
 11

BULGARIAN ACADEMY OF SCIENCES

CYBERNETICS AND INFORMATION TECHNOLOGIES  Volume 18, No 1
Sofia  2018 Print ISSN: 1311-9702; Online ISSN: 1314-4081

DOI: 10.2478/cait-2018-0002

Malicious URLs Detection Using Decision Tree Classifiers
and Majority Voting Technique

Dharmaraj R. Patil, J. B. Patil
Department of Computer Engineering, R. C. Patel Institute of Technology, 425405 Shirpur, India
E-mail: dharmaraj.rcpit@gmail.com

Abstract: Researchers all over the world have provided significant and effective
solutions to detect malicious URLs. Still due to the ever changing nature of cyber-
attacks, there are many open issues. In this paper, we have provided an effective
hybrid methodology with new features to deal with this problem. To evaluate our
approach, we have used state-of-the-arts supervised decision tree learning
classifications models. We have performed our experiments on the balanced
dataset. The experimental results show that, by inclusion of new features all the
decision tree learning classifiers work well on our labeled dataset, achieving 98-
99% detection accuracy with very low False Positive Rate (FPR) and False
Negative Rate (FNR). Also we have achieved 99.29% detection accuracy with very
low FPR and FNR using majority voting technique, which is better than the well-
known anti-virus and anti-malware solutions.
Keywords: Static and dynamic analysis; feature extraction; decision tree learning;
malicious URLs; Web security.

1. Introduction

The World Wide Web (WWW) has become the global platform for millions of
users all over the world. Today’s Web is well matured and has large application
area, including e-commerce, online banking, social networking, communication and
many more. Rich Web based applications are available over the WWW to provide
such types of services. This is the positive side of this technology. Unfortunately,
the Web has also become a more dangerous place; the popularity of WWW has also
attracted hackers, intruders, attackers, etc., to abuse the Internet and users to
perform illegitimate activity for financial profit. Popular types of attacks using
malicious URLs include: Drive-by download, phishing, and social engineering and
spamming [1]. N i e l s P r o v o s et al. [2], in 2007 found more than three million
URLs that launched drive-by-download attacks. According to B i n L i a n g et al.
[3], 29 of 90 Websites contained malicious code. According to D a v i d e C a n a l i
et al. [4] in particular attackers frequently use drive-by-download exploits to
compromise a large number of users.

 12

To overcome these issues, research community all over the world has applied
many efficient machine learning approaches and achieved significant detection of
malicious URLs. These include static analysis approach, dynamic analysis
approach, blacklisting-based approach and heuristic-based approach [5]. D. P a t i l
and J. P a t i l [6] have applied static analysis of URLs approach with 79 static
features of URLs and domain names and achieved detection rate between 95-99%
with very low False Positive Rate (FPR) and False Negative Rate (FNR). Also, they
have applied static analysis approach for the detection of malicious JavaScript code
in the Webpages with 77 static JavaScript features and achieved detection rate
between 97-99% with very low FPR and FNR in their next study [7]. But, due to
the ever changing nature of attack construction techniques applied by the attackers,
there are still many open issues. To overcome the limitations of above approaches,
dynamic analysis of URLs is more effective for the detection of today's dynamic
attack construction techniques used by attackers. Web pages feature selection plays
an important role in dynamic analysis, for the effective detection of malicious Web
pages.

In this paper, we have applied a hybrid methodology, i.e. combination of static
and dynamic approach for the detection of malicious URLs. We have extracted
features using static analysis and some dynamic analysis of the URLs. We have
extracted 117 static and dynamic features, among which 44 are new features to
identify malicious URLs. We have constructed a balanced labeled dataset of 52,082
malicious and benign benchmarks URLs. Our dataset consists of equal distribution
of malicious and benign URLs. It consists of 26,041 benign and 26,041 malicious
URLs. We have evaluated our methodology using 6 state of the art decision tree
learning classifiers including, J48 Decision Tree, Simple CART, Random Forest,
Random Tree, ADTree and REPTree. We have built a multi-model classification
system for the effective detection of URL as benign or malicious using Majority
Voting algorithm. Also, we have compared our detection results with 18 well-
known anti-virus and anti-malware solutions. Our experimental results show that,
by inclusion of new features all decision tree learning classifiers perform well on
our labeled dataset, achieving 98-99% detection accuracy with very low false
positives and false negatives, as compared to the well-known anti-virus and anti-
malware solutions.

The remainder of this paper is organized as follows. Section 2 gives a brief
related work. Section 3 describes the methodology with feature extraction and
supervised decision tree learning classifiers. Section 4 describes the experimental
results. Section 5 gives discussion and limitations of our system. We present our
conclusions in Section 6.

2. Related work
Many researchers all over the world have proposed different approaches for
classification and detection of malicious URLs given as below.

C h o i, Z h u and L e e [8] have proposed a method using machine learning to
detect malicious URLs of all popular attack types like spam, phishing, malware etc.
and to identify the nature of attack a malicious URL attempts to launch. They have

 13

used features like lexical, link popularity, Webpage content, DNS, DNS fluxiness
and network traffic. They have collected real-life data from various sources like
benign URLs from DMOZ Open Directory Project, Yahoo!’s directory, Spam
URLs from jwSpamSpy, Web spam dataset, Phishing URLs from PhishTank and
Malware URLs from DNS-BH. They have used three machine learning algorithms
like the Support Vector Machine (SVM) to detect malicious URLs, RAkEL and
ML-kNN learning algorithms for multi-label classification problem to identify
attack type. They have evaluated their method on 40,000 benign URLs and 32,000
malicious URLs and achieved the accuracy of 98% in detection of malicious URLs
and 93% in identification of attack types.

