
 49 

BULGARIAN ACADEMY OF SCIENCES 

 

CYBERNETICS AND INFORMATION TECHNOLOGIES  Volume 17, No 5 

Special issue with selected papers from the workshop  

“Two Years Avitohol: Advanced High Performance Computing Applications 2017” 

Sofia  2017 Print ISSN: 1311-9702; Online ISSN: 1314-4081 

DOI: 10.1515/cait-2017-0054 

 

 

 

 

 

 

On the Monte Carlo Matrix Computations on Intel MIC 

Architecture  

Aneta Karaivanova1, Vassil Alexandrov2, Todor Gurov1, Sofiya 

Ivanovska1 
1Institute of Information and Communication Technologies, Bulgarian Academy of Sciences, 1113 

Sofia, Bulgaria  
2Barcelona Supercomputing Centre (BSC), Barcelona, Spain, and ICREA – Catallan Institution for 

Advanced Research Studies, Spain 

E-mails: anet@parallel.bas.bg gurov@parallel.bas.bg sofia@parallel.bas.bg 

vassil.alexandrov@bsc.es 

Abstract: The tightened energy requirements when designing state-of-the-art high 

performance computing systems lead to the increased use of computational 

accelerators. Intel introduced the Many Integrated Core (MIC) architecture for 

their line of accelerators and successfully competes with NVIDIA on basis of 

price/performance and ease of development. Although some codes may be ported 

successfully to Intel MIC architecture without significant modifications, in order to 

achieve optimal performance one has to make the best use of the vector processing 

capabilities of the architecture. In this work we present our implementation of 

Quasi-Monte Carlo methods for matrix computations specifically optimised for the 

Intel Xeon Phi accelerators. To achieve optimal parallel efficiency we make use of 

both MPI and OpenMP. 

Keywords: Monte Carlo, matrix computations, Intel MIC, High Performance 
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1. Introduction 

First proposed by von Neumann and Ulam, Monte Carlo Methods (MCMs) for 

solving linear algebra problems have been known since the middle of the last 

century. They give statistical estimates for the elements of the inverse of a matrix or 

for components of the solution vector of a linear system by performing random 
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sampling of a certain random variable whose expected value is the desired solution. 

Perhaps the first application of MCMs in linear algebra appeared in a paper by 

F o r s y t h e  and L e i b l e r  [16] in 1950. In the following years significant 

contributions were made, especially by W a s o w  [30], C u r t i s s  [10], H a l t o n  

[19], H a m m e r s l e y  and H a n d s c o m b  [18] and S o b o l  [26]. These methods 

were recognized as useful in the following situations [29]: when obtaining a quick 

rough estimate of solution, which will then be refined by other methods; when the 

problem is too large or too intricate for any other treatment; when just one 

component of the solution vector or one element of the inverse matrix is desired. 

There has been renewed interest in MCMs since the 90-ties, for example  

[7, 9-11, 13, 18, 20, 21, 26, 27, 31, 32] and many others, the primary reason for this 

is the efficiency of parallel MCMs in the presence of high communication costs. 

The second reason for the recent interest in MCMs is that the methods have evolved 

significantly since the early days. 

Much of the effort in the development of Monte Carlo methods has been in the 

construction of variance reduction techniques which speed up the computation by 

reducing the rate of convergence of crude MCM, which is O(N–1/2). An alternative 

approach to acceleration is to change the type of random sequence, and hence 

improve the behaviour with N. Quasi-Monte Carlo methods (QMCMs) use 

quasirandom (also known as low-discrepancy) sequences [4, 5] instead of 

pseudorandom sequences, with the resulting convergence rate for numerical 

integration being as good as O((log N)k/N). The first results of using QMCMs for 

linear algebra problems were presented by M a s c a g n i  and K a r a i v a n o v a  

(see for example [24, 25]) and H a l t o n  [19, 20].  

One of the interesting MC applications for solving systems of linear algebraic 

equations, developed recently by V. N. Alexandrov (see [1-3]) and his group, is 

building of sparse approximate inverse preconditioners based on a Monte Carlo 

method for computing the inverse matrix (see for example [1, 3, 15, 28]). The 

Monte Carlo preconditioner outperforms the deterministic preconditioner based on 

minimization of the Frobenius norm in terms of computing time and applicability. 

