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Abstract: In present times a great number of clustering algorithms are available 
which group objects having similar features. But most of the datasets have data 
values that are categorical, which makes it difficult to implement these algorithms. 
The concept of genetic algorithm on intuitionistic fuzzy k-Mode method is proposed 
in the paper to cluster categorical data. This model is an extension of intuitionistic 
fuzzy k-Mode in which the notion of fitness related objective functions, crossovers, 
mutations and probability has been added to provide better clusters for the data 
objects. Also the intuitionistic parameter has been retained for the calculation of 
membership values of element x in a given cluster. UCI repository datasets were used 
for assessing efficacy of algorithms. The qualified analysis and results depict much 
consistent performance, where a significant improvement is achieved as compared 
to intuitionistic fuzzy k-Mode and simulated annealing based intuitionistic fuzzy  
k-mode. Genetic Algorithm based intuitionistic fuzzy k-Mode is very efficient when 
clustering is applied on large datasets that are categorical in nature, which proves 
to be very critical for data mining processes. 
Keywords: Categorical data, clustering, Data Mining, intuitionistic fuzzy k-Mode, 
simulated annealing, Genetic Algorithm. 

1. Introduction  

Process of deriving incisive deeper knowledge from raw data which results in better 
decision making is known as data mining. Data Mining lies at the intersection of 
various fields like machine learning, signal processing, graphics, artificial 
intelligence, etc. Many methods are used to extract information and recognisable 
patterns from unstructured data such as clustering, classification, regression, 
association rules, etc. In this paper clustering algorithm will be worked upon for 
mining purposes. 

The process of grouping a number of entities such that the entities in a particular 
set are more analogous to each other than to entities in other sets is known as 
clustering [1]. Most of the raw data available nowadays is without any class values 
which can be used to classify records properly. Also the class values available do not 
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have a definite relationship with each other. So in these cases the concept of clustering 
comes in handy. These techniques tend to increase the intra cluster parity and 
minimize the inter cluster parity.   

Categorical data is the statistical data type consisting of variables that can have 
only a fixed number of values. Thus each individual is assigned to a particular group 
or “category”. The attributes of various data types are contained by entities in the 
database. There may be numeric or non-numeric value types. The categorical datasets 
are therefore classified as shown in Fig. 1. 

 
Fig. 1. Clustering categorical data 

 

Clustering can be exercised for any type of data. But clustering numerical data 
is easier than that of categorical data. There can’t be any direct application of the 
distance metric to the categorical data. So k-Means [2] algorithm which is the most 
used clustering method is rendered ineffective when applied on categorical data. This 
is because it fully depends on the distance metric and it can only minimize a cost 
function which is numerical. So for categorical data, methods which deal with finding 
the modes are used. 

The k-Modes [3] uses simple matching dissimilarity measure and thus is 
different from the k-Means approach where Euclidean distance method is used. 
Cluster centers are represented as modes and these modes undergo a change in each 
iteration of the process, where the most frequent categorical values are put in place 
of the previous values. A local minima result is guaranteed by these modifications. 

Fuzzy k-Modes [4] is an addendum of k-Modes. From categorical data a fuzzy 
partition matrix is generated within the framework of the fuzzy k-Means algorithm 
[5, 6]. Its primary concern is to bring out a method to get the fuzzy cluster modes  
[7, 8] from the categorical entities when the simple matching dissimilarity is applied 
to them. Confidence to the entities is assigned which makes the fuzzy version better 
than the k-Modes method. Also, it is quite known that the notion of intuitionistic 
fuzzy set [9-12] was developed by Atanassov, in which it was indicated that there 
exists an intuitionistic degree (πA(x)) that happens due to lack of knowledge when the  
membership degree is defined. Using this, an addendum of fuzzy k-Modes known as 
intuitionistic fuzzy k-Modes was presented. 

In this paper a new model has been devised, which is derived on the concepts 
stated above, called genetic algorithm based intuitionistic fuzzy k-Modes. In this 
notion the properties of population generation and chromosomes on intuitionistic 
fuzzy k-Mode has been used. This has been done so as to get better outcome than 
intuitionistic fuzzy k-Mode while clustering [13, 14] categorical data.  
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2. Datasets used  

UCI machine dataset repository was the primary source of the datasets used in this 
paper. The datasets used are glass dataset, iris dataset and wine dataset. The 
description for these datasets is given in Table 1. 
  
