HTML 
website interface. It allows building simple scripts to access the information 
generated by VirusTotal. 

We have extracted the detection statistics of 18 well-performing antivirus and 
anti-malware softwares and services. We have tested all the 26041 malicious URLs 
used in our dataset using VirusTotal public API v2.0. Table 13 shows the detection 
accuracy of 18 well-known antivirus and anti-malware softwares and services on 
our malicious URLs dataset. Out of 18, Fortinet antivirus outperforms all the 
remaining antivirus and anti-malware softwares and services in detection accuracy, 
which has a detection accuracy of 96.5%. The overall detection accuracy of our 
approach using majority voting classifier with new features is 99.29%, which is far 
better than all the 18 well-known antivirus softwares. It shows that our approach is 
more effective in the analysis and detection of malicious URLs. 
 

Table 13. Detection accuracy of well-known antivirus and anti-malware softwares and 
services on our malicious URLs 

Sr. 
No 

Antivirus and anti-malware softwares and services Detection accuracy (%) 

1 Our approach  99.29 

2 Fortinet 96.5 
3 Kaspersky 95.72 
4 Sophos 79.68 
5 Avira 62.17 
6 BitDefender 58.95 
7 ESET 51.04 
8 G-Data 44.15 
9 Websense ThreatSeeker 38.17 
10 Emsisoft 35.12 
11 Phishtank 33.54 
12 Dr.Web 30.05 
13 Google Safebrowsing 22.77 
14 Netcraft 18.72 
15 Malware Domain Blocklist 16.53 
16 Malwarebytes hpHosts 12.44 
17 Malware Patrol 6.93 
18 Comodo Site Inspector 6.8 
19 CLEAN MX 3.62 

5. Limitations of our approach 

Considering our approach, it is also not free from limitations. Following are some 
of the limitations of our malicious URLs detection system: 

1. There is need to investigate features from social networks to characterize 
Malicious URLs. 

2. Our methodology lacks analysis and detection of obfuscated JavaScripts in 
the Webpages, which is the major cause behind attacks like drive-by downloads, 
XSS, etc. 

3. There is need to investigate more features of short URLs for the effective 
detection. 
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6. Conclusions 

In this paper, we have performed the static and dynamic analysis of URLs for the 
detection of URL as benign or malicious. We have extracted 117 static and dynamic 
features of the URLs, among which 44 are new features. We have prepared a 
labeled dataset of 52,082 URLs, among which 26,041 are malicious and 26,041 are 
benign. We have evaluated the performance of 6 decision tree learning algorithms 
in terms of detection accuracy, FPR, FNR, precision, recall, F-measure and ROC on 
our balanced dataset. Our experimental results show that with inclusion of new 
features all the decision tree learning classifiers have achieved good detection rate 
between 98-99% with very low FPR and FNR. In addition, we have compared our 
approach with 18 well-known antivirus and anti-malware softwares and services in 
terms of detection accuracy. The experimental analysis show that, our approach 
outperform all the 18 well-known antivirus and anti-malware softwares and services 
in terms of malicious URLs detection accuracy with an overall accuracy of 99.29% 
using majority voting technique. 
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