E s h e t e, V i l l a f i o r i t a and W e l d e m a r i a m [5] have presented a
lightweight approach, called BINSPECT that combines static analysis and
emulation. They have used supervised learning techniques in detection of malicious
Web pages that may launch drive-by-download, phishing, injection and malware
distribution attacks. They have extracted features like URL features, page-source
features and social-reputation features. They have collected a malicious dataset of
71,919 URLs from the malware and phishing blacklist of Google, Phishtank
database and the malware and injection attack URL list of MalwareURL. The
benign dataset of 414,000 benign URLs is collected from three popular sources like
the Alexa Top sites, the Yahoo random URL generation service and the DMOZ
directory. According to their experimental evaluation, BINSPECT achieved 97%
accuracy with low false signals.

L e et al. [9] have presented a novel two-stage classification model to detect
malicious Web pages. They have divided the detection process into two stages. In
the first stage they have estimated the maliciousness of Web pages using static
features and in the second stage they have used the potential malicious Web pages
found in the first stage for final identification of malicious Web pages by extracting
run time features of these Web pages. They have extracted the static features from
contents or properties of Web pages without rendering fully or executing Web
pages. Potential run-time features like foreign contents, script contents and exploit
contents are extracted by rendering Web pages fully and executing them on specific
systems. They have used scoring algorithm for the classification. They have
evaluated their scoring algorithm on the dataset of 20,000 benign Web pages for
training and 13,646 instances of benign and malicious for testing. According to
their experimental results, this approach reduced 86% of suspicious Web pages
without missing attacks.

B a s n e t and S u n g [10] have proposed a machine learning based approach
to detect phishing Web pages. They have used many novel content based features
and applied cutting-edge machine learning techniques such as 6 batch learning
algorithms, Random Forests, Support Vector Machines (SVM) with rbf linear
kernels, Naive Bayes, C4.5, Logistic Regression (LR) and a set of five online
learning algorithms: Updatable version of Naive Bayes (NB-U), updatable version
of LogitBoost (LB-U), Perceptron, Passive-Aggressive (PA) and Confidence-
Weighted (CW) algorithms. They have used 179 Web page features such as lexical
based features, keyword based features, search engine based feature and reputation

 14

based features to demonstrate their approach. To conduct all the experiments, they
used WEKA and CW libraries. The experimental results show that their proposed
approach can detect phishing Webpages with an accuracy of 99.9%, false positive
rate of as low as 0.00% and false negative rate of 0.06%.

M a et al. [11] have explored how to detect malicious Web sites from the
lexical and host-based features of their URLs. They show that this problem lends
itself naturally to modern algorithms for online learning. According to them online
algorithms not only process large numbers of URLs more efficiently than batch
algorithms, they also adapt more quickly to new features in the continuously
evolving distribution of malicious URLs. They developed a real-time system for
gathering URL features and pair it with a real-time feed of labeled URLs from a
large Web mail provider. According to their experimental analysis, they have
achieved detection accuracy of 99% over a balanced dataset.

G a r e r a et al. [12] have focused on studying the structure of URLs employed
in various phishing attacks. They described several features that can be used to
distinguish a phishing URL from a benign one. These features include page based,
domain based, type based and word based. These features are used to model a
logistic regression filter that is efficient and has a high accuracy. They have used
millions of URLs in their experiments and achieved classification accuracy of
97.3%.

3. Methodology
3.1. Framework of our proposed of Malicious URLs detection system
Fig. 1 shows the framework of our proposed of malicious URLs detection system. It
consists of feature extraction phase, training phase and classification phase. The raw
malicious and benign URLs from benchmarks sources are fed to the feature
extraction script written in Java.

Fig.1. Framework of our proposed of Malicious URLs detection system

 15

We have extracted the 117 static and dynamic features of the benign and
malicious URLs. These are numeric and binary features. In our dataset preparation,
we have labeled the benign URLs as –1 and malicious URLs as +1. In the training
phase, 6 decision tree learning algorithms J48 Decision Tree, Simple CART,
Random Forest, Random Tree, ADTree and REPTree are trained using our labeled
dataset. This phase provides 6 trained models, which are used in the testing phase.
In the testing phase, unknown URLs are tested using the trained model, as benign or
malicious. We have evaluated 6 trained decision tree learning models on our
dataset, in terms of detection accuracy, False Positive Rate (FPR), False Negative
Rate (FNR), precision, recall, F-measure and ROC. Further, we have built a multi-
model classification system for the effective detection of URLs as benign or
malicious using Majority Voting algorithm. The Majority Voting scheme with
MAJORITY_VOTING_RULE allows comparison of different models and makes
the overall result more reliable.

3.2. Feature extraction

We have extracted four types of static and dynamic URLs features like, URL
features, domain name features, Webpage source features and short URLs features.
We have implemented URLs feature extractor in Java. The URL feature extraction
is implemented based on the URL class of Java and the features are collected by
lexical scanning of the URL string. The domain name features extraction is
implemented based on the domain name extraction and scanning of the domain
name. The Webpage source features are collected by visiting the page via Selenium
WebDriver [13] and an instance of Firefox browser so as to capture the details of
what is rendered (HTML) using a feature extraction engine implemented in Java.
For each URL visit for feature extraction, a fresh instance of the Firefox browser is
created to ensure a unique session for each URL. The short URLs features are
extracted by checking the domain names containing the major URL shortening
services like bit.ly, goo.gl, tinyurl.com, owl.ly, deck.ly, su.pr and bit.do. The
expanded URLs are obtained by making query to the URL shortening services.
After getting the original URL from URL shortening services, we have set a
threshold value of 30 for the length of URLs i.e. if the length of the returned URL is
over 30, it is marked as malicious. Also, we have checked the lexical properties of
the returned URL string for deciding it as benign or malicious. We have checked
the returned URL string for containing suspicious lexical characters like, _, =, (,),
%, & and @.

