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Abstract:  This research article suggests a computational method for constructing 

fuzzy sets in absence of expert knowledge. This method uses concepts of central 

tendencies mean and variance. This study gives a solution to the critical issue in 

designing of fuzzy systems, number of fuzzy sets. Proposed computational method 

helps in finding intervals and thereby fuzzy sets for fuzzy time series forecasting. 

Proposed computational method is implemented on the authentic data for the 

enrolments of University of Alabama, which is considered as benchmark problem in 

the field of fuzzy time series. The forecasted values are compared with the results of 

other methods to state its supremacy. Projected computational method along with 

Gaussian membership function gave promising results over other methods for fuzzy 

time series for the above said benchmark data.   

Keywords: Fuzzy logic, central tendencies, membership function, prediction, fuzzy 

time series. 

1. Introduction 

Initially fuzzy logic found its application in engineering systems, commercial 

products and gradually non-engineering applications like medicine, social science 

etc. were added to its wide range of domains. The notion of fuzzy set and linguistic 

variable was instigated by Prof. L. A. Z a d e h  [1, 2]. Fuzzy set is considered a 

more general concept of the crisp classical set. In a fuzzy set, an element can be a 

part of the set with some membership value (i.e., degree of belongingness). Each 

fuzzy set represents a linguistic label. For example, 1 to 15th day of a month has 

been found to have hot temperature can be represented as 

H = 0.02/1 + 0.1/2 + 0.5/3 + 0.4/4 + 0.55/5 + 0.7/6 + 0.875/7 + 1.0/8 + 0.875/9 +  

+ 0.7/10 + 0.4/11 + 0.4/12 + 0.3/13 + 0.6/14 + 0.4/15. 

Hot is a linguistic label with prior knowledge of intervals (i.e. each day is 

considered one interval) but in absence of domain knowledge division into intervals 

and linguistic label is a tedious task. Fuzzy logic found its applications in different 

fields successfully [3-5].A lot of literature is available on fuzzy partitioning. Some 
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popular methods on shared partitioning are given in [3], where choice of number of 

fuzzy sets depends on user. Further some authors proposed deriving Ki (Number of 

fuzzy sets) from data [6]. Researchers are also using fuzzy clustering for 

partitioning [7-10]. Fuzzy time series proposed in 1993 by S o n g  and C h i s s o m  

[11, 12] include various approaches and procedures developed thereafter for 

forecasting fuzzy time series. It has been used for forecasting in various data, some 

of them are treated as benchmark data sets[11-17]. Moreover, hybrid methods are 

used nowadays which involve evolutionary computational techniques like Particle 

Swarm Optimization (PSO) and Genetic Algorithms (GA), etc., along with fuzzy 

for their improved partitioning and prediction accuracy [3, 13, 18-20]. In 2006 

C h e n  and C h u n g  [13] forecasted enrolments of students using genetic 

algorithms and fuzzy time series. The suggested method adjusts the length of every 

interval in the universe of discourse for predicting the enrolments of University of 

Alabama. In 2012  M a h n a m  and  G h o m i  [21] proposed a PSO algorithm for 

forecasting based on time variant fuzzy time series in which length of each interval 

in the universe of discourse and degree of membership value are determined 

simultaneously. Various researches have been done in the field of fuzziness [22-26]. 

Partition of universe of discourse is still a matter of guess and needed expert 

knowledge. This article deals with the method to partition and making them 

gaussian fuzzy sets. 

2. Need of computational method 

Whenever we start implementing fuzzy logic on any practical problem two most 

trivial questions that come to our mind are number of fuzzy sets and membership 

functions to use. Both are answered in this research article. In this research article, 

we have suggested a method based on central tendencies to state the intervals for 

construction of fuzzy systems, instead of going for computationally expensive 

techniques. Our second objective in this research article is to help the designer in 

choosing and applying membership functions.      

3. Advantages of proposed method 

Number of Fuzzy sets is a debatable issue in Fuzzy literature. An easy solution to it 

is:  

1. Instead of Computationally expensive techniques, this method is based on 

central tendencies. 

2. Expert of domain knowledge is not required, naïve user can fuzzify data. 

3. Implementation is easy and fast. 

4. Once the users have identified number of fuzzy sets, another big question 

which membership function should be used is also answered in this research article. 