The comparisons of parallel versions of the approaches confirm the advantages of 

Monte Carlo in building of sparse approximate inverse preconditioner. Later, a 

Quasi-Monte Carlo approach has been developed. The results with Quasi-Monte 

Carlo algorithm based on Sobol’s sequence are slightly better than those obtained 

by Monte Carlo [2]. The problem arose with the parallel implementation of these 

algorithms on supercomputers with Intel MIC architecture. In order to improve the 

parallel efficiency we have applied various techniques which are presented in this 

paper. 

2. Background and related research 

The Intel’s Many Integrated Core (MIC) architecture is used in the Intel Xeon Phi 

line of processors, which are used as co-processor cards in the first generation, but 

can be used as fully functional main processors in the subsequent editions. In our 

current high-performance computing system they are used as co-processors in 
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servers equipped with standard Intel Xeon CPUs. Even with this limited 

functionality the Intel Xeon Phis compete with GPU cards for the role of 

accelerators in heterogeneous systems where they can significantly improve the 

computational efficiency and power consumption with respect to those resulting 

from use of standard CPUs. Details on how to program for the Intel Xeon Phi 

coprocessors can be found in [33]. Some of their main characteristics are:  

1) equipped with vector units that allow processing of several integer or floating 

point numbers at once; 2) running many cores at low frequencies; 3) availability of 

hyperthreading. In practice, if the vector instructions on such accelerators are not 

used, then they perform as slow as regular CPUs. The Intel compilers available in 

the Parallel Studio XE package provide direct access to the vector instructions via 

compiler intrinsics, thus facilitating the use of vector instructions by the program 

developers. Another possibility is the direct coding of assembly instructions inside 

C codes, which is more complex but still feasible for Xeon Phi accelerators. The 

different ways of using Intel MIC accelerators and their inherent composite 

structure lead to multiple parallelization approaches that can be applied to such 

systems. When one tries to implement then in practice, various steps have to be 

chosen and the particular target system guides these choices. 

For our tests we used the Avitohol High Performance System, built with Xeon 

Phi 7120P accelerators, hosted at our institute. Avitohol consists of 150 servers 

SL250S equipped with both dual Xeon CPU E5-2650 V2 at 2.60 GHz and dual 

Xeon Phi 7201P accelerator cards. The total accessible RAM on the system by the 

regular CPUs and the accelerator cards are 9600 GB and 4800 GB, respectively. 

The operating system on the servers is Red Hat Enterprise Linux, while Intel’s own 

special version of Linux OS (part of the MPSS package) is installed on the 

accelerators. Currently the exact versions on the servers and for the MPSS are 6.7 

and 3.6-1, respectively. This system achieved 332th place in the Top 500 list when 

it entered operation, with a theoretical peak performance of about 413 TElop/s, of 

which 90% is contributed by the accelerators. One can conclude that the optimal 

use of accelerators is the only way to fully leverage the power of such kinds of 

systems. However, many software packages do not have optimised versions for 

accelerators. 

Our results on efficient implementation on Avitohol of algorithms for 

quasirandom sequences generation and of Monte Carlo and Quasi-Monte Carlo 

algorithms for solving multidimensional integrals can be found in [4, 5, 25], etc. 

Here we present some results for efficient Monte Carlo matrix computations. 

At the end of this section we show the execution time breakdown for the 

Monte Carlo sparse inverse preconditioner and six test matrices from The 

University of Florida Sparse Matrix Collection [30] and Matrix market [6], 

described in Table 1. Figs 1 and 2 show the large communication time which was 

the motivation for our developments presented in this paper. These developments 

can be applied for all Monte Carlo algorithms for matrix computations. The 

experiments below (Fig. 1 and Fig. 2) are run on Marenustrum III Supercomputer at 

the Barcelona Supercomputer Centre. 
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Table 1. Test matrices 

Matrix Dimension No-zeros Sparsity Symmetry 

Appu 14,000 1,853,104 0.95% Non-symmetric 

Na5 5,832 305,630 0.46% Symmetric  

Nonsym_r5_a11 329,473 10,439,197 0.01% Non-symmetric 

Rdb2048 2,048 12,032 0.29% Non-symmetric 

Sym_r3_a11 20,928 588,601 0.13% Symmetric 

Sym_r4_a11 82,817 2,598,173 0.04% Symmetric 

 

