
 49

BULGARIAN ACADEMY OF SCIENCES

CYBERNETICS AND INFORMATION TECHNOLOGIES  Volume 17, No 5

Special issue with selected papers from the workshop

“Two Years Avitohol: Advanced High Performance Computing Applications 2017”

Sofia  2017 Print ISSN: 1311-9702; Online ISSN: 1314-4081

DOI: 10.1515/cait-2017-0054

On the Monte Carlo Matrix Computations on Intel MIC

Architecture

Aneta Karaivanova1, Vassil Alexandrov2, Todor Gurov1, Sofiya

Ivanovska1
1Institute of Information and Communication Technologies, Bulgarian Academy of Sciences, 1113

Sofia, Bulgaria
2Barcelona Supercomputing Centre (BSC), Barcelona, Spain, and ICREA – Catallan Institution for

Advanced Research Studies, Spain

E-mails: anet@parallel.bas.bg gurov@parallel.bas.bg sofia@parallel.bas.bg

vassil.alexandrov@bsc.es

Abstract: The tightened energy requirements when designing state-of-the-art high

performance computing systems lead to the increased use of computational

accelerators. Intel introduced the Many Integrated Core (MIC) architecture for

their line of accelerators and successfully competes with NVIDIA on basis of

price/performance and ease of development. Although some codes may be ported

successfully to Intel MIC architecture without significant modifications, in order to

achieve optimal performance one has to make the best use of the vector processing

capabilities of the architecture. In this work we present our implementation of

Quasi-Monte Carlo methods for matrix computations specifically optimised for the

Intel Xeon Phi accelerators. To achieve optimal parallel efficiency we make use of

both MPI and OpenMP.

Keywords: Monte Carlo, matrix computations, Intel MIC, High Performance

Computing (HPC) scalability.

1. Introduction

First proposed by von Neumann and Ulam, Monte Carlo Methods (MCMs) for

solving linear algebra problems have been known since the middle of the last

century. They give statistical estimates for the elements of the inverse of a matrix or

for components of the solution vector of a linear system by performing random

mailto:anet@parallel.bas.bg
mailto:gurov@parallel.bas.bg
mailto:sofia@parallel.bas.bg
mailto:vassil.alexandrov@bsc.es

 50

sampling of a certain random variable whose expected value is the desired solution.

Perhaps the first application of MCMs in linear algebra appeared in a paper by

F o r s y t h e and L e i b l e r [16] in 1950. In the following years significant

contributions were made, especially by W a s o w [30], C u r t i s s [10], H a l t o n

[19], H a m m e r s l e y and H a n d s c o m b [18] and S o b o l [26]. These methods

were recognized as useful in the following situations [29]: when obtaining a quick

rough estimate of solution, which will then be refined by other methods; when the

problem is too large or too intricate for any other treatment; when just one

component of the solution vector or one element of the inverse matrix is desired.

There has been renewed interest in MCMs since the 90-ties, for example

[7, 9-11, 13, 18, 20, 21, 26, 27, 31, 32] and many others, the primary reason for this

is the efficiency of parallel MCMs in the presence of high communication costs.

The second reason for the recent interest in MCMs is that the methods have evolved

significantly since the early days.

Much of the effort in the development of Monte Carlo methods has been in the

construction of variance reduction techniques which speed up the computation by

reducing the rate of convergence of crude MCM, which is O(N–1/2). An alternative

approach to acceleration is to change the type of random sequence, and hence

improve the behaviour with N. Quasi-Monte Carlo methods (QMCMs) use

quasirandom (also known as low-discrepancy) sequences [4, 5] instead of

pseudorandom sequences, with the resulting convergence rate for numerical

integration being as good as O((log N)k/N). The first results of using QMCMs for

linear algebra problems were presented by M a s c a g n i and K a r a i v a n o v a

(see for example [24, 25]) and H a l t o n [19, 20].

