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Abstract: The increase of the utilization of public rail transportations is searched in 

directions for redistribution of the passenger travels between rail and bus 

transportation. The rail transport benefits by redistribution of the transportation flows 

on paths, predominantly supported by rails.  The redistribution of the transportation 

is formalized by bi-level optimization problem. The upper level optimization 

estimates the maximal flow, which can be transported through a transportation 

network, supported both by bus and rail transports. The lower level optimization 

gives priority to the rail transport by decreasing the costs of flow distribution, using 

rail transport. This bi-level optimization problem was applied for the case of 

optimization of the rail exploitation in Bulgaria, defining priorities in transportation 

of the National transport scheme. 
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design. 

1. Introduction 

The public rail transportation is an important player for the development of Intelligent 

Transportation Systems. The rail transportation is giving advantages due to its 

benefits, concerning efficiency in exploitation, improving logistics services, reducing 

the pollution.  This paper tries to give priority to rail transport in comparison with the 

bus transport in relation with the project with “BDZ Passenger Services”, Ltd., in 

Bulgaria and project on a Program for career development of young scientists, funded 

by Bulgarian Academy of Sciences. The problems, which are defined and solved, are 

using data coming from the current practice in Bulgaria, related with the passenger 

transportation by both rail and buses. Due to the lack of full set of data about the 

intensity of the passenger transport, this research applies only available information 

from the schedules of buses and rail transport. To give priority to the rail transport is 

an important National policy for managing and implementation of intelligent 

transportation systems.   
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A trivial approach for increase of rail transport is to consider and to provide bus 

transportation only on places where rail transportation is missing. However, capacity 

restrictions of the rail system, cross connections between bus and rail transportation 

routes, common stops for bus and rail in towns provide competitions between the rail 

and bus transportation services. In such competition environment, a special 

management policy is needed to give preferences and to increase the exploitation of 

the rail transport.  

This paper tries to formalize the problem for increasing the priority of the rail 

transport.  The formal description of this problem is to provide an optimal allocation 

of the rail transportation services over predefined transportation network, taking 

advantage from the bus transport. An optimization problem is defined, which 

generates a solution increasing the rail transport. The optimization problem is defined 

in a bi-level form. The upper optimization problem evaluates the maximal flow, 

which can pass between two predefined points of the transportation network. In the 

network the maximal flow is implemented both by bus and rail transport according 

to the available capacities of the transportation links.   

On the lower level, the optimization problem gives preferences to the rail 

transport in comparison with the bus one. This priority is defined, applying low cost 

flow distribution through rail links. Thus, by minimization of the total costs of flow 

distribution the optimal solution will provide intensive utilization of rail links for the 

flow distribution, which will increase the rail utilization. This low level solution 

giving flow per link will give new values for the link capacities for the upper level 

problem. Thus, the two optimization problems are interconnected in bi-level 

optimization one. The later will give optimal solutions both by maximization of the 

transport flow between two predefined important nodes of the transportation network 

and redistribution of the maximal flow to links, supported by rail. Thus, predominant 

part of the passenger transport will be implemented by rail transport.  

The paper makes an illustration of definition and solution of a transportation 

problem by bi-level optimization. The hierarchical order is applied for two 

optimization problems. The paper does not contain development of new algorithms 

for solution of bi-level problems, but it contributes for the increase of the application 

area of this more complex and advanced optimization formalism.  

2. Case study 

The idea for the bi-level definition of the problem about increase the rail utilization 

can be regarded as controversial problem or problem of synthesis, in comparison with 

the problem of analysis for evaluation of the maximal flow in a network. The problem 

for the evaluation of the maximal flow between two nodes, connected by a network 

was raised up in [14] by project RAND. This problem has been stated as follows: 

when the capacities of individual links in a rail network are given, how can be 

evaluated the over-all capability of the entire rail network. The researches in [14] 

target the evaluation of the maximal flow, which can be transported through a 

network. In [12] the minimal cut problem was defined in current form as maximal 

flow in a network. Now, it is well known that the maximal flow is equal to the 
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minimal cut of the network. An extended history for the origins of this theoretical 

result can be found in [27]. 

The “maximal flow” problem can be assumed as a problem for analysis of a 

network system. The optimization problem can be defined in the form: a topology of 

a network with capacity values on the links of the network is given. How much is the 

maximal amount of the flow between two nodes, which can be passed through the 

network. 