 

Fig. 1. Execution time breakdown in a 16 cores execution 

 

 

Fig. 2. Execution time breakdown in a 256 cores execution 

3. Matrix computations 

Monte Carlo methods can be used for various types of linear algebra computations, 

like finding solutions of a linear system, computing matrix-vector products or 

estimation of eigenvalues. An approximation to the inverse matrix can also be 
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computed via Monte Carlo. Most of the Monte Carlo algorithms for solving such 

problems are based on sampling of appropriate Markov chains. Monte Carlo 

methods can be used for both dense and sparse matrices. The Markov chain is 

usually based on jumping along the non-zero elements of the matrix, with transition 

probability that is proportional to the absolute value of these elements (the so-called 

Almost Optimal Monte Carlo algorithm (see, e.g., [10, 13, 27]). Depending on the 

particular problem jumping is done either along rows or columns. For a  

Quasi-Monte Carlo variant of the same algorithm it is appropriate to consider each 

Markov chain as corresponding to a different term of the low-discrepancy 

sequences, and then use different coordinates of this term in order to move along 

the non-zero elements of the matrix. In both Monte Carlo and Quasi-Monte Carlo 

algorithms we arrive at the problem of sampling from a discrete distribution. It is 

important to understand that a naive implementation of the sampling from a discrete 

distribution would add a factor proportional to the mean number of non-zero 

elements in a row or column of the matrix in the estimate of number of required 

operations, thus negating the speed advantage of the Monte Carlo method.  

Fortunately, faster methods, that use O(1) number of operations for this 

sampling exist. Although any such method would be acceptable for the computer 

implementation of the Monte Carlo algorithm, this is not the case for the 

corresponding Quasi-Monte algorithm. The reason for this is that the theoretical 

justification of the Quasi-Monte Carlo method is based on smoothness of the 

underlying function and in the case of matrix computation this function is a multi-

dimensional step function. Any kind of permutation of the indices may result in 

making this multi-dimensional step function far less smooth, in the sense of 

increasing its variation. That is why in our programmatic implementation of  

Quasi-Monte Carlo methods for matrix computations we adopted the tabular 

method for sampling a discrete distribution, where a suitable k is chosen and the 

indices of the non-zero elements that correspond to the choice of all numbers of 

type r/2k are tabulated. The choice of k is achieved by finding the biggest k such that 

2k is less than the mean number of non-zero elements per row or column. 

This approach needs some extra memory, but it is less than that required for 

the matrix itself, because of the choice of k and the fact that integers are stored 

instead of double precision numbers. The pre-computing of this table requires 

number of operations proportional to the total number of non-zero elements of the 

matrix and thus does not increase the total order of the number of operations.  

When we have a pseudo-random number or a coordinate of the low-

discrepancy sequence x, and we need to find the corresponding index among a 

column, we find integer r such that  

1
,

2 2k k

r r
x


   

take from the table the indices that correspond to r and r+1 and then perform binary 

search in order to find the exact non-zero element that is needed. We found that 

some care should be taken in the exact implementation of this procedure in software 

in order to achieve good scalability, but even when the mean number of non-zero 

elements per row or column is not high, we still observed significant speedup 



 54 

versus the nave implementation. One important advantage of the tabular method is 

that the result is the same, so no additional theoretical justification is needed for 

using Quasi-Monte Carlo methods. This would not be the case when using 

something like the so-called Robinhood method (see, e.g., [31]). 

4. Parallel implementation   

The parallel implementation of the Monte Carlo or Quasi-Monte Carlo methods for 

matrix computations is usually based on splitting the Markov chains among 

processors. In the case when multiple right-hand-sides are present, for example in 

the matrix inversion problem, it is also natural to divide these right-hand-sides 

among processors. When accelerators are used one should be aware that the total 

available memory is usually less than what regular CPU-based servers offer. For 

example, the Xeon Phi 7120P coprocessor has just 16 GB of RAM. That is why it is 

desirable to combine OpenMP and MPI in the parallel implementation. We chose to 

split along the right-hand-sides between the different MPI processes and then along 