Table 1. Datasets description 

Data set Glass dataset Wine dataset Iris dataset 
Characteristics  Multivariate Multivariate Multivariate 
Attribute type Real, Categorical Real, Integer, Categorical Real, Categorical 
Associated tasks Classification Classification Classification 
Number of instances 214 178 150 
Number of attributes 9 13 4 
Missing values No No No 

Class values 1-6 1-3 Iris Setosa, Iris 
Versicolour, Iris Virginia 

3. Notation 

In this section the notations which have been used to give the various equations have 
been explained. The notations relating to categorical data and genetic algorithm based 
intuitionistic fuzzy k-Mode have been provided. 

3.1. Categorical data 
It is assumed that the objects to be clustered are stored in a database T defined by a 
set of attributes 1 2,  , ,  .mA A A  DOM(Aj) is the domain of values described by each 
attribute Aj  and this has an association with a defined semantic data type. Here only 
two data types are considered which are numeric and categorical, and all other data 
types in the database are assumed to be linked to these two. Real numbers compose 
a numeric domain. A domain DOM(Aj) is defined as categorical if it is finite and 
unordered. 

X is represented as a vector 1 2 3[ , , ,..., ]mx x x x  without ambiguity; m attribute 
values are contained by every object. Missing values of attribute Aj  are denoted by 
null. Let a group of n objects be denoted by X = {X1, X2, …, Xn}, and [xi1, xi2, ..., xim] 
represents object Xi. If xi,j = xk,j then Xi = Xk; Xi = Xk means, for the attributes  
A1, A2, …, Am, two objects have equal values. 

3.2. Intuitionistic fuzzy set 
Simultaneous consideration of membership values m and non-membership values n 
of elements of a group put the notion of intuitionistic fuzzy sets [9, 10] under 
consideration     { ,  ,  |  }A Ax m x n x x X  is an IFS A in X where 

 : 0,1Am X   and : [0,1]An X   such that    0     1A Am x n x    

.x X   An element x has  Am x  and An (x) as membership and non-membership 

values to set A in X. When      1  A An x m x   for every x in set A, then it becomes 
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a fuzzy set [15-18]. For all Intuitionistic Fuzzy Sets (IFSs) an intuitionistic degree 
 A x  was indicated by Atanassov. For every element x in A this arises as a 

consequence of lack of knowledge and it is given as 
(1)             1    ,  0    1,A A A Ax m x n x x        

 Am x  lie in an interval range         ,   A A A Am x x m x x      because of 
the addition of this hesitation degree. 

Intuitionistic Fuzzy Generator (IFG) is used for the construction of IFS. 
Sugeno’s IFG is used in this paper. Intuitionistic fuzzy complement of Sugeno is 
written as 
(2)                 1   /  1    0,  1   0,  0  1,N m x m x m x N N        
where N(m(x)), which is Sugeno type fuzzy complement, is used to calculate non-
membership values. With Sugeno type fuzzy complement, the hesitation degree is 
given by  
(3)               1    1  / 1   .A A A Ax m x m x m x        

4. Methods and algorithms 

4.1. Distance function 
In k-Modes the distance between X and Y where m is the number of attributes that 
are categorical is given as 

(4)    
1

,   ( , ),
m

j j
j

d X Y x y


  

where 
0 if ,

( , )
1 if ,

j j
j j

j j

x y
x y

x y



 



 

and X and Y have jx  and jy  as the values of attribute j. This equation is known as 
simple matching dissimilarity measure. The other name for it is Hemming distance. 
The entities are more dissimilar to each other when there are larger number of 
mismatches of categorical values between X and Y. 

4.2. K-Modes (KM) algorithm  

The k-Means clustering algorithm cannot cluster categorical data because of the 
dissimilarity measure it uses. The k-Modes clustering algorithm is based on k-Means 
paradigm but removes the numeric data limitation. The k-Modes approach modifies 
the standard k-Means process for clustering categorical data by replacing the 
Euclidean distance function with the simple matching dissimilarity measure, using 
modes to represent cluster centres and updating modes with the most frequent 
categorical values in each of the iterations of the clustering process. These 
modifications guarantee that the clustering process converges to a local minimal 
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result. Since the k-Means clustering process is essentially not changed, the efficiency 
of the clustering process is maintained. 

k-Modes clustering [3] recurrently find U and Z. It is an optimization process 
where a data set D is partitioned into k clusters. In the process the cost function is 
minimized: 
(5)    