The analytical definition of the maximal flow problem is presented in the form   

(1a)   max
𝑓𝑖𝑗

[ 𝑓𝑠𝑡], 

(1b)   ∑ 𝑓𝑖𝑗 𝑗∈𝐴(𝑗) − ∑ 𝑓𝑗𝑖 𝑗∈𝐵(𝑗) =  {

0, 𝑖 ≠ 𝑠, 𝑡,
𝑓𝑠𝑡 ∗, 𝑖 = 𝑠,

−𝑓𝑠𝑡 ∗, 𝑖 = 𝑡,
  

(1c) 𝑓𝑖𝑗 ≤ 𝑣𝑖𝑗,  (∀𝑖, 𝑗) ∈ 𝑁, 

where (i, j) denote the number of nodes in a network with N nodes; 𝐴(𝑖) = {𝑗 ∈ 𝑁} 

is a set of nodes i, which origine incoming links to node j (Fig. 1);  

𝐵(𝑖) = {𝑗 ∈ 𝑁}  is a set of nodes i, which are connected with the outgoing links from 

node j (Fig. 1); s and t denote the source node and sink node; 𝑣𝑖𝑗  are the capacities of 

the links between node i and j, (𝑖, 𝑗 ) ∈ 𝑁; 𝑓𝑖𝑗 are the unknown volumes of flows, 

which have to be evaluated as components of the maximal flow in the network. 

 

 
Fig. 1. Incoming and outgoing flows to/from node j, source s and destination t nodes 

Relation (1b) describes the continuity nature of the flows, which enter and outgo 

to/from a node. Relation (1c) insists the flows on a link to respect the link capacity, 

which is predefined and constrained. The goal function (1a) describes the requirement 

for maximization of the flow 𝑓𝑠𝑡, which starts from the initial node s and enter to the 

final one t. 
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The solution of problem (1) gives a value 𝑓𝑠𝑡  of the maximal flow, which can 

be transmitted between s and t trough the network. Additionally, the values of 𝑓𝑖𝑗 

define the paths which the components of the maximal flow uses through the network. 

Hence, for given capacity on the network links, the maximal flow problem (1) 

gives the amount of flow, which can pass through the predefined network topology.  

Another corresponding optimization problem, defined as a problem for 

synthesis, provides minimization of the costs for flow distribution in the network for 

transportation of predefined value of traffic. Having optimal flow distribution, the 

corresponding values of the flow components 𝑓𝑖𝑗, i, j=1,…,N, can be used for 

evaluation of the minimal capacity 𝑣𝑖𝑗 of each  link i, j  or  𝑣𝑖𝑗 = 𝑓𝑖𝑗, i, j=1,…,N. The 

analytical form of the minimal cost distribution problem in linear form can be written 

as: 

(2a)   min
𝑥𝑖𝑗

∑ 𝑐𝑖𝑗𝑓𝑖𝑗,𝑖𝑗∈𝐴   

(2b)   ∑ 𝑓𝑖𝑗 𝑗∈𝐴(𝑗) − ∑ 𝑓𝑗𝑖 𝑗∈𝐵(𝑗) =  {

0, 𝑖 ≠ 𝑠, 𝑡,
𝑓𝑠𝑡 ∗, 𝑖 = 𝑠,

−𝑓𝑠𝑡 ∗, 𝑖 = 𝑡,
 

(2c)  𝑎𝑖𝑗 ≤ 𝑓𝑖𝑗 ≤ 𝑏𝑖𝑗 ,    𝑖, 𝑗 ∈ 𝑁, 

where 𝑓𝑖𝑗 are the values of the flows of the links between nodes i and j; 𝑐𝑖𝑗 are the 

cost for transportation a unit flow between nodes i and j; 𝑎𝑖𝑗 and 𝑏𝑖𝑗 are the lower 

and upper boundaries of the flow between nodes i and j; 𝑓𝑠𝑡 is the flow, which has to 

be transmitted from node s to  t by minimizing the transportation costs (2a).  

Relations (2b) correspond to the equations for flow conservation. The solution 

of (2) gives optimal flow distribution 𝑓𝑖𝑗. The values of 𝑓𝑖𝑗 define the minimal 

capacities 𝑣𝑖𝑗 of the links by means to provide the cheapest flow distribution. A 

verification of problem (2) related to the design of network topology is introduced by 

[13].  

This paper makes an integration of the both optimization problems (1) and (2). 

Problem (1) defines the maximal flow and the links used for its transportation, 

respecting the given set of links’ capacities   𝑣𝑖𝑗. Problem (2) will give an optimal 

flow distribution𝑓𝑖𝑗, giving priority to the rail transportation. This flow distribution 

defines the minimal link capacities  𝑣𝑖𝑗 = 𝑓𝑖𝑗 of the network.  The integration of (1) 

and (2) makes a synthesis for a network topology, where the value of flow between 

two nodes s and t is maximal and the components of the maximal flow predominantly 

passes through links, supported by rail. The integration of these two problems is 

performed by applying bi-level optimization model. 