One of the interesting MC applications for solving systems of linear algebraic

equations, developed recently by V. N. Alexandrov (see [1-3]) and his group, is

building of sparse approximate inverse preconditioners based on a Monte Carlo

method for computing the inverse matrix (see for example [1, 3, 15, 28]). The

Monte Carlo preconditioner outperforms the deterministic preconditioner based on

minimization of the Frobenius norm in terms of computing time and applicability.

The comparisons of parallel versions of the approaches confirm the advantages of

Monte Carlo in building of sparse approximate inverse preconditioner. Later, a

Quasi-Monte Carlo approach has been developed. The results with Quasi-Monte

Carlo algorithm based on Sobol’s sequence are slightly better than those obtained

by Monte Carlo [2]. The problem arose with the parallel implementation of these

algorithms on supercomputers with Intel MIC architecture. In order to improve the

parallel efficiency we have applied various techniques which are presented in this

paper.

2. Background and related research

The Intel’s Many Integrated Core (MIC) architecture is used in the Intel Xeon Phi

line of processors, which are used as co-processor cards in the first generation, but

can be used as fully functional main processors in the subsequent editions. In our

current high-performance computing system they are used as co-processors in

 51

servers equipped with standard Intel Xeon CPUs. Even with this limited

functionality the Intel Xeon Phis compete with GPU cards for the role of

accelerators in heterogeneous systems where they can significantly improve the

computational efficiency and power consumption with respect to those resulting

from use of standard CPUs. Details on how to program for the Intel Xeon Phi

coprocessors can be found in [33]. Some of their main characteristics are:

1) equipped with vector units that allow processing of several integer or floating

point numbers at once; 2) running many cores at low frequencies; 3) availability of

hyperthreading. In practice, if the vector instructions on such accelerators are not

used, then they perform as slow as regular CPUs. The Intel compilers available in

the Parallel Studio XE package provide direct access to the vector instructions via

compiler intrinsics, thus facilitating the use of vector instructions by the program

developers. Another possibility is the direct coding of assembly instructions inside

C codes, which is more complex but still feasible for Xeon Phi accelerators. The

different ways of using Intel MIC accelerators and their inherent composite

structure lead to multiple parallelization approaches that can be applied to such

systems. When one tries to implement then in practice, various steps have to be

chosen and the particular target system guides these choices.

For our tests we used the Avitohol High Performance System, built with Xeon

Phi 7120P accelerators, hosted at our institute. Avitohol consists of 150 servers

SL250S equipped with both dual Xeon CPU E5-2650 V2 at 2.60 GHz and dual

Xeon Phi 7201P accelerator cards. The total accessible RAM on the system by the

regular CPUs and the accelerator cards are 9600 GB and 4800 GB, respectively.

The operating system on the servers is Red Hat Enterprise Linux, while Intel’s own

special version of Linux OS (part of the MPSS package) is installed on the

accelerators. Currently the exact versions on the servers and for the MPSS are 6.7

and 3.6-1, respectively. This system achieved 332th place in the Top 500 list when

it entered operation, with a theoretical peak performance of about 413 TElop/s, of

which 90% is contributed by the accelerators. One can conclude that the optimal

use of accelerators is the only way to fully leverage the power of such kinds of

systems. However, many software packages do not have optimised versions for

accelerators.

Our results on efficient implementation on Avitohol of algorithms for

quasirandom sequences generation and of Monte Carlo and Quasi-Monte Carlo

algorithms for solving multidimensional integrals can be found in [4, 5, 25], etc.

Here we present some results for efficient Monte Carlo matrix computations.

At the end of this section we show the execution time breakdown for the

Monte Carlo sparse inverse preconditioner and six test matrices from The

University of Florida Sparse Matrix Collection [30] and Matrix market [6],

described in Table 1. Figs 1 and 2 show the large communication time which was

the motivation for our developments presented in this paper. These developments

can be applied for all Monte Carlo algorithms for matrix computations. The

experiments below (Fig. 1 and Fig. 2) are run on Marenustrum III Supercomputer at

the Barcelona Supercomputer Centre.

