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Abstract: As a metaheuristic, Particle Swarm Optimization (PSO) has been used to 

solve the Bi-level Multiobjective Programming Problem (BMPP). However, in the 

existing solving approach based on PSO for the BMPP, the upper level and the lower 

level problem are solved interactively by PSO. In this paper, we present a different 

solving approach based on PSO for the BMPP. Firstly, we replace the lower level 

problem of the BMPP with Kuhn-Tucker optimality conditions and adopt the 

perturbed Fischer-Burmeister function to smooth the complementary conditions. 

After that, we adopt PSO approach to solve the smoothed multiobjective 

programming problem. Numerical results show that our solving approach can obtain 

the Pareto optimal front of the BMPP efficiently. 

Keywords: Bi-level multiobjective programming problem, scalarization method, 

optimality conditions, smoothing method, particle swarm optimization. 

1. Introduction 

Bi-level programming problem is a nested optimization problem, which is 

characterized by the existence of two optimization problems in which the constraint 

region of the upper level optimization problem (the leader) contains another 

optimization problem called the lower level optimization problem (the follower)[1]. 

As a powerful tool to describe the hierarchy existing in the real life problem, bi-level 

programming has been applied wildly in such areas as transportation systems [2], 

inverse optimization value problem [3], transportation network design [4], etc. 

Meanwhile, the wide application of the bi-level programming drives more and more 

researchers to devote to this promising field. In fact, in the last two decades, many 

papers have been published both from the theoretical and computational points of 

view (see the monographs of D e m p e  [1] and the reviews by D e m p e  and 
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Z e m k o h o  [5], S i n h a, M a l o  and D e b  [6], and C o l s o n, M a r c o t t e  and 

S a v a r d  [7]). 

Bi-level Multiobjective Programming Problem (BMPP), where the leader, the 

follower, or the both have multiple conflicting objectives, has successively drawn the 

researchers’ attention both from the theoretical and computational points of view. 

Here, we can roughly classify the feasible algorithms for the BMPP into two types. 

The first one is the traditional numerical approach and the second one is the 

evolutionary approach. 

Focusing on the traditional numerical approach for the linear BMPP in which 

both the leader and the follower have multiple objectives, N i s h i z a k i  and 

S a k a w a  [8] give the three optimal solution definitions. They propose a feasible 

algorithm based on K-th best algorithm for the linear bi-level single objective 

programming problem. For the given lower level objective weights, L v  [9] replaces 

the lower level optimization problem with its optimality conditions and constructs a 

multiobjective penalized optimization problem. Then, an exact penalized function 

approach is proposed and some numerical results are reported; subsequently, 

following the outline in [9] and regarding the lower level objective weights as the 

upper level decision variables, L v  and W a n  [10] propose another exact penalty 

function approach. For the linear BMPP, where the leader has single objective and 

the follower has multiple objectives, A n k h i l i  and M a n s o u r i  [11] take the 

margin function of the lower level problem as the penalty term, and construct the 

corresponding penalized problem. Then, an exact penalty function algorithm is 

proposed for the above BMPP. For the linear BMPP, where the leader has multiple 

objectives and the follower has single objective, C a l v e t e  and G a l e  [12] prove 

the existence of the weakly efficient solution and the efficient solution under the 

condition that the constraint region is not empty, then present the frameworks of some 

feasible algorithms. However, no numerical results are reported. In additions, for a 

class of BMPP, where the lower level is a convex vector-programming problem, L v  

and W a n  [13] adopt the method of replacing the lower level problem with its 

optimality conditions, after that smooth the complementary conditions with some 

smoothing function. Then, a smoothing approach is proposed. It deserves pointing 

out that the main drawback of the traditional numerical approach for the BMPP is 

that only someone (weakly) efficient solution can be obtained. A recent study by 

E i c h f e l d e r  [14] suggests a refinement-based strategy in which the algorithm 

starts with a uniformly distributed set of points on upper level variable, and some 

(weakly) efficient solutions can be obtained.  

Evolutionary approach, which can obtain the (weakly) efficient solutions for the 

multiobjective programming problem efficiently, has been widely applied to solve 

BMPP. D e b  and S i n h a  [15] as well as S i n h a  and D e b  [16] discuss BMPP 

based on evolutionary multiobjective optimization principles. Based on the above 

studies, D e b  and S i n h a  [17] propose a viable and hybrid evolutionary-local-

search based algorithm, and present challenging test problems. S i n h a  [18] presents 

a progressively interactive evolutionary multiobjective optimization method for bi-

level multiobjective programming problem. 
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It is noted that as a metaheuristic, Particle Swarm Optimization (PSO) [19] has 

proved to be a competitive algorithm for optimization problems compared with other 

algorithms such as Genetic Algorithm (GA) and Simulating Algorithm (SA). It can 

converge to the optimal solution rapidly. Z h a n g  et al. [20] use some improved PSO 

algorithms to solve BMPP. Subsequently, Z h a n g  et al. [21] propose a hybrid 

particle swarm optimization with crossover operator for some high dimensional 

BMPP. Then, some numerical results are presented to illustrate the superiority of the 

improved PSO. It is noted that in the above references on solving bi-level 

multiobjective programming problem using PSO approach, the model of the upper 

and lower level solving their own problems interactively is adopted. 