1 1
( , ) ( , ),k n

li l il i
F U Z d Z X

 
    

subject to  
(6)   {0,1},li    1 ,l k   1 ,i n    

(7)   
1

1k
lil




 , 1 ,i n    
and  
(8)   

1
0 ,n

lii
n


      1 ,l k    

where ,1 ,2 ,{ ,  , ,  }i i i i mX x x x denotes m categorical attributes and a group of n 

categorical entities are represented as 1 2{ , , , }.nD X X X The current cluster 

membership of an object is represented by   liU   which is a {0, 1} matrix 

1 2 [ ,  , ,  ]kZ Z Z Z  representing the cluster modes where k is the number of target 
clusters. k is predetermined before the clustering process starts. The dissimilarity 
function is used here which has been defined in (4). 

The following three steps are taken by the KM clustering process to cluster a 
categorical data set X into k clusters. 

Step 1. k unique objects are randomly selected as the initial cluster centers 
(modes). 

Step 2. The distances between each object and the cluster mode is calculated 
and the center which has the shortest distance to the object takes the object in its 
cluster. This step goes on until all objects are assigned to clusters. 

Step 3. A new mode for each cluster is selected and compared with the previous 
mode. If it is different, then go back to Step 2; otherwise, stop. 

KM objective function is minimized by this clustering process: 

1 1 1
( , ) ( , ),

k n m

li ij lj
l i j

F U Z d x z
  

  

where U = [ li ] is an n×k partition matrix,  1 2 k , ,   ,Z Z Z Z   is a set of mode 
vectors and the distance function d(.,.). 

4.3. Fuzzy KM (FKM) algorithm  

The fuzzy k-Modes algorithm was proposed by H u a n g  and N g  [4] for clustering 
categorical objects. This algorithm is an extension [19] to k-Modes. Instead of 
assigning each object to one cluster, the fuzzy k-Modes clustering algorithm 
calculates a cluster membership degree value for each object to each cluster. Similar 
to the fuzzy k-Means [5, 6, 20], this is achieved by introducing the fuzziness factor 
in the objective function. This algorithm has found applications in bioinformatics. It 
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can improve the clustering result whenever the inherent clusters overlap in a data set. 
In the fuzzy k-Modes algorithm [21], data D is grouped into k clusters by minimizing 
the cost function given in (5). The equation for fuzzy membership is 

(9)    
1

( 1)

1

1                                    if ,
0                                    if , ,

( , )1/ if and  ,  1 ,
( , )

i l

li i h

k
l i

i l h
j h i

X Z
X Z h l

d Z X X Z X Z h k
d Z X











 


  

  

     
  


  

where α is the weighting component.  
Equation (9) gives the fuzzy membership of different objects in a given cluster. 

The first case is when the object Xi and the cluster center Zl values are equal and then 
the membership value of that object in that cluster l is 1. The second case is when the 
object and another cluster center, some Zh, are equal and then the membership value 
of that object in that cluster l is 0. The third case is when the object does not have 
value equal to any of the cluster center and then the membership value is between 0 
and 1. So this equation exemplifies fuzzification.  

4.4. Intuitionistic Fuzzy K-Mode (IFKM) algorithm  

The Intuitionistic fuzzy k-Modes [21, 22] follows from intuitionistic fuzzy set  
[23, 24]. While fuzzy sets depend upon graded membership values, intuitionistic 
fuzzy sets depend upon membership and non-membership values leading to 
hesitation values associated with every element in the domain. The intuitionistic 
fuzzy set is explained in Section 3.2. Hesitation value is a new parameter denoted by 
𝜋. Hesitation value arises due to lack of knowledge in defining membership degree. 
In this algorithm intuitionistic degree is added to fuzzy k-Mode concept. This degree 
leads to an uncertainty in the membership of an object in a particular cluster by a 
particular value. The complexity of the method remains linear with the additional 
computation required in the iterative elimination process. It gives better result as 
compared to FKM Algorithm [21]. The steps of the method are as follows:  

Step 1. Assign initial cluster centers or modes for c clusters. 
Step 2. Between data objects 𝑋𝑖 and centroids Zl the distance d is calculated. 
Step 3. The fuzzy partition matrix or membership matrix U is generated as 

shown by (9). 
Step 4. Compute the hesitation matrix  𝜋 using 

(10)    𝜋𝑙𝑖 = 1 − 𝜇𝑙𝑖 −
1−𝜇𝑙𝑖

1+𝜆𝜇𝑙𝑖
 .  