the Markov chains (also called trajectories) between the OpenMP threads. Because 

the number of Markov chains is given in advance, the blocking parallelisation 

approach for the Quasi-Monte Carlo algorithm can be used and thus our 

optimisations aimed at saving memory for the OpenMP parallelisation approach 

come into play. One consideration that is specific to matrix computations is that 

since the length of the Markov chains may vary, we have a problem to select the 

appropriate dimension for the Quasi-Monte Carlo sequence. We point out that our 

generators for Xeon Phi are optimised for dimensions that are multiples of 16. We 

can select a dimension based on theoretical estimate for the length of the Markov 

chain, if we know for example an estimate for the maximal eigenvalue of the 

matrix. In any case, once we chose certain dimension d, if we arrive at a situation 

where the Markov chain is larger than d, we can always use pseudo-random 

numbers for the remaining dimensions. Theoretically this is justified by the 

consideration that the last dimensions have lesser contribution in the overall result 

than the first dimensions. Nevertheless, one may simply re-do the pre-processing 

part of the generation of the pseudo-random numbers with higher dimension, using 

a running maximum, thus obtaining a pure Quasi-Monte Carlo algorithm. Our 

generators for the Sobol’s sequence have faster pre-processing than our generators 

for the Halton sequence, so this approach will have lesser impact on overall running 

time for the Sobol’s sequences. In the section with numerical results one can see 

how such a method works in practice. 

Saving memory bandwidth while implementing Quasi-Monte Carlo 

algorithms. Once we optimised the memory requirements of our generation 

routines, we consider the memory bandwidth that they use. In general the speed of 

access to memory, measured with bandwidth and latency, improves at much slower 

rate compared to the speed of processing. That is why many computations are 

actually memory-bound. There are different ways to improve the execution through 
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optimisation of memory access. One can decrease the total amount of data being 

transferred or tune the patterns of access in order to improve the use of the various 

caches. For the Sobol sequence, there is one low-hanging fruit to be had in this 

direction. It is the observation that if we are generating consecutive terms of the 

sequence, half of the time the direction number being used is actually the same over 

all dimensions – it corresponds to changing the most significant binary digit after 

the binary point. Thus we do not need to load this number from memory. The 

resulting improvement is substantial in any kind of benchmark and may be even 

more important in real usage, since space in the caches is saved. Taking this 

approach one step further, we can make use of the fact that the matrices of binary 

numbers in the Sobol sequences are triangular. This means that for the first 8 

positions 8 bits or one byte is enough to hold all the necessary information. Since 

we generate in double precision we usually need to load 64 bits or 8 bytes. Thus the 

savings in memory bandwidth are substantial, when we compress the corresponding 

“twisted direction numbers”. The expansion happens with vector operations, by 

shifting appropriately and adding the omitted zeroes. Unfortunately, the Xeon Phi 

seems not to be efficient in such kinds of integer operations and thus this approach 

does not outperform in benchmarks. However, our benchmarks do not strain the use 

of caches and therefore cannot capture the advantage of this approach. On the CPUs 

similar approach has been winning in previous tests. Since the special handling of 

the first direction number had clear advantage, we leave the choice of using the 

compression for the next 7 direction numbers to the user. The generation codes are 

provided under the GNU Public license and are available at 

http://parallel.bas.bg/~emanouil/sequences/micmemory.tgz 

5. Numerical tests 

The justification for the use of Quasi-Monte Carlo methods in linear algebra 

problems is mainly in the hope of achieving better precision than regular Monte 

Carlo. In Fig. 3 we show the mean-squared error that was achieved when using the 

Sobol and (modified) Halton sequences to solve a linear system with 100 right-

hand-sides with a matrix A that is diagonally dominant and sparse. We can see that 

using the Halton sequences one can significantly outperform the usual Monte Carlo 

method. The Sobol sequences show actually worse results than Monte Carlo, which 

shows that the selection of the low-discrepancy sequence is important for the QMC 

application. Next, in the Table 2 we can see a comparison of the computing times 

and parallel speedup in different settings. One can see that for this kind of linear 

algebra problems the differences in generation speed among the quasi- and pseudo-

random sequences are noticeable, but not critical, and thus it is justified to use the 

sequences that yield the best accuracy (in this case, the modified Halton sequences). 
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Table 2. Comparison of execution times and speedup using different number of threads during 

the computation 

Cards Threads 
Sobol MT2203 Halton 

Time, s Speedup Time, s Speedup Time, s Speedup 

1 

1 

61 

122 

244 

109.05  

3.21  

2.97 

3.71 

 