In this paper, based on our previous work [13], we will adopt a different tack 

from the existing PSO approach for the BMPP. Our strategy can be outlined as 

follows. For a class of BMPP, where the lower level is a convex vector optimization 

problem, we replace the lower level problem with its optimality conditions. After 

that, we smooth the complementary conditions with some smoothing function and 

obtain the corresponding smoothed multiobjective programming problem. Then, a 

particle swarm optimization approach is proposed to solve the smoothed 

multiobjective programming problem and the approximate efficient solutions for the 

BMPP are obtained.  

This paper is organized as follows. In the following Section 2, we firstly 

introduce the mathematical model and some basic definitions of the efficient 

solutions of the bi-level multiobjective programs. In addition, the smoothing method 

for the BMPP, which we obtain in our previous work [13], is introduced. A particle 

swarm optimization approach for the smoothed multiobjective programming problem 

is proposed in Section 3. In Section 4, we report some numerical results to illustrate 

the PSO approach. Finally, we conclude this paper with some remarks. 

2. Bi-level multiobjective programming and smoothing method 

The bi-level multiobjective programming problem considered in this paper can be 

formulated as: 

(1)   ( , )
min ( , ),

s.t. ( ),

x y
F x y

y S x
 

where )(xS  denotes the efficient solution set of the following lower level 

optimization problem, 

(2)   
( ) min ( , ),

s.t. ( , ) 0,

x
y

P f x y

g x y 
 

and 
nRx , 

mRy , and 
pmn RRF : , : n m qf R R  , 

lmn RRg : are 

continuously differentiable functions.  

To facilitate the discussion, we also introduce the following notations, which is 

presented in our previous work [13]. Let  0),(:),(  yxgyxS  denote the 
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constraint region of problem (1),  0),(,:  yxgRyRxS mm

y  denote the 

projection of S  onto the leader’s decision space. In additions, let ),( yxI  denote the 

set of the active constraints, i.e., 

(3)    liyxgiyxI i ,,1,0),(::),(  . 

Definition 2.1. A point ),( yx  is feasible to problem (1) if Syx ),( , and 

)(xSy . 

Definition 2.2. A point *)*,( yx is a Pareto optimal solution to problem (1) if it 

is feasible and there exists no other feasible point ),( yx , such that

*)*,(),( yxFyxF   and *)*,(),( yxFyxF  . 

Through this paper, we make the following assumptions: 

)( 1A  The constraint region S is nonempty and compact. 

)( 2A  For each given upper level variable x , the lower level problem )( xP  is a 

convex vector optimization problem, and the partial gradient ),( yxgiy , 

),( yxIi , is linear independent. 

Assumption )( 1A  guarantees that the feasible region of problem (1) is 

nonempty, and assumption )( 2A  can make us adopt some scalarization method to 

transform the lower level problem into the corresponding scalar optimization problem 

[13]. That is, based on assumption )( 2A , we can transform problem (1) into the 

following bi-level multiobjective programming problem, where the lower level is a 

scalar optimization problem [13], 

(4)    

( , , )

1

min ( , ),

s.t. 1,

0,

min , ( , ) ,

s.t. ( , ) 0.

x y

q

i
i

y

F x y

f x y

g x y

















 

Let ( , )x   denote the optimal solution set of the lower level problem in 

problem (2). On the relationships between the Pareto optimal solutions of problem 

(2) and that of the original problem (1), we have the following result. 

Theorem 2.1 [13]. Let 
_ _

( , )x y  be a Pareto optimal solution of problem (1). Then 

for all 
_

1

: , 1
q

q

i

i

R   



 
    

 
 , the point 

_ _ _

( , , )x y   is a Pareto optimal 

solution of problem (2). Conversely, if the point 
_ _ _

( , , )x y   is a Pareto optimal solution 

of problem (2), then 
_ _

( , )x y  is a Pareto optimal solution of problem (1). 
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Going one step further to the problem (2), we replace the lower level scalar 

optimization problem with its Kuhn-Tucker optimality conditions [13], and problem 

(2) can be reduced as the following multiobjective programming problem with 

complementary conditions: 

(5)    

( , , , )

1

1

T

min ( , ),

s.t. 1,

, ( , ) ( , ) 0,

( , ) 0,

( , ) 0,

0, 0,

x y u

q

i
i

l

y j y j
j

F x y

f x y u g x y

u g x y

g x y

u















   





 

 

where the term 
lRu  is the Lagrangian multiplier.  