The graphical presentation of the integration of (1) and (2) by bi-level 

optimization problem is presented in Fig. 2. The bi-level problem simultaneously 

makes maximization of flows between two predefined nodes of the network and 

performs priority flow distribution through links, supported by rail transport. The 

priority to rail transport is implemented by making minimal cost flow distribution 

where the costs for rail transport are lower in comparison with the costs for bus 

transportation.  The low cost flow distribution is used for estimation the link 

capacities in the transportation network.  
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The solution of the upper level problem will evaluate the maximal flow 𝑓𝑠𝑡 

between nodes s and t. The value 𝑓𝑠𝑡 will be used as a parameter in the constraints of 

problem (2). Then the lower level problem (2) will evaluate the flow 

distribution 𝑓𝑖𝑗 = 𝑣𝑖𝑗, which on its turn will change the constraints of problem (1). 

As a result, the bi-level problem will give optimal solution for both the maximal flow 

𝑓𝑠𝑡 and the flow distribution 𝑓𝑖𝑗 with priority to rail transportation in the network. The 

bi-level formalization will provide maximization of the flow 𝑓𝑠𝑡 and will minimize 

the cost for link flows. 

 
Fig. 2. Integration of optimization problems in bi-level optimization one 

To identify peculiarities of the bi-level optimization model the next paragraph 

makes short overview of the current applications of the bi-level and multilevel 

hierarchical optimization. 

3. Bi-level optimization models and their applications 

The applications of bi-level optimization problems are a challenging formal approach 

for definition and solution of real world and practical problems nowadays. The idea 

of the bi-level formalism applies interconnections between two optimization 

problems. The upper optimization problem with its solution influences the parameters 

of the constraints and/or the goal function of the lower optimization problem. The 

lower one on its turn also influences by its solution the parameters of the constraints 

and/or the goal function of the upper level optimization. Such interconnected 

optimizations are formal instruments of the hierarchical system theory. However, 

these problems are difficult to be solved, because they insist application of solvers, 

which evaluate the global optimal solutions for non-convex cases. History about bi-

level statement can be found in [31]. An extended analysis of the bi-level 

optimization can be seen in [1, 7, 8]. These papers pay attention and discuss the 

available application examples.  

The short illustration about the applications of bi-level modeling and 

optimization is: 

 Revenue management in economic systems. The main applications concern 

approaches for implementation of Stackelberg games [3, 4, 6, 20]. 
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 Identification of parameters, control of transportation systems, scheduling 

[17, 18, 28, 29].   

 Design of network topologies and facility location [19, 30]. 

 Optimal design of engineering problems [23, 32]. 

 Optimal exploitation in Energy sector [10, 16]. 

 Gas pricing and distribution [9]. 

 Resource allocation [11, 15, 33]. 

 Supply chain models [5, 21]. 

 Security issues [22]. 

This sequence of published cases with application of bi-level formalism tries 

to prove the conclusion that currently there is increasing interest for the 

implementation of the bi-level optimization in real cases and for solving real practical 

problems. Despite the internal complexity in solving bi-level optimization problems, 

the attempts for usage and application of such hierarchical optimization models are 

continuous because of the well-proved positive benefits.   

4. Graph presentation of the transport network between Sofia and Varna 

in Bulgaria 

The transport network was estimated for the real case between two important towns 

in Bulgaria: Sofia and Varna. The input data for the rail transportation from Sofia to 

Varna was taken from the real operating schedule, presented on-line in www.bdz.bg 

(Fig. 3).  

 
Fig. 3. The current schedule of trains between Sofia and Varna 

 
Following the rail schedule it has been identified 17 stops, which define the 

network structure with 17 nodes. The actual lines for bus transportation were taken 

from the Ministry of Transport, Information Technology and Communications, 

http://www.bdz.bg/
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which issues the licensees for bus transportation, publically available in 

http://rta.government.bg/index.php?page=scategories&scategory=otrts. 

All bus lines, which cross the rail lines of the direction Sofia-Varna, are included 

in the transportation network. The topology of the transportation network is created 

according to Fig.3 with initial node Sofia (number 1 or s) and final one – Varna 

(number 17 or t).  The upper lines of the network correspond to the links of rail 

transportation. The others are undertaken by the bus transport (Fig. 4).  

 
Fig. 4. Topology of the transportation network between Sofia and Varna 

 

The transport capacities of each link must be estimated. Because data for the 

passenger flows are not available, an alternative way for evaluation of the flow 

capacities of the links is suggested for this research. It has been taking into 

consideration the duration of the transportation per different links of the network. The 

customers prefer their travel to be faster. Thus, the smaller time for traveling between 

couple of nodes gives more preferences for traveling on this direction by the 

customers.  Additionally, the long travel time is a metric for low capacity for 

transportation per corresponding link. Thus, the transport capacities per link in the 

network are strongly related with the travel time per this link. For the current case, it 

has been chosen simple relation between the travel time tij per link and the flow 

capacity vij:  

(3)   vij = 1/ tij,    i, j ϵ N.  
Relation (3) can be complicated with additional considerations, for example 

costs of travel. To simplify the numerical evaluations, this research applies relation 

(3). The numerical evaluations use the schedule of the trains (Fig. 5). 