 52

Table 1. Test matrices

Matrix Dimension No-zeros Sparsity Symmetry

Appu 14,000 1,853,104 0.95% Non-symmetric

Na5 5,832 305,630 0.46% Symmetric

Nonsym_r5_a11 329,473 10,439,197 0.01% Non-symmetric

Rdb2048 2,048 12,032 0.29% Non-symmetric

Sym_r3_a11 20,928 588,601 0.13% Symmetric

Sym_r4_a11 82,817 2,598,173 0.04% Symmetric

Fig. 1. Execution time breakdown in a 16 cores execution

Fig. 2. Execution time breakdown in a 256 cores execution

3. Matrix computations

Monte Carlo methods can be used for various types of linear algebra computations,

like finding solutions of a linear system, computing matrix-vector products or

estimation of eigenvalues. An approximation to the inverse matrix can also be

 53

computed via Monte Carlo. Most of the Monte Carlo algorithms for solving such

problems are based on sampling of appropriate Markov chains. Monte Carlo

methods can be used for both dense and sparse matrices. The Markov chain is

usually based on jumping along the non-zero elements of the matrix, with transition

probability that is proportional to the absolute value of these elements (the so-called

Almost Optimal Monte Carlo algorithm (see, e.g., [10, 13, 27]). Depending on the

particular problem jumping is done either along rows or columns. For a

Quasi-Monte Carlo variant of the same algorithm it is appropriate to consider each

Markov chain as corresponding to a different term of the low-discrepancy

sequences, and then use different coordinates of this term in order to move along

the non-zero elements of the matrix. In both Monte Carlo and Quasi-Monte Carlo

algorithms we arrive at the problem of sampling from a discrete distribution. It is

important to understand that a naive implementation of the sampling from a discrete

distribution would add a factor proportional to the mean number of non-zero

elements in a row or column of the matrix in the estimate of number of required

operations, thus negating the speed advantage of the Monte Carlo method.

Fortunately, faster methods, that use O(1) number of operations for this

sampling exist. Although any such method would be acceptable for the computer

implementation of the Monte Carlo algorithm, this is not the case for the

corresponding Quasi-Monte algorithm. The reason for this is that the theoretical

justification of the Quasi-Monte Carlo method is based on smoothness of the

underlying function and in the case of matrix computation this function is a multi-

dimensional step function. Any kind of permutation of the indices may result in

making this multi-dimensional step function far less smooth, in the sense of

increasing its variation. That is why in our programmatic implementation of

Quasi-Monte Carlo methods for matrix computations we adopted the tabular

method for sampling a discrete distribution, where a suitable k is chosen and the

indices of the non-zero elements that correspond to the choice of all numbers of

type r/2k are tabulated. The choice of k is achieved by finding the biggest k such that

2k is less than the mean number of non-zero elements per row or column.

This approach needs some extra memory, but it is less than that required for

the matrix itself, because of the choice of k and the fact that integers are stored

instead of double precision numbers. The pre-computing of this table requires

number of operations proportional to the total number of non-zero elements of the

matrix and thus does not increase the total order of the number of operations.

When we have a pseudo-random number or a coordinate of the low-

discrepancy sequence x, and we need to find the corresponding index among a

column, we find integer r such that

1
,

2 2k k

r r
x


 

take from the table the indices that correspond to r and r+1 and then perform binary

search in order to find the exact non-zero element that is needed. We found that

some care should be taken in the exact implementation of this procedure in software

in order to achieve good scalability, but even when the mean number of non-zero

elements per row or column is not high, we still observed significant speedup

 54

versus the nave implementation. One important advantage of the tabular method is

that the result is the same, so no additional theoretical justification is needed for

using Quasi-Monte Carlo methods. This would not be the case when using

something like the so-called Robinhood method (see, e.g., [31]).