4. Methodology 

In this segment we propose the complete procedure of the suggested approach of 

fuzzifying intervals of fuzzy sets and identifying suitable membership functions. 
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Step 1. Specify the Universe of discourse X, based on the range of available 

data. 

Step 2. Divide the Universe of discourse into intervals as described below- 

Step 2.1. Calculate mean (µ) and standard deviation (σ) of the data of each 

input and output variable.  

Step 2.2. Calculate nright and nleft to find number of points to the right and 

left of mean (µ) which is treated as center of intervals (accuracy up to two decimal 

places): 
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Generalized fuzzy intervals are presented in Fig. 1. 

 
Fig. 1.  Generalized fuzzy intervals 

Step 2.3. Let the mean µ be treated at center of intervals. Points to the 

right of the mean are calculated as  

(3)    right, 1, 2, ..., .
2

nP n n n


    

Similarly points to the left are calculated as  

(4)    left, 1, 2, ..., .
2

nP n n n


     

Step 2.4. Equation (5) is used to calculate total number of fuzzy sets  

(5)    ntot = nright + nleft – 1.  

Step 3. Divide the Universe of discourse X at the intervals  

u–n = [P–n–2, Pleft], ..., u–4=[P–4, P–2], u–3=[P–3, P–1], u–2=[P–2, ], u–1=[P–1, P1],  

u0=[, P2],  u1=[P1, P3],  u2=[P2, P4],  u3=[P3, P5], ...,  un= [Pn–2, Pright]. 

Let the fuzzy sets A1, A2, ..., An on universe of discourse, having linguistic 

values be assigned to these intervals: 

For instance, A1 = EL (Extremely Low) is assigned to u–n and An = EH 

(Extremely High) to un and in between other linguistic values can be assigned to 

other fuzzy intervals, respectively. 

Step 4. Construction of membership function 

Gaussian membership function: Fuzzy sets are constructed using intervals. To 

apply Gauss membership for each fuzzy set we require two parameters, i.e., mean 

and standard deviation as follows:  

(i) All values of data lying between upper and lower boundary of the interval 

are clipped to calculate the mean () of fuzzy sets. 

(ii) Standard deviation is calculated as    
U.L.

.
3





      (Assuming data are 
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normally distributed with accuracy of  level), where  and  are mean and 

standard deviation; U.L. is upper limit of fuzzy sets as depicted in Fig. 2. 

 
Fig. 2.  Gaussian membership function 

Step 5. Data are used to construct the rule base. Rule base is constructed from 

training data using W a n g  and M e n d e l  [27] method.  

Step 6. Evaluation is done using Mamdani Fuzzy Inference System which uses 

Gaussian membership functions, the min intersection operator and correlation 

product as inference procedure. Defuzzification technique used is centroid method. 

5. Simulation: Forecasting for enrollments of Alabama’s university  

Here, in this research article we suggest a method to determine fuzzy intervals and 

thereby fuzzy sets.  Examples from totally different fields, from hydrology which is 

a continuous data and from fuzzy time series, University of Alabama enrolment 

problem which is discrete data are used to test the results. An instance to illustrate 

this concept, we have used data of Alabama University, which was used initially by 

S o n g  and C h i s s o m  [11]. 

Step 1. Specify the Universe of discourse X, based on the range of available 

data (i.e., 13,0000 – 20,000). 

Step 2. Divide the Universe of discourse into intervals as described below  

Fig. 3. 

Step 2.1. Calculate mean µ and standard deviation σ of the data of input 

are 16,194.18 and 1,816.49, respectively.  

Step 2.2. Calculate nright and nleft to find number of points to the right and 

left of mean µ, which is treated as center of intervals (Fig. 3),  
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Fig. 3.  Fuzzy intervals 

Step 2.3. Let mean µ be treated at center of intervals. Points to the right of 

the mean are calculated using Equation (3): 

P1=17,102, P2=18,010, P3=18,918... Pright=19827. 

Similarly points to the left are calculated using Equation (4): 

P–1=15,286, P–2=14,377.8, P–3=13,469.6, ..., Pleft=12,562. 