 

http://rta.government.bg/index.php?page=scategories&scategory=otrts
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Fig. 5. Schedule of trains Sofia-Varna 

 
The travel duration for the first two nodes in Fig. 5 – the link Sofia-Mezdra, is 

1 hour and 26 minutes (86 minutes, from 7:00 until 8:26). Using (3) the link capacity 

for transportation between these two nodes of the network is: 1/86 = 0.011 relative 

capacity units. Taking into account from Fig. 4 that 5 trains support this destination, 

the capacity for transportation on daily basis is: 5 trains × 0.011 = 0.055 relative 

capacity units. This evaluation considers that the total capacity value is a sum of the 

individual capacities, performed by the different trains, according to their schedule. 

Applying this manner of evaluation of the link capacity of daily trains schedule 

between Sofia and Varna, it has been identified the link capacities, given in Fig. 6. 

The first line presents the evaluated average capacity per link, used for rail travels 

and applied in the optimization problem.  

 

 
Fig. 6. Evaluation of the travel duration and capacities of links 

 
The evaluation of the link capacities supported by bus transportation uses data 

given by their time schedules. These data are public available and they are presented 

as EXCEL files, illustrated on Fig. 7. 
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Fig. 7. Example for a bus schedule 

 
For the case of Fig. 7 the bus schedule starts from Sofia but its destination differs 

from the final town Varna. Hence, the network links for this bus correspond only for 

the parts of the network, where the bus links cross the train links. For this case, this 

cross point is town of Popovo (line 3 on Fig. 7). This means that from Sofia to Popovo 

it exists two manners of transportations: by train and by bus. For the network 

topology, a link from Sofia to Popovo is added into the transport network, which is 

supported by the bus transport. The transport capacity of this link is: 5 hour and 18 

minutes or 318 minutes (from 13:30 until 18:48) or the link capacity is 1/318 relative 

units.  

By integration of all capacities, which are estimated for the links, supported by 

buses, the average transportation time per link is given graphically on Fig. 8. 

 

 
Fig. 8. Evaluation of the average travel time between nodes of the transportation network  

implemented by bus transport 

 
These average values were obtained considering 44 bus lines and schedules 

between nodes, corresponding to common stops both for rail and bus transportations. 

The final estimation of the transport network and the capacities per link are presented 

graphically on Fig. 9. 
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Fig. 9. Estimated link capacities 

5. Definition of the upper level optimization problem 

The analytical form of the maximal flow problem is (1). Following the network 

topology and the estimated parameters from Fig. 9, the analytical form of the “max-

flow problem” is defined as a linear optimization problem. For each node i,  

i=2, … ,16, of the network on Fig. 9 equilibrium relations for the flow continuity are 

defined. For nodes 1 (s) and 17 (t) the equilibrium equations contain the values of 

maximal flow fst, which is unknown value.   

Example for equilibrium relation for node 5: 

f4,5 + f1,5 – f5,6 = 0, fi,j is the flow between nodes i and j. 

Equilibrium relation for the source node s=1: 

f1,2+ f1,3+ f1,4+ f1,5 + f1,9 + f1,11 + f1,13 + f1,15 + f1,16 – fst = 0. 

Equilibrium relation for the destination node t= 17: 

f14,17 + f13,17 + f11,17 + f15,17 + f16,17 – fst = 0. 

The flows have to respect constraints for the capacities of the links: 

fi,j ≤ vi,j,   i, j=1, …, N. 
The goal function of the max-flow problem is maximization of the value fst:  

max
𝑓𝑠𝑡,𝑓𝑖𝑗𝑖,𝑗=1,𝑁

(𝑓𝑠𝑡). 

The optimization problem has 44 variables and 61 constraints, which contain 17 

constraints for flow equilibrium for each of the 17 nodes and 44 upper bounds 

constraints. The problem has been solved, applying a MATLAB function 

graphmaxflow(). The solution of the optimization problem is presented graphically 

on Fig. 10. 
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Fig. 10. Graphical presentation of “max-flow” problem solution 

 
To each link of the transport network a fraction numbers is given. The numerator 

presents the value of flow, which is a part of the max-flow, passing through this link. 

The denominator is the capacity of the link: 
numerator

denominator 
 =  

component of  max flow

capacity of  link
. 