Step 5. Compute the modified membership matrix Uʹ using  
(11)    𝜇𝑙𝑖

′ =  𝜇𝑙𝑖 + 𝜋𝑙𝑖.  
Step 6. The 𝑋𝑖 with higher relative frequency of categorical attributes is chosen 

to be the new representative, i.e., center or mode. 
Step 7. By using Steps 2-5 the new partition matrix is calculated. 
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Step 8. If ‖𝑈′(𝑟) − 𝑈′(𝑟+1)‖ <  𝜀 then stop. Else repeat from Step 4. 
The objective function of IFKM [22] contains two terms: (i) modified objective 

function of conventional FKM using intuitionistic fuzzy set, and (ii) Intuitionistic 
Fuzzy Entropy (IFE). IFKM minimizes the objective function as  

(12)   
*1* 2 *

IFKM 1
1 1

,
m

l

k n
k

li li ll
l i

J d e   


 

    where *
1

1 , [1, ],n
l lii

i N
N

 


    

and N is the number of objects. 

4.5. Genetic Algorithm based Intuitionistic Fuzzy K-Mode (GAIFKM) 
John Holland first used the term Genetic Algorithm (GA) (see [25, 26]). The concept 
of GA is based on the philosophy of natural selection or “survival of the fittest” and 
genetics which are inspired by biological structures and their evolution. The use of 
GA is very much effective while the search space is large, complex and multimodal. 
Unlike traditional search techniques, it works with the coding of problem variables 
instead of variable themselves. Moreover, it can search simultaneously from multiple 
points and this fact makes GA parallel in nature. This also helps increasing the 
probability of avoiding the issue of getting trapped into local optimal solution. 
According to the GA, the decision variables of the search problem are encoded into 
a finite length string of symbols of certain cardinality. The symbols are called genes 
and the values of genes are called alleles, whereas the string is referred as 
chromosome. GA [25] starts with the random population of chromosomes. Each 
chromosome is evaluated based on some defined fitness value and then takes part 
into selection process where the chromosomes having better fitness are given more 
chance to reproduce than the others. Thereafter, crossover and mutation operators are 
applied on the selected chromosomes. This preserves the important information and 
helps to achieve the good solution for next generation. This process continues until 
some termination condition is reached. 

4.5.1. Selection process 
During selection process [27], chromosomes from the parent populations are selected 
based on the fitness values and an intermediate population, called mating pool is 
maintained. These selected chromosomes will further take part into subsequent 
processes like crossover and mutation. Three selection methods, namely roulette 
wheel selection, stochastic universal sampling and binary tournament selection are 
very much popular and mostly used. In this paper binary tournament selection method 
has been used for GA. Further explanation for this is given in Section 4.5.5. 

4.5.2. Crossover process 
In this process two parent chromosomes produce two new chromosomes called 
offspring. Offspring chromosomes might get the best characteristics from both the 
parents and become better than parents. Crossover does not occur all the time. It 
occurs based on some user defined probability. There are single point crossover, two-
point and uniform crossover. Single point crossover has been used in this paper. 
According to it, crossover process selects a crossover point over a chromosome 
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randomly. Thereafter, it interchanges the two parent chromosomes at this point to 
produce offspring chromosomes. 

4.5.3. Mutation process 
Mutation is another genetic operator [28, 29]. It alters one or more genes in a 
chromosome and can produce entirely a new chromosome than its initial state. This 
new chromosome is added to the population with the assumption that the new 
chromosome might give the better solution. This process also follows user defined 
probability for occurrence. The probability of mutation is normally kept less (as low 
as 0.01) than crossover. 

4.5.4. Elitism 
During the GA process, there is a chance of losing the best solution in next generation 
unless the best solution is stored so far in a safe place. The process which ensures it 
is called elitism [30, 31]. Sometimes, the worst solution so far is replaced by the best 
solution so far in the population. 