3.2.1. URL features
We have extracted 63 URL features from the URL string. Among these features 47
are from the literature [5, 6, 8, 14-19] and 16 are new features. These are the lexical
properties of the URLs. Lexical features are the textual properties of the URL itself.
These features include the general look and feel properties of the URLs. In addition
to the lexical features, we have checked the presence of suspicious words in the
URLs. These are numeric and binary features. These URL features are given in

 16

Table 1. We have extended the lexical feature set by adding 7 new lexical features.
These features are important to differentiate malicious URLs from benign ones.
 Table 1. URL features

Sr. No Feature name Type
Features used in the literature

1 Length of URL numeric
2 Presence of IP address in Hostname numeric
3 Length of Query string in URL numeric
4 Number of Tokens in URL numeric
5 Number of Dots (.) characters numeric
6 Number of Hyphens (-) sign characters numeric
7 Number of Underscore (_) sign characters numeric
8 Number of Equal (=) sign characters numeric
9 Number of Forward slash (/) sign characters numeric

10 Number of Question Mark sign (?)characters numeric
11 Presence of “secure” word in URL string binary
12 Presence of “account” word in URL string binary
13 Presence of “webscr” word in URL string binary
14 Presence of “login” word in URL string binary
15 Presence of “ebayisapi” word in URL string binary
16 Presence of “signin” word in URL string binary
17 Presence of “banking” word in URL string binary
18 Presence of “confirm” word in URL string binary
19 Presence of “blog” word in URL string binary
20 Presence of “logon” word in URL string binary
21 Presence of “signon” word in URL string binary
22 Presence of “login.asp” word in URL string binary
23 Presence of “login.php” word in URL string binary
24 Presence of “login.htm” word in URL string binary
25 Presence of “.exe” word in URL string binary
26 Presence of “.zip” word in URL string binary
27 Presence of “.rar” word in URL string binary
28 Presence of “.jpg” word in URL string binary
29 Presence of “.gif” word in URL string binary
30 Presence of “viewer.php” word in URL string binary
31 Presence of “link=” word in URL string binary
32 Presence of “getImage.asp” word in URL string binary
33 Presence of “plugins” word in URL string binary
34 Presence of “paypal” word in URL string binary
35 Presence of “order” word in URL string binary
36 Presence of “dbsys.php” word in URL string binary
37 Presence of “config.bin” word in URL string binary
38 Presence of “download.php” word in URL string binary
39 Presence of “.js” word in URL string binary
40 Presence of “payment” word in URL string binary
41 Presence of “files” word in URL string binary
42 Presence of “css” word in URL string binary
43 Presence of “shopping” word in URL string binary
44 Presence of “mail.php” word in URL string binary
45 Presence of “.jar” word in URL string binary
46 Presence of “.swf” word in URL string binary
47 Presence of “.cgi” word in URL string binary

 17

 Table 1 (c o n t i n u e d)
Sr. No Feature name Type

New features
1 Number of Semicolon (;) sign characters numeric
2 Number of Open Parenthesis (() sign characters numeric
3 Number of Close Parenthesis()) sign characters numeric
4 Number of Mod Sign (%) sign characters numeric
5 Number of Ampersand Sign (&) sign characters numeric
6 Number of At the Rate Sign (@) sign characters numeric
7 Number of Digits in the URL numeric
8 Entropy of URL string real
9 Presence of “.php” word in URL string binary

10 Presence of “abuse” word in URL string binary
11 Presence of “admin” word in URL string binary
12 Presence of “.bin” word in URL string binary
13 URL without “www” binary
14 Presence of “personal” word in URL string binary
15 Presence of “update” word in URL string binary
16 Presence of “verification” word in URL string binary

 Shannon entropy of URLs
To demonstrate the randomness factor in URLs, we have used Shannon

Entropy as a measure: higher the entropy, higher is the randomness of the instance
under consideration. We calculated the entropy measure of each benign and
malicious URL separately [20]. The Shannon entropy of the URL string is
calculated using following equation:

(1)
0

() () log (),
n

i b i
i

H x p x p x


 

where H(x) is the Shannon entropy of string x, b is the base of the logarithm used,
and p(x) is the probability mass function.

Table 2 show the average entropy of malicious and benign URLs used in our
dataset. From the table it is clear that, malicious URLs have high entropy as
compare to benign URLs. It shows that there is more randomness factor in
malicious URLs, to mark it as malicious.

Table 2. Average entropy of benign and malicious URLs used in our dataset
Sr. No Average entropy of Benign URL string Average entropy of Malicious URL string

1 3.87 4.14

 Suspicious word based features of the URLs
We have added seven new suspicious words in the URL feature set. The word-

based features are binary. We tested if the given word is present or absent in a URL.
We have used string matching algorithm by Knuth-Morris-Pratt (KMP) to find the
presence or absence of the suspicious word in the URL [21]. The frequency
distribution of these new suspicious word-based features is given in Table 3. It is
clear from the Table 3 that the frequency of the suspicious word features in the
malicious URLs is higher than that of benign URLs. Hence, these features help to
identify malicious URLs from benign URLs.

 18

Table 3. Distribution of word based features

Sr.
No Feature name

Distribution of word based
features presence in URLs

Benign (%) Malicious (%)
1 Presence of “.php” word in URL string 0.03 35.66
2 Presence of “abuse” word in URL string 0.01 5.51
3 Presence of “admin” word in URL string 0.04 6.45
4 Presence of “.bin” word in URL string 0.08 0.13
5 Presence of “personal” word in URL string 0.03 0.19
6 Presence of “update” word in URL string 0.15 2.2
7 Presence of “verification” word in URL string 0.00 0.72

3.2.2. Domain name features
We have used 18 domain name features, among these seven are taken from the
literature [6, 8, 5, 12, 18, 22] and 11 are new features. We have extracted the
domain names from the URL string a script written in Java. These are numeric,
binary and real value features. The domain name features are given in Table 4.