The solution of problem (1) gives value of the maximal flow, which can be 

transmitted from node 1 to node 17 (from Sofia to Varna). The value of this flow is 

0.2485 relative flow units. Making comparisons for each link it can be identified, that 

the capacities of links between nodes 1-2, 2-3, supported by the rail are totally used 

by the components of the max flow. Hence, additional traffic between nodes 1 and 

17 is not possible to be allocated. Respectively, this result proves decisions for the 

rail authorities to increase the capacities of rail transportation per these directions. 

This can be done by increasing the frequency of schedules for trains for these 

directions. 

From Fig. 10 it is evident that a set of links supported by rail transportation are 

not used on their full capacities. This gives potential to redistribute the traffic flows 

by means to increase the rail utilization and to decrease the bus transport. Such policy 

can be implemented by definition and solution of additional optimization problem. 

The last will evaluate the cheapest flow distribution, taking into account the cost for 

rails lower than the cost for bus transportation. The flow distribution has to preserve 

capacity restrictions, defined in Fig. 9.  

The optimization problem, which has to be solved, has the form (2). The 

particular case is that this problem has to respect the value of the maximal flow, which 

is estimated by the solution of problem (1). The requirement for low cost distribution 

on rail links will give priority to the rail transportation. The integration of these two 

problems is performed by bi-level optimization model.  
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min
_

cost_flow_distribution ≡ 𝑓𝑖𝑗
∗ = 

 

6. Traffic flow distribution according to bi-level optimization model  

The bi-level optimization model follows the presentation of Fig. 6. The upper level 

problem evaluates the maximal flow, which can be transported between nodes 1  

and 17. The components of max-flow respect the capacity constraints of the links, 

estimated according to Fig. 9. As a result, the value of the maximal flow is passed as 

a parameter to the lower optimization problem (2), defined as minimal cost flow 

distribution. The costs are defined in a way to give priority to the rail transport.  

The minimal cost flow distribution problem evaluates the flows, which give 

preferences to the rail transport. These new values of flow distribution are passed to 

the upper optimization problem as new capacity restrictions for the max flow 

problem. The formal description of the bi-level problem is given in Fig. 11. 

 

max
_

flow_problem ≡ 𝑓𝑠𝑡
∗ = arg { max

𝑓𝑠𝑡,𝑓𝑖𝑗

𝑓𝑠𝑡)} 

∑ 𝑓𝑖𝑗 − ∑ 𝑓𝑗𝑖 =

𝑗 𝑖 

{

0, 𝑖 ≠ 𝑗

𝑓𝑠𝑡
∗, 𝑖 = 𝑠 = 1

−𝑓𝑠𝑡
∗, 𝑗 = 𝑡 = 𝑁 = 17

 

𝑓𝑖𝑗 ≤ 𝑣𝑖𝑗
∗ ,   ∀𝑖, 𝑗 ∈ 𝑁 = 17 

 

 

𝑓𝑠𝑡
∗                                    𝑣𝑖𝑗

∗ = 𝑓𝑖𝑗
∗ 

 

 

 

 

= arg {min
𝑓𝑖𝑗

[(𝑐𝑖𝑗,𝑓𝑖𝑗)𝑖,𝑗∈rail_transport + (𝑐𝑘𝑙,𝑓𝑥𝑙)𝑘,𝑙∈bus_transport] } 

∑ 𝑓𝑖𝑗 − ∑ 𝑓𝑗𝑖 =

𝑗 𝑖 

{

0, 𝑖 ≠ 𝑗

𝑓𝑠𝑡
∗, 𝑖 = 𝑠 = 1

−𝑓𝑠𝑡
∗, 𝑗 = 𝑡 = 𝑁 = 17

 

𝑓𝑖𝑗 ≤ 𝑣𝑖𝑗  

𝑐𝑖𝑗 < 𝑐𝑘𝑙,𝑣(𝑖, 𝑗), (𝑘, 𝑙) ∈ 𝑁 = 17, given cost parameters 

𝑣𝑖𝑗(𝑖, 𝑗) ∈ 𝑁, given initially estimated capacity values 

 
Fig. 11. Formal presentation of the bi-level problem 

 

The solution of the bi-level problem is performed in MATLAB environment. 

The special function solvebilevel(), developed under the framework of project 

YALMIP [32]  is applied. The bi-level solution is given on Fig. 12. 
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Fig. 12. Graphical solution of the bi-level problem 

 

The comparisons between the solutions of single optimization case on Fig. 10 

and the bi-level one from Fig. 12 demonstrate that the bi-level problem increases the 

usage of the rail transportation. For example: 

 Link (7-9) increase from 0.0948 to 1.061, which is the value of the available 

capacity of this link. Similar increases are met additionally for a set of rail-supported 

links. 

 Link (9-11) increase from 0.0993 to 0.1294, which is the value of the 

available capacity of this link. 

 Link (11-13) increase from 0.0623 to 0.1305, which is its maximal capacity. 