4.5.5. Main algorithm 
So here intuitionistic fuzzy k-Mode has been extended by adding the concept of 
genetic algorithm to it. The procedure is as follows: 

Input: X, the dataset  
k, the number of cluster 
maxGen, maximum Generation 
PS, Population Size 
Pcr, crossover Probability 
Pmu, mutation Probability 
Output: [µli] where 1 ≤ l ≤ k and 1 ≤ i ≤ n. 
Step 1. Select random k objects from dataset for k cluster mode to encode as 

chromosome. Zl is the cluster mode for l = 1, 2,..., k. 
Step 2.  Generate initial population of size PS. 
Step 3.  repeat 
Step 4.   Calculate µli for all n objects using (9). 
Step 5.   Classify objects using algorithm given in Section 4.4 and update [µli]. 
Step 6.   Calculate fitness value using (12) for each chromosome in population. 
Step 7.   Update each chromosome in population with new mode using (11). 
Step 8.   Selection using tournament selection strategy. 
Step 9.   Perform crossover with probability Pcr. 
Step 10.   Perform mutation with probability Pmu. 
Step 11.  until maxGen is reached 
In GAIFKM, the chromosome is encoded similarly like a string. Each 

chromosome indicates a probable solution. The fitness of a chromosome indicates the 
degree of goodness of the solution it represents. In this paper, the JIFKM is used as the 
objective function as defined in (12). The objective is therefore to minimize the JIFKM 

for achieving optimal clustering. Given a chromosome, the modes encoded in it are 
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first extracted and then the Equations (9), (12) and (11) are used to compute fuzzy 
membership matrix, JIFKM and updating modes respectively. 

Thereafter, the popular genetic operations selection, crossover and mutation are 
used. Here the tournament selection strategy is adopted. In tourrnament selection 
strategy some individuals are selected randomly and each selected individual 
competes against each other. The individual with best fitness wins and is included in 
the next generation population. The tournament size which is the number of 
individuals competing each other in each tournament is normally set to 2. The 
tournament selection strategy gives all individuals a chance to be selected and thus 
preserves diversity. After selection, the selected chromosomes are used for crossover 
operation. Conventional single point crossover with probability Pcr has been 
performed for generating the new offspring. Subsequently, mutation, with probability 
Pmu  was carried out. A chromosome is selected for mutation. The gene position that 
will undergo mutation is chosen randomly. Subsequently, the categorical value of 
that position is replaced by another one chosen randomly from the corresponding 
categorical domain. Elitism strategy [30, 31] has been implemented by preserving the 
best chromosome in a separate location outside the population. At the end this 
provides the best chromosome consisting of modes of final clusters. All these 
processes are repeated for a maximum number of generation maxGen. 

5. Criteria to be used for evaluation 

One of the most basic performance analysis indexes are Davis-Bouldin (DB) and 
Dunn (D) indexes [32, 33] . They help in evaluating the efficiency of clustering. The 
number of clusters required determines the results. 

5.1. Davis-Bouldin index 
The ratio of sum of intra-cluster distance to inter-cluster distance is known as DB 
index [34]. It is formulated as 

(13)   
1 , 1

( ) ( )1DB max
( , )

k k
l o

l o l o l o

S Z S Z
k d Z Z  

 
  

 
   for 1< l, o < k,  

S is the sum of intra-cluster distance. So S = Sum (Distance between any two objects 
taken at a time which are present in the same cluster); d is the distance between the 
two clusters. The objective of this index is to reduce the within cluster distance and 
increase the between cluster separation. Therefore a low DB index indicates that the 
clustering procedure is good. 

5.2. Dunn (D) index 
The D index [35] is similar to DB index. Compact and separated clusters are 
identified by it. Computation is done by using 

(14)    
( , )Dunn min min

max ( )
l o

l o l
b b

d Z Z
S Z

   
   

   

 for 1 < o, l, b < k. 
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Its aim is to maximize the inter-cluster distance and reduce the intra-cluster 
distance is. Hence a procedure is more efficient if the value of the D index is greater.  

5.3. Clustering accuracy 
The accuracy of a clustering process is defined as 

(15)   1 ,

k

l
l

a
r

n



  

where the number of records in the data set are given by n and the number of records 
occurring in both cluster l and its corresponding class is ai. In our numerical tests k is 
the number of clusters. Hence a greater value of the accuracy means the given method 
is much better. 

6. Results and analysis 

To assess the efficacy and efficiency of the genetic algorithm based intuitionistic 
fuzzy k-Modes method and compare it with the intuitionistic fuzzy k-Modes 
algorithm, several tests of these algorithms were carried out.  