Step 2.4. To calculate total number of fuzzy sets, Equation (5) is used.  
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Step 3. Divide the Universe of discourse X at the intervals 

x1=[12,562, 14,377.8], x2=[13,469.6, 15,286], x3=[14,377.8, 16,194.18],  

x4=[15,286, 17,102], x5=[16,194.18, 18,010], x6=[17,102, 18,918],  

x7=[18,010, 19,827]. 

Let the Fuzzy sets Q1, Q2, ..., Q7 on universe of discourse, having linguistic 

values as given below: 

Q1 = EL (Extremely Low), 

Q2 = VL (Very Low), 

Q3 = L (Low), 

Q4 = M (Medium), 

Q5 = H (High), 

Q6 = VH (Very High), 

Q7 = EH (Extremely High).  

Step 4. Using above stated method for predicting intervals for forecasting 

enrolments of University of Alabama. Mean and standard deviation of data given in 

Table 1 are 16,194.8 and 1,816.49 respectively. Fuzzy sets are constructed using 

intervals with the help of Fig. 4 in following steps. 

Step 4.1. To construct fuzzy set 1, all data values from data lying between 

12,562 and 14,377.8 are 13,055, 13,563, and 13,867 so the mean is calculated as 

13,495.  

Step 4.2. Standard deviation is 294.2667 is calculated as stated in Step 4 in 

methodology. 

 
Fig. 4. Gaussian membership function 

Using above calculated mean and standard deviation Gaussian membership is 

constructed; similarly other six fuzzy sets are constructed. One important 

consideration is of a fuzzy set where no data lies between these intervals for 

constructing the set. For this the mean could be taken as mean of upper and lower 

bound for fuzzy set and standard deviation is given by minimum standard deviation 

of all fuzzy sets for a given input. 

Step 5. Rule base is constructed as follows, from training data using of 

W a n g  and M e n d e l  [27] method:  
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Step 6. Centroid method is used to convert hence find fuzzified output into 

crisp value. 

6. Results and comparison 

Table 1 shows MSE using Gaussian membership function is 258,200. The values of 

R and R2 for Gaussian membership function are 0.985541 and 0.971 respectively. In 

order to validate our findings, we compared it to eminent researchers work  

[11, 12, 14, 15, 23] and results stated in Table 2.  

Table 1. Results for data of Alabama University 

Function MSE R R2 

Gaussian membership function 258,200 0.985541 0.971 

Table 2.  Enrollments of Alabama University for different methods 

Year Observed 
SC_time  

variant [12] 

SC_time  

invariant [11] 

C h e n  [28] 

method  

H u a r n g  [14] 

heuristic  

L e e  and  

C h o u  [15] 
Proposed 

1971 13,055 
     

14,011 

1972 13,563 
     

14,091 

1973 13,867 
     

14,402 

1974 14,696 
 

14,000 14,000 14,000 14,568 15,145 

1975 15,460 14,700 15,500 15,500 15,500 15,654 15,918 

1976 15,311 14,800 16,000 16,000 15,500 15,654 15,768 

1977 15,603 15,400 16,000 16,000 16,000 15,654 16,052 

1978 15,861 15,500 16,000 16,000 16,000 15,654 16,194 

1979 16,807 15,500 16,000 16,000 16,000 16,197 16,827 

1980 16,919 16,800 16,813 16,833 17,500 17,283 16,932 

1981 16,388 16,200 16,813 16,833 16,000 17,283 16,374 

1982 15,433 16,400 16,789 16,833 16,000 16,197 15,892 

1983 15,497 16,800 16,000 16,000 16,000 15,654 15,952 

1984 15,145 16,400 16,000 16,000 15,500 15,654 15,594 

1985 15,163 15,500 16,000 16,000 16,000 15,654 15,612 

1986 15,984 15,500 16,000 16,000 16,000 15,654 16,194 

1987 16,859 15,500 16,000 16,000 16,000 16,197 16,877 

1988 18,150 16,800 16,813 16,833 17,500 17,283 18,918 

1989 18,970 19,300 19,000 19,000 19,000 18,369 18,918 

1990 19,328 17,800 19,000 19,000 19,000 19,454 18,918 

1991 19,337 19,300 19,000 19,000 19,500 19,454 18,918 

1992 18,876 19,600 
 

19,000 19,000 
 

18,918 

Table 3 demonstrates MSE obtained by various methods whereas Fig. 5 gives 

a comparative plot. 