4. Parallel implementation

The parallel implementation of the Monte Carlo or Quasi-Monte Carlo methods for

matrix computations is usually based on splitting the Markov chains among

processors. In the case when multiple right-hand-sides are present, for example in

the matrix inversion problem, it is also natural to divide these right-hand-sides

among processors. When accelerators are used one should be aware that the total

available memory is usually less than what regular CPU-based servers offer. For

example, the Xeon Phi 7120P coprocessor has just 16 GB of RAM. That is why it is

desirable to combine OpenMP and MPI in the parallel implementation. We chose to

split along the right-hand-sides between the different MPI processes and then along

the Markov chains (also called trajectories) between the OpenMP threads. Because

the number of Markov chains is given in advance, the blocking parallelisation

approach for the Quasi-Monte Carlo algorithm can be used and thus our

optimisations aimed at saving memory for the OpenMP parallelisation approach

come into play. One consideration that is specific to matrix computations is that

since the length of the Markov chains may vary, we have a problem to select the

appropriate dimension for the Quasi-Monte Carlo sequence. We point out that our

generators for Xeon Phi are optimised for dimensions that are multiples of 16. We

can select a dimension based on theoretical estimate for the length of the Markov

chain, if we know for example an estimate for the maximal eigenvalue of the

matrix. In any case, once we chose certain dimension d, if we arrive at a situation

where the Markov chain is larger than d, we can always use pseudo-random

numbers for the remaining dimensions. Theoretically this is justified by the

consideration that the last dimensions have lesser contribution in the overall result

than the first dimensions. Nevertheless, one may simply re-do the pre-processing

part of the generation of the pseudo-random numbers with higher dimension, using

a running maximum, thus obtaining a pure Quasi-Monte Carlo algorithm. Our

generators for the Sobol’s sequence have faster pre-processing than our generators

for the Halton sequence, so this approach will have lesser impact on overall running

time for the Sobol’s sequences. In the section with numerical results one can see

how such a method works in practice.

Saving memory bandwidth while implementing Quasi-Monte Carlo

algorithms. Once we optimised the memory requirements of our generation

routines, we consider the memory bandwidth that they use. In general the speed of

access to memory, measured with bandwidth and latency, improves at much slower

rate compared to the speed of processing. That is why many computations are

actually memory-bound. There are different ways to improve the execution through

 55

optimisation of memory access. One can decrease the total amount of data being

transferred or tune the patterns of access in order to improve the use of the various

caches. For the Sobol sequence, there is one low-hanging fruit to be had in this

direction. It is the observation that if we are generating consecutive terms of the

sequence, half of the time the direction number being used is actually the same over

all dimensions – it corresponds to changing the most significant binary digit after

the binary point. Thus we do not need to load this number from memory. The

resulting improvement is substantial in any kind of benchmark and may be even

more important in real usage, since space in the caches is saved. Taking this

approach one step further, we can make use of the fact that the matrices of binary

numbers in the Sobol sequences are triangular. This means that for the first 8

positions 8 bits or one byte is enough to hold all the necessary information. Since

we generate in double precision we usually need to load 64 bits or 8 bytes. Thus the

savings in memory bandwidth are substantial, when we compress the corresponding

“twisted direction numbers”. The expansion happens with vector operations, by

shifting appropriately and adding the omitted zeroes. Unfortunately, the Xeon Phi

seems not to be efficient in such kinds of integer operations and thus this approach

does not outperform in benchmarks. However, our benchmarks do not strain the use

of caches and therefore cannot capture the advantage of this approach. On the CPUs

similar approach has been winning in previous tests. Since the special handling of

the first direction number had clear advantage, we leave the choice of using the

compression for the next 7 direction numbers to the user. The generation codes are

provided under the GNU Public license and are available at

http://parallel.bas.bg/~emanouil/sequences/micmemory.tgz

5. Numerical tests

The justification for the use of Quasi-Monte Carlo methods in linear algebra

problems is mainly in the hope of achieving better precision than regular Monte

Carlo. In Fig. 3 we show the mean-squared error that was achieved when using the

Sobol and (modified) Halton sequences to solve a linear system with 100 right-

hand-sides with a matrix A that is diagonally dominant and sparse. We can see that

using the Halton sequences one can significantly outperform the usual Monte Carlo

method. The Sobol sequences show actually worse results than Monte Carlo, which

shows that the selection of the low-discrepancy sequence is important for the QMC

application. Next, in the Table 2 we can see a comparison of the computing times

and parallel speedup in different settings. One can see that for this kind of linear

algebra problems the differences in generation speed among the quasi- and pseudo-

random sequences are noticeable, but not critical, and thus it is justified to use the

sequences that yield the best accuracy (in this case, the modified Halton sequences).