The datasets used were the glass dataset, iris dataset and wine dataset. All the 
three datasets directly have been taken from UCI repository. No changes like 
removing some redundant rows, cleaning the data or removing some attributes, have 
been made to the datasets.   

For the dataset the two clustering algorithms to cluster it have been used. For 
IFKM algorithm λ = 2. The record Xi was assigned to the L-th cluster if 

1max { }.li h k hi    For genetic algorithm based intuitionistic fuzzy k-Mode the 
different values taken for the constants used in the algorithm were Pcr = 0.8, Pmu = 0.1 
and maxGen = 100. 

The number of clusters that has been taken are 6, 3, and 3 for glass, iris and wine 
dataset respectively. This is because these datasets contain these many different 
values in the decision attribute. Final modes of these clusters produced on applying 
the two algorithms are given in the table below. These modes are non-identical. This 
suggests that the genetic algorithm based intuitionistic fuzzy k-Modes and 
intuitionistic fuzzy k-Modes algorithms indeed produce different clusters. 

6.1. Modes of the clusters 
In this section the cluster centers have been computed for intuitionistic fuzzy k-Mode 
and genetic algorithm based intuitionistic fuzzy k-Modes for three data sets; glass 
dataset, iris dataset and wine dataset to show the superiority of genetic algorithm 
based intuitionistic fuzzy k-Mode over the intuitionistic Fuzzy k-Mode Algorithm. Zl  

represents the different clusters or cluster modes. It is denoted in the first column 
from Tables 2-6. The first row in Tables 2-6 contains the different attributes present 
in the dataset. So for every attribute and decision class a cluster center is chosen 
according to the applied algorithm.  
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6.1.1. Glass dataset  

Table 2 shows the cluster centers or modes obtained by using the Intuitionistic Fuzzy 
K-Mode Algorithm (IFKMA). 
 
                    Table 2. Modes for glass dataset on applying IFKM 

Zl 1 2 3 4 5 6 7 8 9 
1 1.5174 12.78 3.69 0.82 70.43 0.31 8.04 0.76 0.21 
2 1.5174 12.96 2.96 0.78 72.92 2.7 8.04 0.14 0.21 
3 1.5174 12.96 2.96 0.82 72.92 0.31 8.04 0.14 0.03 
4 1.5313 10.73 2.96 2.1 69.81 2.7 13.3 3.15 0.03 
5 1.5174 12.96 2.96 0.82 72.92 2.7 8.04 0.14 0.03 
6 1.5313 10.73 1.78 2.1 69.81 2.7 13.3 3.15 0.21 

 
Table 3 shows the cluster modes obtained by using the GA based IIFKM. 

 
                    Table 3. Modes for glass dataset on applying genetic based IIFKM 

Zl 1 2 3 4 5 6 7 8 9 
1 1.5165 12.98 2.14 1.70 72.92 0.07 9.3 0.12 0.38 
2 1.5165 14.15 2.14 1.70 71.31 0.41 9.3 3.13 0.04 
3 1.5165 14.15 2.14 1.70 74.42 0.2 9.3 0.12 0.38 
4 1.5165 14.15 2.14 1.70 72.91 2.71 9.3 0.12 0.02 
5 1.5165 12.98 2.96 2.10 72.91 0.93 13.3 0.11 0.25 
6 1.5166 12.98 3.65 0.62 72.93 0.54 8.03 0.11 0.04                                   

6.1.2. Iris dataset  

Table 4 shows the cluster modes obtained by using the two algorithms. 

       Table 4. Modes for iris dataset on applying the two algorithms 

Zl GA based on IIFKM IIFKM 
1 2 3 4 1 2 3 4 

1 6.8 4.3 4.2 0.5 4.3 2 1.1 0.6 
2 4.3 2.1 1.1 0.5 7 4.1 1 0.6 
3 7.2 2.3 6.3 0.6 7 2 3.6 0.5 

6.1.3. Wine dataset  

Tables 5 and 6 show the cluster modes obtained by using the IFKMA and GA based 
IFKM, respectively. 