Table 3. Comparison of MSE for forecasting enrolments for different methods 

Methods MSE 

SC_time invariant [11] 458,437.5 

SC_time variant [12] 775,686.8 

C h e n  [28] method  439,420.8 

H u a r n g  [14] heuristic  239,483.1 

L e e  and C h o u  [15] 240,047 

Proposed computational method  157,190 
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Fig. 5.  Comparative graph 

7. Summary and conclusion 

In this research article, we have proposed a computational method for stating 

intervals and membership functions for fuzzy sets. In absence of expert knowledge 

based on available data, one can make fuzzy intervals thereafter fuzzy sets. To 

illustrate the method, it is implemented on University of Alabama student 

enrollment data. Key points summarized in our research article are: 

1. Instead of Computationally expensive techniques, this method is based on 

central tendencies. 

2. Using methodology stated in this research article one can find intervals and 

thereby fuzzy sets. 

3. Expert of domain knowledge is not required, naïve user can fuzzily data. 

4. Implementation is easy and fast. 

5. Gaussian membership functions have been applied along with our 

computational method to give best of results. 

6. The proposed method can be applied to various fields of science and 

management. 

R e f e r e n c e s 

1. Z a d e h, L. A. Fuzzy Sets. –  Information and Control, Vol. 8, 1965, No 3, pp. 338-353. 

2. Z a d e h, L. A. The Concept of a Linguistic Variable and Its Application to Approximate 

Reasoning. I. – Information Sciences, Vol. 8, 1975, No 3, pp. 199-249. 

3. J a i n, S., D. B i s h t. Genetic Algorithms Based Fuzzy Time Series Prediction for Water Table 

Elevation Fluctuation. – Aloy Journal of Soft Computing and Applications, Vol. 3, 2015,  

pp. 14-23. 

4. B i s h t, D., S. J a i n, M. M. R a j u. Prediction of Water Table Elevation Fluctuation Through 

Fuzzy Logic and Artificial Neural Networks. – International Journal of Advanced Science 

and Technology, Vol. 51, 2013, pp. 107-120. 

5. B i s h t, D. C. S., M. R a j u, M. J o s h i. Simulation of Water Table Elevation Fluctuation Using 

Fuzzy-Logic and ANFIS. – Computer Modelling and New Technologies, Vol. 13, 2009,  

No 2, pp. 16-23. 

6. B o r t o l e t, P. Modelisation et Commande Multivariables Floues: Application a la Commande 

D’un Moteur Thermique. PhD Diss., Toulouse, INSA, 1998. 

7. D u n n, J. C. A Fuzzy Relative of the ISODATA Process and Its Use in Detecting Compact Well-

Separated Clusters. – Journal of Cybernetics, Vol. 3, 1973, No 3, pp. 32-57. 



 10 

8. K r i s h n a p u r a m, R., J. M. K e l l e r. A Possibilistic Approach to Clustering. – IEEE 

Transactions on Fuzzy Systems, Vol. 1, 1993, No 2, pp. 98-110. 

9. K r i s h n a p u r a m, R., J. K i m. A Note on the Gustafson-Kessel and Adaptive Fuzzy Clustering 

Algorithms. – IEEE Transactions on Fuzzy Systems, Vol. 7, 1999, No 4, pp. 453-461. 

10. Y a g e r, R. R., D. P. F i l e v. Generation of Fuzzy Rules by Mountain Clustering. – Journal of 

Intelligent & Fuzzy Systems, Vol. 2, 1994, No 3, pp. 209-219. 

11. S o n g, Q., B. S. C h i s s o m. Forecasting Enrollments with Fuzzy Time Series. Part I. – Fuzzy 

Sets and Systems, Vol. 54, 1993, No 1, pp. 1-9. 

12. S o n g, Q., B. S. C h i s s o m. Forecasting Enrollments with Fuzzy Time Series. Part II. – Fuzzy 

Sets and Systems, Vol. 62, 1994, No 1, pp. 1-8. 