 56

Table 2. Comparison of execution times and speedup using different number of threads during

the computation

Cards Threads
Sobol MT2203 Halton

Time, s Speedup Time, s Speedup Time, s Speedup

1

1

61

122

244

109.05

3.21

2.97

3.71

1.08

0.87

107.61

3.23

2.99

3.69

1.08

0.87

132.12

3.58

3.24

3.83

1.10

0.93

2

1

61

122

244

52.12

1.92

1.63

8.32

1.67

1.97

0.38

56.33

2.14

1.75

8.89

1.51

1.85

0.36

51.62

2.11

1.93

8.35

1.69

1.85

0.43

8

1

61

122

244

14.03

0.55

0.69

1.03

5.83

4.65

3.12

13.72

0.54

0.62

0.93

5.98

5.21

3.47

16.11

0.63

0.67

1.00

5.68

5.34

3.58

16

1

61

122

244

7.24

0.38

0.49

0.68

8.45

6.55

4.72

7.53

0.35

0.44

0.80

9.23

7.34

4.04

9.00

0.42

0.53

0.84

8.53

6.75

4.26

We notice that the best choice of hyperthreading seems to be to use either 61

or 122 logical threads, which means no hyperthreading or 2x hyperthreading,

instead of the maximum feasible 244 threads, corresponding to hyperthreading with

a factor of four. In this kind of problem the gain from hyperthreading, when it

happens, seems to be limited, which may be due to the fact that the algorithms use

lots of memory bandwidth. The increase in the number of computing devices and

consequently, the number of MPI processes, leads to better results when

hyperthreading is not used. In some cases the use of 4x hyperthreading significantly

degrades the performance. When comparing the speedup with different number of

devices, when the basis is the case of 61 threads on one card, we see that the

speedup is acceptable, but far from the perfect linear speedup. However, the actual

computing times are in the range of a few seconds, which is rather small and so

some pre-processing steps that are not fully parallelized, have large impact on the

results. In the next figure one can see the features of some of the test matrices that

we have used.

When the algorithm involves constructing a preconditioner, we observe a

breakdown of the total used wall clock time between the various stages, which

shows that actually the slowest part is the broadcasting, which saturates the intra-

node bandwidth. Thus when considering execution in multi-node environment one

has to concentrate on decreasing the broadcasting time. It is possible to use some

tuning parameters of the MPI library in order to obtain maximum performance on

the particular hardware setup. It is also important to condense the matrix before

broadcasting. However, this should be done via simple algorithm, so that this

operation does not impact adversely the total execution time.

 57

Fig. 3. Mean squared error for three algorithms: Monte Carlo (using MT), Quasi-Monte Carlo with

Sobol sequence and Quasi-Monte Carlo with Halton sequence

Fig. 4. Speedup when using 122 threads on varying number of cards, compared with 61 threads on

one card

6. Conclusions and future work

The Monte Carlo algorithms for solving linear algebra problems have established

place when the problem at hand has certain characteristics. The Quasi-Monte Carlo

algorithms intend to improve on them by increasing the accuracy while maintaining

similar speed of execution. We have seen how the use of some families of

 58

quasirandom sequences, like the modified Halton sequences, can achieve these

results, without changing significantly the program code or the flow of the

algorithm. The selection and implementation of the tabular method have taken into

account specific properties of the quasirandom sequences, enabling us to actually

achieve improved performance. It is possible that other methods for sampling

discrete distributions may also be adapted for quasirandom numbers, which will be

subject to further research.

The achieved scalability using Intel Xeon Phi is acceptable for practical use.

We believe it is possible to further optimise the code to take into account the vector

processing capabilities of these devices. We intend to continue in this direction of

research, using either compiler directives or intrinsic functions.