Table 4. Domain name features
Sr.
No Feature name Type Description

Features used in the literature
1 Length of Domain Name numeric Length of the domain name string
2 Domain Name contains IP

address? binary It is 1 if domain contains IP address

3 Is Domain is TLD? binary It is 1 if domain is a top-level domain
4 Number of Sub-Domains numeric No of sub-domains in the domain name

string
5 Number of Yahoo links for

domain numeric No of Yahoo search results for the
domain name

6 Number of Bing links for
domain numeric No of Bing search results for the domain

name
7 Alexa Rank of domain numeric Alexa ranking of the domain name

New features
1 Domain Name is Valid? binary It is 1 if domain name is a valid domain

name
2 Entropy of Domain Name

string real Shannon entropy of the domain name
string

3 Number of tokens in Domain
Name numeric No of tokens in the domain name string

4 Length of Longest Domain
Token numeric Length of longest domain name token

5 Entropy of Longest Domain
token real Shannon entropy of the longest domain

token
6 Average length of domain

token real Average length of domain token

7 Number of tokens in Path numeric No of tokens in the domain name path
string

8 Length of Longest Path Token numeric Length of longest domain path token
9 Average length of path token real Average length of domain path token

10 Domain Name contains
suspicious https? binary It is 1 if domain name contains suspicious

string “https”
11 Domain Name contains

suspicious www? binary It is 1 if domain name contains suspicious
string “www”

 19

 Shannon entropy of domain name
We have used Shannon entropy to demonstrate the randomness factor in

domain names of malicious and benign URLs. High entropy indicates the more
suspicious nature of the URL. The Shannon entropy of the domain name string is
calculated using (1). Table 5 show the average entropy of malicious and benign
domain names and longest domain tokens used in our dataset.

Table 5. Average entropy of benign and malicious URL domain names and longest domain tokens

Sr.
No

Average entropy
of benign URL
domain name

Average entropy
of malicious URL

domain name

Average entropy of
longest domain token in

benign URL

Average entropy of
longest domain token

in malicious URL
1 3.25 3.37 2.52 2.89

It is clear that the entropy of domain names and longest tokens in domain
names of malicious URLs is higher than benign URLs. This indicates that there is
more randomness factor in malicious URLs, to mark it as malicious.

3.2.3. Web page source features
For the effective detection of malicious Web pages, we have used the Web page
source features. We have rendered the Web pages with the help of Selenium
WebDriver and an instance of Firefox browser, every time for a new URL the Web
page is loaded. We have written a script in Java and Selenium WebDriver, which
extracts the Web page source features. We have extracted 34 such features among
which 19 features are taken from literature [5, 8, 12, 14, 22, 23] and 15 are new
features. These are numeric, binary and real value features. These features are given
in Table 6.
 Table 6. Web page source features

Sr. No Feature name Type
Features used in the literature

1 Number of Blank Lines in a Web Page numeric
2 Number of Blank Spaces in a Web Page numeric
3 Number of Words in a Web Page numeric
4 Average Length of Words in a Web Page real
5 Number of iFRames in a Web Page numeric
6 Number of JavaScript in a Web Page numeric
7 Number of embed Tag in a Web Page numeric
8 Number of object Tag in a Web Page numeric
9 Number of meta Tag in a Web Page numeric

10 Number of div Tag in a Web Page numeric
11 Number of body Tag in a Web Page numeric
12 Number of form Tag in a Web Page numeric
13 Title Tag present? in a Web Page binary
14 Number of anchor Tag in a Web Page numeric
15 Number of Hidden elements in a Web Page numeric
16 Number of External JavaScript Files in a Web Page numeric
17 Number of Links in a Web Page numeric
18 Number of Internal Links in a Web Page numeric
19 Number of External Links in a Web Page numeric

 20

Table 6 (c o n t i n u e d)
Sr. No Feature name Type

New features
1 Number of image Tag in a Web Page numeric
2 Number of span Tag in a Web Page numeric
3 Number of input Tag in a Web Page numeric
4 Number of CSS styles in a Web Page numeric
5 Number of audio Tag in a Web Page numeric
6 Number of applet Tag in a Web Page numeric
7 The size of Webpage numeric
8 Credit card number word present? in a Web Page binary
9 log word present?, in a Web Page binary

10 pay word present?, in a Web Page binary
11 free word present?, in a Web Page binary
12 access word present?, in a Web Page binary
13 bonus word present?, in a Web Page binary
14 click word present?, in a Web Page binary
15 Entropy of Webpage real

3.2.4. Short URLs features

Today Online Social Networks (OSN) like Twitter, Facebook, WhatsApp, etc., are
widely used by millions of users all over the world for communication. Due to the
text limitation on OSN, URL shortening services like bit.ly, goo.gl, tinyurl.com,
owl.ly, deck.ly, su.pr, bit.do, etc., are widely used; however they are not free from
risks [24]. It is also applicable to the Webpages. To deceive the legitimate users’
attackers often use such types of URL shortening services to hide their original
identity. Considering this in mind, we have extracted two features of short URLs.
We have written an URL expander script in Java, once we get the short URL with
above URL shortening services; our expander script returns the original URL. We
have set the threshold of ≥30 characters for the length of the URL and designed
following rules:

1. if (expandedURL_length >= 30 && contains suspicious characters)
2. {
3. URL — > malicious
4. }
5. else
6. {
7. URL — > benign
8. }

Also, to decide the URL is malicious or benign we have extracted the lexical

features, i.e., is URL contains suspicious characters like, _, =, (,), %, & and @.
These are numeric and binary features and given in Table 7.

 21

Table 7. Short URLs features
Sr. No Feature name Type

1 Length of expanded URL numeric
2 Is URL is malicious? binary

3.3. Decision tree methods used for Malicious URLs detection

The problem of identifying malicious URLs is an instance of binary classification.
For a given URL, the data point dx R represents its feature vector with d features.
Let the set of training sample data be {(x1, y1), …, (xi, yi), …, (xn, yn)}, where xi
denotes the i-th feature vector; y{–1, +1} is the label of the i-th feature vector,
denoting whether the feature vector represents a benign or not; and n is the size
of the data set. During testing, if the predicted label ŷ = +1 but the actual label
y = –1, then the error is a false positive. If ŷ = –1 but y = +1, then the error is
a false negative.