Table 5. Modes for wine dataset on applying IFKM Algorithm 
Zl 1 2 3 4 5 6 7 8 9 10 11 12 13 
1 12.37 1.73 2.3 20 88 2.2 2.65 0.43 1.35 3.8 1.04 2.87 520 
2 13.05 1.73 2.3 20 88 2.2 2.65 0.26 1.35 2.6 1.04 2.87 680 
3 13.05 1.73 2.28 20 88 2.2 2.65 0.43 1.35 4.6 1.04 2.87 680 
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Table 6. Modes for wine dataset on applying GAIFKM 
Zl 1 2 3 4 5 6 7 8 9 10 11 12 13 
1 12.81 3.85 2.3 20 105 1.2 0.77 0.34 1.03 2.2 0.64 3.1 407 
2 11.04 3.87 2 18 82 1.64 0.77 0.14 0.85 8.2 0.64 2.48 851 
3 13.30 2.82 2.8 25 82 1.88 1.91 0.42 2 10.25 1.42 2.82 409 

                                                     
So Tables 2 up to 6 give the final cluster modes on application of the respective 

algorithms on the datasets. We see that cluster modes are different when we apply 
IFKM and GAIFKM on the same dataset. This is because in GAIFKM we have used 
various concepts related to genetics like tournament selection strategy, crossover, 
mutation and elitism which gives better chances of getting good cluster modes. The 
cluster modes found out by using GAIFKM are much better in the form that clusters 
made by them are more resonant. This is because they increase the inter-cluster 
distance and reduce the intra-cluster distance as indicated by the results of DB and 
D-index values in section below. Also the Tables 2 to 6 can be used for verification 
purpose by someone who wants to further work on the algorithm and extend it.  

6.2. DB and D-index values 

Now the DB and D-index of the two algorithms is calculated according to the 
formulas given in Section 5. The representation for this has been made with the help 
of a table shown below which clearly indicate that genetic algorithm based 
intuitionistic fuzzy k-Mode is better than intuitionistic fuzzy k-Mode. 
 
          Table 7. DB and D-index values  

Datasets IFKM GAIFKM 
DB D DB D 

Glass 11.1 0.1111 4.13 0.39 
Iris 2.667 0.75 1.698 1.05 
Wine 2.1667 0.9231 2.146 0.95 

6.3. Accuracy 

Now the clustering accuracy of the two algorithms has been calculated. The 
accuracies are as follows: 
                  Table 8. Accuracy of clustering 

Datasets IFKM GAIFKM 
Glass 0.67 0.74 
Iris 0.555 0.595 
Wine 0.624 0.68 

 

The accuracy of application of genetic algorithm based intuitionistic fuzzy k-Mode 
on the three datasets is much more than that of intuitionistic fuzzy k-Mode. So the 
results obtained in Table 8 clearly justify that genetic algorithm based intuitionistic 
fuzzy k-Mode is a much better method for categorical data based clustering than 
intuitionistic fuzzy k-Mode. 
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7. Conclusion 

When it comes to real-world databases, categorical datasets have become a necessity. 
However, for clustering massive categorical data only a few efficient algorithms are 
available. The introduction of the k-modes type algorithm and its extension in the 
form of fuzzy k-Modes algorithm for clustering categorical objects, was the required 
impetus to solve this problem. Later intuitionistic fuzzy k-Mode method was 
proposed in which the intuitionistic degree was taken into effect. This degree led to 
an uncertainty in the membership of an object in a particular cluster by a particular 
value. Building upon these methods, genetic algorithm based intuitionistic fuzzy  
k-Mode technique has been introduced. This process used other parameters which 
were very much different from those used in intuitionistic fuzzy k-Mode. The 
additional computation is required in the elimination process which is iterative. But 
it does not affect the complexity which remains linear. The application of the 
algorithm on the three datasets have shown that a large number of initial modes are 
used which enhance the performance of the method. This happens without a need of 
optimal mode initialization relying on prior knowledge of the data. Also the answer 
found out at the end is a global minima. From the obtained results it is perceived that 
the genetic algorithm based intuitionistic fuzzy k-Mode method performs better than 
the intuitionistic fuzzy k-Mode algorithm as demonstrated in this paper. The findings 
possess a major application for data mining where the uncertain objects on the 
boundary are at times more interesting than entities which can be grouped by using 
clustering techniques with certainty. 

8. Scope for future work 

Better clusters can be formed by using a much better distance function. The cluster 
formed in the end depends heavily on initial cluster taken. Thus finding a way to 
choose better initial cluster can lead to better cluster formation. Also different 
threshold value provides different set of cluster. So according to our application it 
can be changed for better result. In addition to this, the crossover probability, 
mutation factor, and number of iterations could be varied and a concrete relation 
between these things could help get much better clusters.  
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