Acknowledgments: This work was partially supported by the European Commission under H2020

Project VI-SEEM (Contract Number 675121) by the National Science Fund of Bulgaria under Grant

DFNI-I02/8.

R e f e r e n c e s

1. A l e x a n d r o v, V. N., O. A. E s q u i v e l-F l o r e s. Towards Monte Carlo Preconditioning

Approach and Hybrid Monte Carlo Algorithms for Matrix Computations. – Computers &

Mathematics with Applications, Vol. 70, 2015, Issue 11, pp. 2709-2718. ISSN 0898-1221.

https://doi.org/10.1016/j.camwa.2015.08.035

2. A l e x a n d r o v, V., A. K a r a i v a n o v a. Parallel Monte Carlo Algorithms for Sparse SLAE

Using MPI. – In: J. Dongarra, E. Luque, T. Margalef, Eds. LNCS. Vol. 1697. Springer, 1999,

pp. 283-290.

3. A l e x a n d r o v, V., O. E s q u i v e l-F l o r e s, S. I v a n o v s k a, A. K a r a i v a n o v a. On the

Preconditioned Quasi-Monte Carlo Algorithm for Matrix Computations. – In: LNCS.

Vol. 9374. Springer, 2015, pp. 163-171.

4. A t a n a s s o v, E. I. On the Discrepancy of the Halton Sequences. – Mathematica Balkanica,

Vol. 18, 2004, Fasc. 1-2, pp. 15-32.

5. A t a n a s s o v, E. I. A New Efficient Algorithm for Generating the Scrambled Sobol’ Sequence.

Numerical Methods and Applications. – In: LNCS. Vol. 2542. Springer-Verlag. 2003,

pp. 83-90.

6. A t a n a s s o v, E., T. G u r o v, S. I v a n o v s k a, A. K a r a i v a n o v a. Parallel Monte Carlo on

Intel MIC Architecture. – Procedia Computer Science, Vol. 108, 2017, pp. 1803-1810.

https://doi.org/10.1016/j.procs.2017.05.149

7. A t a n a s s o v, E., T. G u r o v, A. K a r a i v a n o v a, S. I v a n o v s k a, M. D u r c h o v a,

D. D i m i t r o v. On the Parallelization Approaches for Intel MIC Architecture. – In: AIP

Conf. Proc. 1773, 070001, 2016.

http://dx.doi.org/10.1063/1.4964983

8. B o i s v e r t, R. F. et al. Matrix Market: A Web Resource for Test Matrix Collections. – In: R. F.

Boisvert, Ed. Quality of Numerical Software. IFIP Advances in Information and

Communication Technology. Boston, Springer, MA, 1997, pp. 125-137.

9. C a f l i s c h, R. Monte Carlo and Quasi-Monte Carlo Methods. – Acta Numerica, Vol. 7, 1998,

pp. 1-49.

10. C u r t i s s, J. H. Monte Carlo Methods for the Iteration of Linear Operators. – J. of Math. Physics,

Vol. 32, 1954, pp. 209-232.

11. D a n i l o v, D., S. E r m a k o v, J. H. H a l t o n. Asymptotic Complexity of Monte Carlo Methods

for Solving Linear Systems. – J. of Stat. Planning and Inference, Vol. 85, 2000, pp. 5-18.

12. D a v i s, T. A., Y. H u. SuiteSparse Matrix Collection. – ACM Transactions on Mathematical

Software (TOMS), Vol. 38, 2011, No 1, p. 1.

www.cise.ufl.edu/research/sparse/matrices/

http://www.cise.ufl.edu/research/sparse/matrices/

 59

13. D i m o v, I., V. A l e x a n d r o v, A. K a r a i v a n o v a. Resolvent Monte Carlo Methods for

Linear Algebra Problems. – Math. and Comp. in Simulations, Vol. 55, 2001, pp. 25-36.

14. D i m o v, I., A. K a r a i v a n o v a. Parallel Computations of Eigenvalues Based on a Monte Carlo

Approach. – Monte Carlo Methods and Applications, Vol. 4, 1998, No 1, pp. 33-52.