3.3.1. Decision tree learning

Owing to space limitations, the detail discussion of these algorithms is out of the
scope of this paper. We have given the short description of each algorithm is as
follow.

 J48 Decision Tree: J48 Decision tree learning is one of the most widely
used techniques for classification. J48 is slightly modified C4.5 in WEKA. The
C4.5 algorithm generates a classification-decision tree for the given dataset by
recursive partitioning of data. The decision is grown using depth-first strategy. The
algorithm considers all the possible tests that can split the data set and selects a test
that gives the best information gain [35].

 Simple CART: Classification and regression trees are machine-learning
methods for constructing prediction models from data. The models are obtained by
recursively partitioning the data space and fitting a simple prediction model within
each partition [36].

 Random Forest: Random forest is a combination of tree predictors such that
each tree depends on the values of a random vector sampled independently and with
the same distribution for all trees in the forest. It is an effective classifier in
prediction. Random forest generally exhibits a substantial performance
improvement over the single tree classifier such as CART and C4.5 [37].

 Random Tree: With k random features at each node, a random tree is a tree
drawn at random from a set of possible trees. Here “at random” means that each
tree in the set of trees has an equal chance of being sampled. Random trees can be
generated efficiently and the combination of large sets of random trees generally
leads to accurate models [38].

 ADTree: An alternating decision tree (ADTree) is a machine learning
method for classification. It is introduced by F r e u n d and M a s o n [39]. An
ADTree consists of an alternation of decision nodes, which specify a predicate
condition and prediction nodes, which contain a single number. An instance is

 22

classified by an ADTree by following all paths for which all decision nodes are true
and summing any prediction nodes that are traversed.

 REPTree: REPTree is a fast decision tree classifier which builds a
decision/regression tree using information gain as the splitting criterion and prunes
it using reduced-error pruning. It only sorts values for numeric attributes once.
Missing values are dealt with by splitting the corresponding instances into pieces
(i.e., as in C4.5) [40].

3.3.2. Majority voting

We have used WEKA’s vote algorithm to obtain the final decision on, whether the
URL as malicious or benign. Voting is the simplest ensemble algorithm and is often
very effective. It can be used for classification or regression problems. It works by
creating two or more sub-models, in our case 6 models. Each sub-model makes
predictions which are combined using MAJORITY_VOTING_RULE. The
following Fig. 2 gives the working of the majority voting algorithm. It is a meta-
classifier for combining similar or conceptually different machine learning
classifiers for classification via majority voting. In majority voting, we predict the
final class label as the class label that has been predicted most frequently by the
classification models. Here, we predict the class label ŷ via majority voting of each
classifier Cj [26, 27]:
(2) ŷ =mode {C1(x), C2(x),..., Cm(x)},
where ŷ predicted class label and C1(x), C2(x),..., Cm(x) classification models.

Fig. 2. Majority voting algorithm

4. Experimental setup and evaluation
4.1. Data source and dataset

We have collected URLs from the benchmark sources of URLs for both malicious
and benign URLs and divided the dataset into a ratio of 66:34 as training and a
testing set, i.e., 66% for training and 34% for testing. The dataset of benign URLs is
collected from the Alexa Top sites [28]. We collected 26,041 benign URLs from the
above source of benign URLs. For the malicious dataset, we have collected URLs
from three benchmark sources, like the malware and phishing blacklist of the
PhishTank database of verified phishing pages [29], the malware and injection
attack URL list of Malware Domain List [30] and Spam domain blacklist by

 23

jwSpamSpy [31]. We collected 26,041 malicious URLs from the above benchmark
sources of malicious URLs including 8,976 phishing URLs, 11,297 malware URLs
and 5,721 spam URLs. We have constructed a balanced dataset consisting of equal
instances of malicious and benign URLs. The breakdown of the dataset is shown in
Table 8.
 Table 8. Dataset for training and testing

Task Benign Malicious Total
Training 17,187 17,187 34,374
Testing 8,854 8,854 17,708

Total 52,082

4.2. Evaluation results

4.2.1. Evaluation measures

We have evaluated the performance of 6 decision tree learning classifiers on our
URL dataset shown in Table 8. We have used the Weka API of all the learning
classifiers, in our experiments [25]. To obtain the best classification results we have
used the majority voting scheme. To decide the best performing classifier, we have
used the confusion matrix, which contains actual and predicted classifications done
by a classification algorithm [32]. We have used the following confusion matrix
given in Table 9.

Table 9. Confusion matrix for actual and predicted benign and malicious URLs
Predicted

Actual Positive Negative

Positive TP FN
Negative FP TN

Using the above confusion matrix we have calculated following measures, to
evaluate the performance of the classifiers. A binary classifier predicts all data
instances of a test dataset as either positive or negative. This classification (or
prediction) produces four outcomes – true positive, true negative, false positive and
false negative.

 True Positive (TP): correct positive (malicious URL) prediction
 False Positive (FP): incorrect positive (malicious URL) prediction
 True Negative (TN): correct negative (benign URL) prediction
 False Negative (FN): incorrect negative (benign URL) prediction
Based on the above confusion matrix, the classifier performance measures like

accuracy, FPR, FNR, precision, recall and F-measure is calculated using the
following equations:

(3) TP TNAccuracy ,
TP TN FN FF




  

(4) FPFPR ,
TN FP




(5) FNFNR ,
TP FN




 24

(6) TPPrecision ,
TP FP




(7) TPRecall ,
TP FN




(8) 2 Precision RecallF-measure .
Precision Recall
 




4.2.2. Significance of new features

To verify whether the features we have introduced are important in enhancing the
effectiveness of analysis and detection of malicious URLs, we compared the
classification accuracy, False Positive Rate (FPR), False Negative Rate (FNR),
precision, recall, F-measure and ROC of the classifiers with and without our newly
introduced features on our URL dataset. As shown in Table 10, the use of new
features improved the overall performance of all the classifiers, as shown with (↑)
for improved accuracy.