The increase of the rail network utilization is accompanied by decreasing the 

transportation flows of bus links. This decrease is performed on optimal way by the 

bi-level optimization model:  

 Link (1-4) decreases from 0.0861 to 0.0421. 

 Link (13-17) decreases from 0.2202 to 0.197. 

 Link (11-15) decreases from 0.0917 to 0.0512. 

However, the bi-level solution contains not only components with decreasing 

flows through links, operated by buses. For example, the flow distribution through 

link (11-16) increases from 0.0014 to 0.0118; link (15-16) also increase its flow from 

0.0289 to 0.0393. That is why the single and bi-level optimization models have to be 

assessed and compared under common evaluation criterion. This criterion has been 

defined taking into consideration that the common goal of the optimization models is 

to increase the utilization of the rail transportation between two points of the 

transportation network. That is why this research estimates both the maximal value 

of the traffic (the value of max flow) which can be transported through the network 

and the flow distribution of the max flow through the links of the network. The 

percentage of the max flow, which passes through links, operated by rail transport 

will be a criterion for assessment the benefit from the different optimization models. 

Hence, the model, which provides bigger part of the max flow for rail, is preferable 

for the management of the rail transport. 
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The comparisons and assessments between the single and bi-level optimization 

are evaluated quantitatively in a following way. The total capacity of the rail 

transportation is defined as a sum of all capacities of links, implemented by rail 

transport or 

TOTALrail=v1,2+v2,3+v3,4+v4,5+v5,6+v6,7+v7,8,9+v9,10,11+v11,12,13+v13,14+v14,17=0.8198  

[relative capacity]. 

The part of the max flow, which passes through the links, operated by rails are 

evaluated as 

Part_MAXF_LOWrail=f1,2+f2,3+f3,4+f4,5+f5,6+f6,7+f7,8,9+f9,10,11+f11,12,13+f13,14+f14,17 

[relative capacity]. 

The flow solution fi,j, i,j=1,…,N  for the single and bi-level optimization models 

are evaluated as 

Part_MAXF_LOWrail(single optimization)=0.6046, 

Part_MAXF_LOWrail(bi-level optimization) = 0.7357. 

The relative transportation of the components of the max flow for both models 

are: 
Part_MAXF_LOWrail(single optimization) 

TOTALrail
73.74%, 

Part_MAXF_LOWrail(bi-level optimization) 

TOTALrail
=89.74%. 

This comparison gives advantages for the application of the bi-level 

optimization models. The total value of the max flow is the same for both models, 

but the bi-level gives considerable priority for the utilization of the rail transport,  

Fig. 13.   
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Fig. 13. Comparisons and benefits from the bi-level optimization model 

 

These results prove that the bi-level optimization model gives additional 

benefits for the rail transport by maximization of the flow between two nodes of the 
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network and simultaneously providing priority to the rail transport by redirecting the 

flows to rail transport, which support low cost flow transport.  

7. Conclusions 

This research presents a new application of the bi-level formalism, modeling and 

optimization. It has been defined a real optimization problem which gives solutions 

increasing the exploitation and movement by rail transport. It gives formal basis for 

providing policies of transportation authorities to issue licensees for bus 

transportation. The formal model for increasing the rail transport founds on the 

integration of optimization problems for maximization of the transport flow between 

two points of the transport network. Additionally, advantages are given to the rail 

transport by applying the problem of flow distribution with minimal costs.  

Thus, the bi-level problem gives solution both for rail and bus transportation 

and takes into consideration requirements for improving and giving priority to rail in 

a common transportation network. The derived solutions additionally identify a set 

of weak points, where the rail infrastructure has to be improved by suggesting 

intensification of rail schedule per link. The parameters of the bi-level problems have 

been estimated according to the real transportation policy in Bulgaria. The peculiarity 

of this application of bi-level optimization is the exact definition of the hierarchical 

optimization problem, which give practical results despite the incomplete data of rail 

and buses transportation volumes. 

A perspective approach for improving the models and solutions by giving 

priority to rail transport could be the implementation of fuzzy models and soft 

computing [2, 25] and/or multi criteria optimization [24, 26] in a multilevel 

hierarchical problem. By increasing the levels of optimization and the formal content 

of the problems on different levels, one can expect additional benefits for the rail 

management. However, currently the modelling using multilevel computation meets 

practical difficulties because of the increase of the computational time, which 

constrains the application of the multi-level formalism in practical cases. 

 
Acknowledgement: This work is partly supported by two  projects: 134/20.6.2016 with the “BDZ 

Passenger Services”, Ltd, in Bulgaria and No ДФНП-98-А1/04.05.2016, Program for career 

development of young scientists, Bulgarian Academy of Sciences. 