15. F a t h i, B., B. L i u, V. A l e x a n d r o v. Mixed Monte Carlo Parallel Algorithms for Matrix

Computation. – In: LNCS. Vol. 2330. Springer, 2002, pp. 609-618.

16. F o r s y t h e, G., R. L e i b l e r. Matrix Inversion by a Monte Carlo Method. – Math. Tables and

other Aids to Computation, Vol. 4, 1950, pp. 127-147.

17. G r o t e, M., M. H a g e m a n n. SPAI: SParse Approximate Inverse Preconditioner, Spaidoc. –

Pdf paper in the SPAI, Vol. 3, 2006, p. 1.

18. H a m m e r s l e y, J., D. H a n d s c o m b. Monte Carlo Methods. New York, London, Sydney,

John Wiley & Sons, 1964.

19. H a l t o n, J. H. Sequential Monte Carlo. – Proceedings of the Cambridge Philosophical Society,

Vol. 58, Part 1, 1962, pp. 57-78.

20. H a l t o n, J. H. Sequential Monte Carlo Techniques for the Solution of Linear System. – IAM J. of

Sci. Comp., Vol. 9, 1994, pp. 213-257.

21. H u c k l e, T., et al. An Efficient Parallel Implementation of the MSPAI Preconditioner. – Par.

Computing, Vol. 36, 2010, No 5-6, pp. 273-284.

22. K a r a i v a n o v a, A. Quasi-Monte Carlo Methods for Some Linear Algebra Problems.

Convergence and Complexity. – Serdica J. of Comp., Vol. 4, 2010, pp. 58-72.

23. K r o e s e, D. P., T. T a i m r e, Z. I. B o t e v. Handbook of Monte Carlo Methods. John Wiley &

Sons, 2011.

24. M a s c a g n i, M., A. K a r a i v a n o v a. Matrix Computations Using Quasirandom Sequences. –

In: LNCS. Vol. 1988. Springer, 2001, pp. 552-559.

25. M a s c a g n i, M., A. K a r a i v a n o v a. A Parallel Quasi-MCM for Computing Extremal

Eigenvalues. – In: MCQMCMs 2000. Springer, 2002, pp. 369-380.

26. S o b o l, I. Monte Carlo Numerical Methods. Moscow, Nauka, 1973 (in Russian).

27. S t o y k o v, S., E. A t a n a s s o v, S. M a r g e n o v. Efficient Sparse Matrix-Matrix Multiplication

for Computing Periodic Responses by Shooting Method on Intel Xeon Phi. – In: AIP

Conference Proceedings, 1773, 110012, 2016.

http://dx.doi.org/10.1063/1.4965016

28. S t r a ß b u r g, J., V. N. A l e x a n d r o v. Enhancing Monte Carlo Preconditioning Methods for

Matrix Computations. – In: Proc. of ICCS 2014, pp. 1580-1589.

29. V a j a r g a h, B. F. A New Algorithm with Maximal Rate Convergence to Obtain Inverse Matrix.

–Applied Mathematics and Computation, Vol. 191, 2007, No 1, pp. 280-286.

http://dx.doi.org/10.1016/j.amc.2007.02.085

30. W a s o w, W. A Note on the Inversion of Matrices by Random Walks. – Math. Tables and other

Aids to Computation, Vol. 6, 1952, pp. 78-81.

31. W e s t l a k e, J. A Handbook of Numerical Matrix Inversion and Solution of Linear Equations.

New York, J. Wiley & Sons, 1968.

32. Y i m u, J., K. Z i z h u o, P. Q. Y u, S. Y a n p e n g, K. J i a n g b a n g, H. W e i. A Cloud

Computing Service Architecture of a Parallel Algorithm Oriented to Scientific Computing

with CUDA and Monte Carlo. – Cybernetics and Information Technologies, Vol. 13, 2013,

Special Issue, pp. 153-166.

33. Intel® Xeon Phi™ Coprocessor Instruction Set Architecture Reference Manual.

https://software.intel.com/sites/default/files/forum/278102/327364001en.pdf

https://software.intel.com/sites/default/files/forum/278102/327364001en.pdf