Table 10. Overall contribution of new features on the accuracy of classifiers

Classifier Accuracy without
new features (%)

Accuracy with new
features (%) Change (%)

J48 Decision Tree 98.51 99.03 0.53 (↑)
SimpleCart 98.31 99.15 0.84 (↑)
Random Forest 98.98 99.44 0.46 (↑)
Random Tree 97.83 98.18 0.35 (↑)
ADTree 98.02 98.48 0.45 (↑)
REPTree 98.31 99.19 0.89 (↑)
Majority Voting 98.68 99.29 0.61(↑)

Table 11. Detailed performance analysis of machine learning classifiers on our URL
dataset with and without new features

Classifier Accuracy (%) FPR FNR ROC
Without new features

J48 Decision Tree 98.51 0.029 0.000 0.995
SimpleCart 98.31 0.033 0.001 0.999
Random Forest 98.98 0.020 0.000 0.998
Random Tree 97.83 0.040 0.004 0.979
ADTree 98.02 0.039 0.000 1.000
REPTree 98.31 0.033 0.001 0.999
Majority Voting 98.68 0.026 0.000 0.987

With new features
J48 Decision Tree 99.03 (↑) 0.018 (↓) 0.002 (↑) 0.998 (↑)
SimpleCart 99.15 (↑) 0.016(↓) 0.001 0.998(↓)
Random Forest 99.44 (↑) 0.011 (↓) 0.000 1.000 (↑)
Random Tree 98.18 (↑) 0.032 (↓) 0.004 0.982 (↑)
ADTree 98.48 (↑) 0.029 (↓) 0.001 (↑) 1.000
REPTree 99.19 (↑) 0.014 (↓) 0.002 (↑) 0.998 (↓)
Majority Voting 99.29 (↑) 0.014 (↓) 0.000 0.993(↑)

 25

As shown in Table 11, by the inclusion of new features the FPR and FNR of
classifiers is decreased. The FPR of all seven classifiers is decreased as shown with
(↓). The FNR of four of the seven classifiers remains same on both the features set
with new features and without new features. The FNR of three of the seven
classifiers is slightly increased using new features. Also the ROC area of four of the
seven classifiers is increased by using the new features, while it remains same for
one of the seven classifiers on both the features set with new and without new
features. It is slightly decreased for SimpleCart and REPTree classifiers. The
overall performance analysis of all the seven classifiers shows that, it is good
indication that our new introduced features are enhancing the effectiveness of
analysis and detection of malicious URLs.

Table 12 shows the overall performance of seven classifiers in terms of
precision, recall and f-measure with and without inclusion of new features in our
URL dataset. It is clear from the table, that there is a significant improvement in all
the three performance measures for all 7 classifiers with the inclusion of new
features as shown with (↑).

Table 12. Performance analysis of machine learning classifiers in terms of precision, recall and
F-measure on our URL dataset with and without new features

Classifier Precision Recall F-measure
Without new features

J48 Decision Tree 0.986 0.985 0.985
SimpleCart 0.984 0.983 0.983
Random Forest 0.990 0.990 0.990
Random Tree 0.979 0.978 0.978
ADTree 0.981 0.980 0.980
REPTree 0.984 0.983 0.983
Majority Voting 0.987 0.987 0.987

With new features
J48 Decision Tree 0.990 (↑) 0.990 (↑) 0.990 (↑)
SimpleCart 0.992(↑) 0.992(↑) 0.992(↑)
Random Forest 0.994 (↑) 0.994 (↑) 0.994 (↑)
Random Tree 0.982 (↑) 0.982 (↑) 0.982 (↑)
ADTree 0.985 (↑) 0.985 (↑) 0.985 (↑)
REPTree 0.992 (↑) 0.992 (↑) 0.992 (↑)
Majority Voting 0.993 (↑) 0.993 (↑) 0.993 (↑)

4.2.3. Comparison with antivirus and anti-malware softwares and services

To verify the effectiveness of our approach for the analysis and detection of
malicious URLs, we compared the classification accuracy of 18 well-known
antivirus and anti-malware softwares and services with our approach, as shown in
Table 13. We have used the VirusTotal public API v2.0 in our Java program [33].
VirusTotal, a subsidiary of Google, is a free online service that analyzes files and
URLs enabling the identification of viruses, worms, trojans and other kinds of
malicious content detected by antivirus engines and website scanners. We have
used the Vigneswar Rao’s, VirusTotal public API v2.0 client implementation in
Java, to design our script written in Java [34]. Virus Total’s public API lets to
upload and scan files, submit and scan URLs, access finished scan reports and make

 26

automatic comments on URLs and samples without the need of using the HTML
website interface. It allows building simple scripts to access the information
generated by VirusTotal.

We have extracted the detection statistics of 18 well-performing antivirus and
anti-malware softwares and services. We have tested all the 26041 malicious URLs
used in our dataset using VirusTotal public API v2.0. Table 13 shows the detection
accuracy of 18 well-known antivirus and anti-malware softwares and services on
our malicious URLs dataset. Out of 18, Fortinet antivirus outperforms all the
remaining antivirus and anti-malware softwares and services in detection accuracy,
which has a detection accuracy of 96.5%. The overall detection accuracy of our
approach using majority voting classifier with new features is 99.29%, which is far
better than all the 18 well-known antivirus softwares. It shows that our approach is
more effective in the analysis and detection of malicious URLs.