R e f e r e n c e s 

1. A l l e n d e,  G. B.,  G. S t I l l. Solving Bi-Level Programs with the KKT-Approach. – Math. 

Program, Ser. A., Vol. 138, 2013, pp. 309-332. DOI 10.1007/s10107-012-0535-x. 

art%3A10.1007%2Fs10107-012-0535-x.pdf 

2. A n g e l o v a, V. Investigations in the Area of Soft Computing. Targeted State of the Art Report. – 

Cybernetics and Information Technologies, Vol. 9, 2009, No 1, pp. 18-24.  

http://www.cit.iit.bas.bg/CIT_09/v9-1/18-24.pdf 

3. B a r d,  J. F.  Coordination of Multi-Divisional Firm through Two Levels of Management. – Omega, 

Vol. 11, 1982, No 5, pp. 457-465. 

4. B a r d, J. F. Practical Bilevel Optimization: Algorithms and Applications. The Netherlands, Kluwer, 

1998. 

http://www.cit.iit.bas.bg/CIT_09/v9-1/18-24.pdf


 90 

5. C a l v e t e, H. I.,  C. G a l é,  M. O l i v e r o s. Bi-Level Model for Production Distribution Planning 

Solved by Using Ant Colony Optimization. – Computers and Operations Research, Vol. 38, 

2011, No 1, pp. 320-327. 

6. C e c c h i n i, M.,  J. E c k e r,  M. K u p f e r s c h m i d,  R. L e i t c h. Solving Nonlinear 

Principalagent Problems Using Bilevel Programming. – European Journal of Operational 

Research, Vol. 230, 2013, No 2, pp. 364-373. 

7. C o l s o n, B., P. M a r c o t t e, G. S a v a r d. An Overview of Bi-Level Optimization. – Annals of 

Operational Research, Vol. 153, 2007, pp. 235-256. 

8. D e m p e, S. Annotated Bibliography on Bilevel Programming and Mathematical Programs with 

Equilibrium Constraints. – Optimization, Vol. 52, 2003, No 3, pp. 339-359. 

9. D e m p e, S., V. V. K a l a s h n i k o v, G. A. P é r e z-V a l d é s, N. K a l a s h n y k o v a. Natural 

Gas Bi-Level Cash-Out Problem: Convergence of a Penalty Function Method. – European 

Journal of Operational Research, Vol. 215, 2011, No 3, pp. 532-538. 

10. F a m p a, M., L. B a r r o s o, D. C a n d a l, L. S i i m o n e t t i. Bi-Level Optimization Applied to 

Strategic Pricing in Competitive Electricity Markets. – Computational Optimization and 

Applications, Vol. 39, 2008, No 2, pp.121-142. 

11. F a n g, S.,  P. G u o,  M. L i,  L. Z h a n g. Bi-Level Multi-Objective Programming Applied to Water 

Resources Allocation. – Mathematical Problems in Engineering, Vol. 2013, 2013, Article ID 

837919. 9 p. 

12. F o r d, L. R. Jr.,  D. R. F u l k e r s o n. Maximal Flow through a Network. – Canadian Journal of 

Mathematics, Vol. 8, 1956,  pp. 399-404. DOI:10.4153/cjm-1956-045-5, MR 0079251 

13. G o m o r y, R. E., T. C. H u. Multi-Terminal Network Flows. – Journal of the Society for Industrial 

and Applied Mathematics, Vol. 9, December 1961, No 4, pp. 551-570. 

14. H a r r i s, T. E., F. S. R o s s. Fundamentals of a Method for Evaluating Rail Net Capacities. (U), 

RM-1 573, 24 October, 1955. 

15. H o, H. W., S. C. W o n g. Housing Allocation Problem in a Continuum Transportation System. – 

Transportmetrica, Vol. 3, 2007, No 1, pp. 21-39. 

16. K a l a s h n i k o v,  V.,  S. D e m p e,  G. A. P é r e z-V a l d é s,   N. K a l a s h n y k o v a,  J.  F.  

C a m a c h o-V a l l e j o.  Bilevel Programming and Applications. Review Article. – 

Mathematical Problems in Engineering, Vol. 2015, 2015, Article ID 310301. 16 p. 

http://dx.doi.org/10.1155/2015/310301  

17. K a r a, B. Y.,  V. V e r t e r.  Designing a Road Network for Hazardous Materials Transportation. – 

Transportation Science, Vol. 38, 2004, pp. 188-196. 

18. K h e i r k h a h, A., N. H a m i d  R e z a, M. B. M a s u m e. A Bi-Level Network Interdiction 

Model for Solving the Hazmat Routing Problem. – Special Issue: Transportation in Supply 

Chain Management, Vol. 54, 2016, Issue 2, pp. 459-471.  

http://dx.doi.org/10.1080/00207543.2015.1084061  
19. K k a y d i n, H a n d e,  N e c a t i  A r a s,  I.  K u b a n  A l t n e l. Competitive Facility Location 

Problem with Attractiveness Adjustment of the Follower: A Bilevel Programming Model and 

Its Solution. – European Journal of Operational Research, Vol. 208, 2011, No 3, pp. 206-220. 