 

1.08 

0.87 

107.61 

3.23 

2.99 

3.69 

 

 

1.08 

0.87 

132.12 

3.58 

3.24 

3.83 

 

 

1.10 

0.93 

2 

1 

61 

122 

244 

52.12 

1.92 

1.63 

8.32 

 

1.67 

1.97 

0.38 

56.33 

2.14 

1.75 

8.89 

 

1.51 

1.85 

0.36 

51.62 

2.11 

1.93 

8.35 

 

1.69 

1.85 

0.43 

8 

1 

61 

122 

244 

14.03 

0.55 

0.69 

1.03 

 

5.83 

4.65 

3.12 

13.72 

0.54 

0.62 

0.93 

 

5.98 

5.21 

3.47 

16.11 

0.63 

0.67 

1.00 

 

5.68 

5.34 

3.58 

16 

1 

61 

122 

244 

7.24 

0.38 

0.49 

0.68 

 

8.45 

6.55 

4.72 

7.53 

0.35 

0.44 

0.80 

 

9.23 

7.34 

4.04 

9.00 

0.42 

0.53 

0.84 

 

8.53 

6.75 

4.26 

 

We notice that the best choice of hyperthreading seems to be to use either 61 

or 122 logical threads, which means no hyperthreading or 2x hyperthreading, 

instead of the maximum feasible 244 threads, corresponding to hyperthreading with 

a factor of four. In this kind of problem the gain from hyperthreading, when it 

happens, seems to be limited, which may be due to the fact that the algorithms use 

lots of memory bandwidth. The increase in the number of computing devices and 

consequently, the number of MPI processes, leads to better results when 

hyperthreading is not used. In some cases the use of 4x hyperthreading significantly 

degrades the performance. When comparing the speedup with different number of 

devices, when the basis is the case of 61 threads on one card, we see that the 

speedup is acceptable, but far from the perfect linear speedup. However, the actual 

computing times are in the range of a few seconds, which is rather small and so 

some pre-processing steps that are not fully parallelized, have large impact on the 

results. In the next figure one can see the features of some of the test matrices that 

we have used. 

When the algorithm involves constructing a preconditioner, we observe a 

breakdown of the total used wall clock time between the various stages, which 

shows that actually the slowest part is the broadcasting, which saturates the intra-

node bandwidth. Thus when considering execution in multi-node environment one 

has to concentrate on decreasing the broadcasting time. It is possible to use some 

tuning parameters of the MPI library in order to obtain maximum performance on 

the particular hardware setup. It is also important to condense the matrix before 

broadcasting. However, this should be done via simple algorithm, so that this 

operation does not impact adversely the total execution time. 
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Fig. 3. Mean squared error for three algorithms: Monte Carlo (using MT), Quasi-Monte Carlo with 

Sobol sequence and Quasi-Monte Carlo with Halton sequence 

 

Fig. 4. Speedup when using 122 threads on varying number of cards, compared with 61 threads on  

one card 

6. Conclusions and future work 

The Monte Carlo algorithms for solving linear algebra problems have established 

place when the problem at hand has certain characteristics. The Quasi-Monte Carlo 

algorithms intend to improve on them by increasing the accuracy while maintaining 

similar speed of execution. We have seen how the use of some families of 
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quasirandom sequences, like the modified Halton sequences, can achieve these 

results, without changing significantly the program code or the flow of the 

algorithm. The selection and implementation of the tabular method have taken into 

account specific properties of the quasirandom sequences, enabling us to actually 

achieve improved performance. It is possible that other methods for sampling 

discrete distributions may also be adapted for quasirandom numbers, which will be 

subject to further research.  

The achieved scalability using Intel Xeon Phi is acceptable for practical use. 

We believe it is possible to further optimise the code to take into account the vector 

processing capabilities of these devices. We intend to continue in this direction of 

research, using either compiler directives or intrinsic functions. 
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