Table 13. Detection accuracy of well-known antivirus and anti-malware softwares and
services on our malicious URLs

Sr.
No

Antivirus and anti-malware softwares and services Detection accuracy (%)

1 Our approach 99.29

2 Fortinet 96.5
3 Kaspersky 95.72
4 Sophos 79.68
5 Avira 62.17
6 BitDefender 58.95
7 ESET 51.04
8 G-Data 44.15
9 Websense ThreatSeeker 38.17
10 Emsisoft 35.12
11 Phishtank 33.54
12 Dr.Web 30.05
13 Google Safebrowsing 22.77
14 Netcraft 18.72
15 Malware Domain Blocklist 16.53
16 Malwarebytes hpHosts 12.44
17 Malware Patrol 6.93
18 Comodo Site Inspector 6.8
19 CLEAN MX 3.62

5. Limitations of our approach

Considering our approach, it is also not free from limitations. Following are some
of the limitations of our malicious URLs detection system:

1. There is need to investigate features from social networks to characterize
Malicious URLs.

2. Our methodology lacks analysis and detection of obfuscated JavaScripts in
the Webpages, which is the major cause behind attacks like drive-by downloads,
XSS, etc.

3. There is need to investigate more features of short URLs for the effective
detection.

 27

6. Conclusions

In this paper, we have performed the static and dynamic analysis of URLs for the
detection of URL as benign or malicious. We have extracted 117 static and dynamic
features of the URLs, among which 44 are new features. We have prepared a
labeled dataset of 52,082 URLs, among which 26,041 are malicious and 26,041 are
benign. We have evaluated the performance of 6 decision tree learning algorithms
in terms of detection accuracy, FPR, FNR, precision, recall, F-measure and ROC on
our balanced dataset. Our experimental results show that with inclusion of new
features all the decision tree learning classifiers have achieved good detection rate
between 98-99% with very low FPR and FNR. In addition, we have compared our
approach with 18 well-known antivirus and anti-malware softwares and services in
terms of detection accuracy. The experimental analysis show that, our approach
outperform all the 18 well-known antivirus and anti-malware softwares and services
in terms of malicious URLs detection accuracy with an overall accuracy of 99.29%
using majority voting technique.

Acknowledgements: This work is supported by the financial assistance under the scheme “Rajiv
Gandhi Science and Technology Commission (RGSTC), 13-IIST/2014, Government of Maharashtra”
through North Maharashtra University, Jalgaon, India.

R e f e r e n c e s

1. P a t i l, D. R., J. B. P a t i l. Survey on Malicious Web Pages Detection Techniques. – International
Journal of u- and e-Service, Science and Technology, Vol. 8, 2015, No 5, pp. 195-206.
http://dx.doi.org/10.14257/ijunesst.2015.8.5.18

2. P r o v o s, N., P. M a v r o m m a t i s, M. A. R a j a b, F. M o n r o s e. All Your iFRAMEs Point to
Us. – In: Proc. of 17th Conference on Security Symposium (SS’08), USENIX Association
Berkeley, CA, USA, 2008, pp. 1-15.

3. L i a n g, B., J. H u a n g, F. L i u, D. W a n g, D. D o n g, Z. L i a n g. Malicious Web Pages
Detection Based on Abnormal Visibility Recognition. – In: Proc. of International Conference
on e-Business and Information System Security (EBISS’09), Wuhan, 2009, pp. 1-5.

4. C a n a l i, D., M. C o v a, G. V i g n a, C. K r u e g e l. Prophiler: A Fast Filter for the Large-Scale
Detection of Malicious Web Pages. – In: Proc. of 20th International Conference on World
Wide Web (WWW’11), Hyderabad, India, 2011, pp. 197-206.

5. E s h e t e, B., A. V i l l a f i o r i t a, K. W e l d e m a r i a m. BINSPECT Holistic Analysis and
Detection of Malicious Web Pages. – In: Proc. of 8th International ICST Conference,
SecureComm, Padua, Italy, 2012, pp. 149-166.

6. P a t i l, D. R., J. B. P a t i l. Malicious Web Pages Detection Using Static Analysis of URLs, –
International Journal of Information Security and Cybercrime, Vol. 5, 2016, Issue 2,
pp. 31-50.

7. P a t i l, D. R., J. B. P a t i l. Detection of Malicious JavaScript Code in Web Pages. – Indian
Journal of Science and Technology, Vol. 10, 2017, No 19, pp. 1-12.

8. C h o i, H., B. B. Z h u, H. L e e. Detecting Malicious Web Links an Identifying Their Attack
Types. – In: Proc. of 2nd USENIX Conference on Web Application Development
(WebApps’11), USENIX Association Berkeley, CA, USA, 2011, pp. 1-12.

9. L e, V. L., I. W e l c h, X. G a o, P. K o m i s a r c z u k. Two-Stage Classification Model to Detect
Malicious Web Pages. – In: Proc. of IEEE International Conference on Advanced
Information Network.ing and Applications, Biopolis, 2011, pp. 113-120.

 28

10. B a s n e t, R. B., A. H. S u n g. Classifying Phishing Emails Using Confidence-Weighted Linear
Classifiers. – In: Proc. of International Conference on Information Security and Artificial
Intelligence, 2010.

11. M a, J., L. K. S a u l, S. S a v a g e, G. M. V o e l k e r. Learning to Detect Malicious URLs. – ACM
Transactions on Intelligent Systems and Technology, Vol. 2, 2011, No 3, Article 30,
pp. 30(1)-30(24).
http://doi.acm.org/10.1145/1961189.1961202.

12. G a r e r a, S., N. P r o v o s, M. C h e w, A. D. R u b i n. A Framework for Detection and
Measurement of Phishing Attacks. – In: Proc. of 2007 ACM Workshop on Recurring
Malcode, 2007, pp. 1-8.