13. C h e n, S. M., N. Y. C h u n g. Forecasting Enrollments of Students by Using Fuzzy Time Series 

and Genetic Algorithms. – International Journal of Information and Management Sciences, 

Vol. 17, 2006, No 3, pp. 1-17. 

14. H u a r n g, K. Effective Lengths of Intervals to Improve Forecasting in Fuzzy Time Series. – 

Fuzzy Sets and Systems, Vol. 123, 2001, No 3, pp. 387-394. 

15. L e e, H. S., M. T. C h o u. Fuzzy Forecasting Based on Fuzzy Time Series. – International Journal 

of Computer Mathematics, Vol. 81, 2014, No 7, pp. 781-789. 

16. Y e, F., L. Z h a n g, D. Z h a n g, H. F u j i t a, Z. G o n g. A Novel Forecasting Method Based on 

Multi-Order Fuzzy Time Series and Technical Analysis. – Information Sciences, Vol. 367, 

2006, No C, pp. 41-57. 

17. H w a n g, J. R., S. M. C h e n, C. H. L e e. Handling Forecasting Problems Using Fuzzy Time 

Series. – Fuzzy Sets and Systems, Vol. 100, 1998, No 1-3, pp. 217-228. 

18. C r u z-V e g a, I., C. A. R. G a r c í a, P. G. G i l, J. M. R. C o r t é s, J. de J. R. M a g d a l e n o. 

Genetic Algorithms Based on a Granular Surrogate Model and Fuzzy Aptitude Functions. – 

In: 2016 IEEE Congress on Evolutionary Computation (CEC’16), 2016, pp. 2122-2128. 

19. E ǧ r i o ǧ l u, E. A New Time-Invariant Fuzzy Time Series Forecasting Method Based on Genetic 

Algorithm. – Advances in Fuzzy Systems, Vol. 2012, 2012, p. 2. 

20. H s u, L. Y., S. J. H o r n g, T. W. K a o, Y. H. C h e n, R. S. R u n, R. J.  C h e n, J. L. L a i, I. H.  

K u o. Temperature Prediction and TAIFEX Forecasting Based on Fuzzy Relationships and 

MTPSO Techniques. – Expert Systems with Applications, Vol. 37, 2010, No 4,  

pp. 2756-2770. 

21. M a h n a m, M., S. G h o m i. A Particle Swarm Optimization Algorithm for Forecasting Based on 

Time Variant Fuzzy Time Series. – International Journal of Industrial Engineering & 

Production Research, Vol. 23, 2012, No 4, pp. 269-276. 

22. A n g e l o v a, V. Investigations in the Ares of Soft Computing. Targeted State of the Art Report. 

– Cybernetics and Information Technologies, Vol. 9, 2009, No 1, pp. 18-24. 

23. I l i e v a, G. A Fuzzy Approach for Bidding Strategy Selection. – Cybernetics and Information 

Technologies, Vol. 12, 2012, No 1, pp. 61-69. 

24. I l i e v a, G. TOPSIS Modification with Interval Type-2 Fuzzy Numbers. – Cybernetics and 

Information Technologies, Vol. 16, 2016, No 2, pp. 60-68. 

25. I l i e v a, G. Group Decision Analysis with Interval Type-2 Fuzzy Numbers. – Cybernetics and 

Information Technologies, Vol. 17, 2017, No 1, pp. 31-44. 

26. K h e r a b a d i, H. A., S. E. M o o d, M. M. J a v i d i. Mutation: A New Operator in Gravitational 

Search Algorithm Using Fuzzy Controller. – Cybernetics and Information Technologies,  

Vol. 17, 2017, No 1, pp. 72-86. 

27. W a n g, L. X., J. M. M e n d e l. Generating Fuzzy Rules by Learning from Examples. –  IEEE 

Transactions on Systems, Man, and Cybernetics, Vol. 22, 1992, No 6, pp. 1414-1427. 

28. C h e n, S. M. Forecasting Enrollments Based on Fuzzy Time Series. – Fuzzy Sets and Systems, 

Vol. 81, 1996, No 3, pp. 311-319. 

 
Received  17.10.2017;  Accepted  20.11.2017 