20. K o v a c e v i c, R.,  G. Ch. P f l u g. Electricity Swing Option Pricing by Stochastic Bilevel 

Optimization: A Survey and New Approaches. – European Journal of Operational Research, 

Vol. 237, 2014, Issue 2, pp. 389-403. 

21. K ü c ü k a y d i n, H.,  N. A r a s, I. K. A l t i n e l. Competitive Facility Location Problem with 

Attractiveness Adjustment of the Follower: A Bi-Level Programming Model and Its Solution. 

– European Journal of Operational Research, Vol. 208, 2011, No 3, pp. 206-220. 

22. M o r t o n, D.,  F. P a n,  K. S a e g e r. Models for Nuclear Smuggling Interdiction. – IIE 

Transactions, Vol. 39, 2007, No 1, pp. 3-14. 

23. O u t r a t a, J.,  M. K o c v a r a. Effective Reformulations of the Truss Topology Design Problem. 

– Optimization and Engineering, Vol. 7, 2006, pp. 201-219. 

24. P e n e v a V., I. P o p c h e v. Multicriteria Decision Making Based on Fuzzy Relations. – Cybernetics 

and Information Technologies, Vol. 8, 2008, No 4, pp. 3-12. 

25. P e n e v a, V., I. P o p c h e v. Multicriteria Decision Making by Fuzzy Relations and Weighting 

Functions for the Criteria. – Cybernetics and Information Technologies, Vol. 9, 2009, No 4, 

pp. 58-41. 

http://www.cs.yale.edu/homes/lans/readings/routing/ford-max_flow-1956.pdf
https://en.wikipedia.org/wiki/Digital_object_identifier
https://dx.doi.org/10.4153%2Fcjm-1956-045-5
https://en.wikipedia.org/wiki/Mathematical_Reviews
https://www.ams.org/mathscinet-getitem?mr=0079251
http://www.tandfonline.com/author/Kheirkhah%2C+Amirsaman
http://www.tandfonline.com/author/Navidi%2C+HamidReza
http://www.tandfonline.com/author/Messi+Bidgoli%2C+Masume
http://www.tandfonline.com/toc/tprs20/54/2
http://dx.doi.org/10.1080/00207543.2015.1084061


 91 

26. R a d e v a, I. Multicriteria Models for Clusters Design. – Cybernetics and Information Technologies, 

Vol. 13, 2013, No 1, pp. 18-33.  

http://www.cit.iit.bas.bg/CIT_2013/v13-1/Radeva.pdf 

27. S c h r i j v e r, A. On the History of the Transportation and Maximum Flow Problems. – Documenta 

Mathematica, Extra Volume ISMP, 2012, pp. 169-180.  

http://www.math.uiuc.edu/documenta/vol-ismp/33_schrijver-alexander-tmf.pdf 

28. S t o i l o v, T.,  K. S t o i l o v a,  M. P a p a g e o r g i o u,  I. P a p a m i c h a i l. Bi-Level 

Optimization in a  Transport Network. – Cybernetics and Information Technologies, Vol. 15, 

2015, No 5, pp. 37-49. 

29. S t o i l o v a, K.,  T. S t o i l o v,  K. N i k o l o v. Autonomic Properties in Traffic Control. – 

Cybernetics and Information Technologies, Vol. 13, 2013, No 4, pp. 18-32. 

30. S u n, H., Z. G a o,  J. W u. A Bi-Level Programming Model and Solution Algorithm for the Location 

of Logistics Distribution Centers. – Applied Mathematical Modelling, Vol. 32, 2008, No 4,  

pp. 610-616. 

31. V i c e n t e, L. N.,  P. H. C a l a m a i. Bilevel and Multilevel Programming: A Bibliography Review. 

– Journal of Global Optimization, Vol. 5, 2004, No 3, pp. 291-306. 

32. W a n g, F. J.,  J. P e r i a u x. Multi-Point Optimization Using Gas and Nash/Stackelberg Games for 

High Lift Multi-Airfoil Design in Aerodynamics. – In: Proc. of Congress on Evolutionary 

Computation (CEC’2001), 2001, pp. 552-559. 

33. X u, J.,  Y. T u,  Z. Z e n g. Bi-Level Optimization of Regional Water Resources Allocation Problem 

under Fuzzy Random Environment. – Journal of Water Resources Planning and Management, 

Vol. 139, 2013, No 3, pp. 246-264.  

34. https://yalmip.github.io/command/solvebilevel/   