13. Selenium WebDriver 2.39. Last accessed on 25th December 2016.
http://www.seleniumhq.org/projects/webdriver/

14. C a n a l i, D., M. C o v a, G. V i g n a, C. K r u e g e l. Prophiler: A Fast Filter for the Large-Scale
Detection of Malicious Web Pages. – In: Proc. of 20th International Conference on World
Wide Web (WWW’11), Hyderabad, India, 2011, pp. 197-206.

15. W a n g, T., S. Y u, B. X i e. Novel Framework for Learning to Detect Malicious Web Pages. –
In: Proc. of International Forum on Information Technology and Applications (IFITA’10),
Kunming, 2010, pp. 353-357.

16. C o v a, M., C. K r u e g e l, G. V i g n a. Detection and Analysis of Drive-by-Download Attacks
and Malicious JavaScript Code. – In: Proc. of International World Wide Web Conference
Committee (IW3C2), Raleigh, North Carolina, USA, 2010.

17. M a, J., L. L a w r e n c e, K. S a u l, S. S a v a g e, G. M. V o e l k e r. Beyond Blacklists: Learning
to Detect Malicious Websites from Suspicious URLs. – In: Proc. of 15th ACM SIGKDD
International Conference on Knowledge Discovery and Data Mining (KDD’09), NY, USA,
2009, pp. 1245-1254.

18. L i u, H., X. P a n, Z. Q u. Learning Based Malicious Web Sites Detection Using Suspicious URLs.
Last accessed January 2016.
http://users.eecs.northwestern.edu/~hlc720/349/HTXPZYQ.pdf/

19. Z h a n g, Y., J. H o n g, L. C r a n o r. CANTINA: A Content-Based Approach to Detecting
Phishing Web Sites. – In: Proc. of International World Wide Web Conference Committee
(IW3C2), Banff, Alberta, Canada, 2007, pp. 639-648.

20. V e r m a, R., A. D a s. What’s in a URL: Fast Feature Extraction and Malicious URL Detection. –
In: Proc. of 3rd International Workshop on Security and Privacy Analytics, 2017, pp. 55-63.

21. K n u t h, D. E., J. H. M o r r i s, V. R. P r a t t. Fast Pattern Matching in Strings. – In: SIAM
Journal on Computing, Vol. 6, 1977, No 2, pp. 323-350.

22. B a s n e t, R., S. M u k k a m a l a, A. H. S u n g. Detection of Phishing Attacks: A Machine
Learning Approach. – Soft Computing Applications in Industry, Vol. 226, 2008,
pp. 373-383.

23. M a r c h a l, S., K. S a a r i, N. S i n g h y, N. A s o k a n. Know Your Phish: Novel Techniques for
Detecting Phishing Sites and Their Targets. – In: Proc. of IEEE 36th International
Conference on Distributed Computing Systems (ICDCS’16), 2016, pp. 323-333.

24. N e p a l i, R. K., Y. W a n g. You Look Suspicious!!: Leveraging Visible Attributes to Classify
Malicious Short Urls on Twitter. – In: Proc. of 49th Hawaii International Conference in
System Sciences (HICSS’16), 2016, pp. 2648-2655.

25. Weka 3: Data Mining Software in Java. Last accessed December 2016.
http://www.cs.waikato.ac.nz/ml/weka/

26. EnsembleVote Classifier. Last accessed on 25th January 2017.
http://rasbt.github.io/mlxtend/user_guide/classifier/EnsembleVoteClassifier/

27. How to Use Ensemble Machine Learning Algorithms in Weka. Last accessed on 25th January
2017.
http://machinelearningmastery.com/use-ensemble-machine-learning-algorithms-weka/

28. Alexa: Alexa Top 500 Global Websites. Last accessed on November 2016.
http://www.alexa.com/topsites/

29. PhishTank: Join the Fight against Phishing. Last accessed on November 2016.
https://www.phishtank.com/

 29

30. Malware Domain List. Last accessed on December 2016.
http://www.malwaredomainlist.com/forums/index.php?topic=3270.0/

31. Spam Domain Blacklist (Filtered by jwSpamSpy). Last accessed on December 2016.
http://www.joewein.de/sw/blacklist.htm/

32. Basic Evaluation Measures from the Confusion Matrix. Last accessed on January 2017.
https://classeval.wordpress.com/introduction/basic-evaluation-measures/

33. VirusTotal Public API v2.0. Last accessed on January 2017.
https://www.virustotal.com/en/documentation/public-api/

34. VirusTotal Public API v2.0 Client Implementation in Java. Last accessed on January 2017.
https://vighnesh.me/virustotal/

35. Q u i n l a n, J. R. Induction of Decision Trees. – Machine Learning, Vol. 1, 1986, No 1,
pp. 81-106.

36. B r e i m a n, L., J. H. F r i e d m a n, R. A. O l s h e n, C. J. S t o n e. Classification and Regression
Trees. Belmont, California, Wadsworth International Group, 1984.

37. B r e i m a n, L. Random Forests. – Machine Learning, Vol. 45, 2001, No 1, pp. 5-32.
38. Z h a o, Y., Y. Z h a n g. Comparison of Decision Tree Methods for Finding Active Objects. –

Advances in Space Research, Vol. 41, 2008, No 12, pp. 1955-1959.
39. F r e u n d, Y., L. M a s o n. The Alternating Decision Tree Learning Algorithm. – In: Proc. of

International Conference on Machine Learning, Vol. 99, 1999, pp. 124-133.
40. REPTree. Last accessed on November 2016.

http://weka.sourceforge.net/doc.dev/weka/classifiers/trees/REPTree.html

Received 23.10.2017; Accepted 23.01.2018

http://www.malwaredomainlist.com/forums/index.php?topic=3270.0/
http://www.joewein.de/sw/blacklist.htm/
https://classeval.wordpress.com/introduction/basic-evaluation-measures/
https://www.virustotal.com/en/documentation/public-api/
https://vighnesh.me/virustotal/
http://weka.sourceforge.net/doc.dev/weka/classifiers/trees/REPTree.html