To facilitate the depiction, we also adopt the following notations [13]. Let

1 : n m q l mH R R    , 
2 : n m q l lH R R    , 

3 : n m q l lH R R    , 
4 : n m q lH R R    , 

5 : n m q l qH R R    , which is defined as: 

(6)   

1 1

1

2 2

3 3

4 4

1

5 5

( ) : ( , , , ) : , ( , ),

( ) : ( , , , ) : ( , ),

( ) : ( , , , ) : ,

( ) : ( , , , ) : 1,

( ) : ( , , , ) : .

l

y j y j

j

q

i

i

H w H x y u f u g x y

H w H x y u g x y

H w H x y u u

H w H x y u

H w H x y u

 





 

 





    

 

 

  

 





 

Based on the above notations (4), problem (3) can be rewritten as: 

(7)   

1

2 3

2

3

4

5

min ( ),

s.t. ( ) 0,

( ), ( ) 0,

( ) 0,

( ) 0,

( ) 0,

( ) 0.

F w

H w

H w H w

H w

H w

H w

H w













 

Let *w be a feasible point to problem (5), we also define the following index set: 
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(8)   

 

 

 

 

2 3

2 3

2 3

5

( *) : ( *) 0, ( *) 0, 1, , ,

( *) : ( *) ( *) 0, 1, , ,

( *) : ( *) 0, ( *) 0, 1, , ,

( *) : ( *) 0, 1, , .

i i

i i

i i

i

w i H w H w i l

w i H w H w i l

w i H w H w i l

w i H w i q

 

 

 

 

    

    

    

   

 

In the following context, the following assumption is satisfied. 

3( )A  Let *w  is feasible to problem (5), the gradient vectors 
1 ( 1, , ),iH i m   

2 ( )iH i     , 
3 ( )iH i     , 

4H ,
5 ( )iH i    are linearly independent. 

It is known that problem (5) is a nonsmooth multiobjective problem. In addition, 

in our previous work [13], to overcome the nonsmooth of problem (5), we adopt the 

following so-called perturbed Fischer-Burmeister function RRR  

2: , which 

has the formulation 

(9)     22),,( bababa  

to smooth problem (5). Moreover, the perturbed Fischer-Burmeister function 

),,(  ba  has the property ( , , ) 0 0, 0, .
2

a b a b ab


        

Based on the perturbed Fischer-Burmeister function (7), we can smooth the 

complementary conditions 2 3( ), ( ) 0H w H w   in problem (5) as follows: 

(10)   
2 2

3 2 2 3( ) ( ) ( ) ( ) 0, 1, , .i i i iH w H w H w H w i l       

Then for every 0   we can obtain the following smooth multiobjective 

programming problem: 

(11)    

1

2 2

3 2 2 3

4

5

min ( ),

s.t. ( ) 0,

( ) ( ) ( ) ( ) 0, 1, , ,

( ) 0,

( ) 0.

i i i i

F w

H w

H w H w H w H w i l

H w

H w





     





 

On the relationships between the Pareto optimal solutions of the smoothed 

problem (9) and that of problem (5), we have the following result in our previous 

work [13]. 

Theorem 2.2 [13]. Let w
 be a Pareto optimal solution of problem (9) and 

suppose that 
_

w w   as 0  , and the assumption 3( )A  holds at 
_

w . Then w
 is 

a KKT point of problem (9) with multiplier ( , , , )u v     ; Moreover, if 

' ' ' '( , , , ) ( , , , )u v u v        as 0  , then
_ _

( , )x y  is a Pareto optimal 

solution to problem (1). 
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Based on Theorem 2.2, the nonsmooth multiobjective programming problem (5) 

can be progressively approximated by a sequence of smooth multiobjective 

programming problem (9). That means we can obtain the approximate Pareto optimal 

solution of problem (5) by solving problem (9). In fact, in our previous work [13], 

we adopt the numerical approach, such as -constraint approach, to solve problem (9) 

and obtain some Pareto optimal solution of the original problem (1). Here, we 

consider adopting PSO approach to solve problem (9), and obtain the Pareto optimal 

front of problem (1). 

3. Particle swarm optimization for problem (9) 

3.1. Overview of the PSO algorithm 

Particle Swarm Optimization (PSO) is a kind of evolutionary algorithm, which has 

been widely studied in recent years. It is first proposed by K e n n e d y  and 

E b e r h a r t  [19] in 1995 and successfully applied to the optimization problem, and 

then it has been effectively extended to some other aspects. 

In PSO, the population is referred as a swarm and the individuals are called 

particles. Like other evolutionary algorithms, PSO performs searches using a 

population of individuals that are updated from iteration to iteration. To find the 

optimal or approximately optimal solution, each particle changes its searching 

direction according to two factors, its own best previous experience and the best 

experience of the entire swarm in the past. In the process of searching optimal 

solution, each particle changes its velocity and position according to the following 

formulas: 

(12)   
1 1 1 2 2

1 1

( ) ( ),

,

t t t t g t

t t t

v w v c r P x c r P x

x x v



 

       

 
 

where 1r  and 2r  are random numbers in (0, 1); w  is the inertia weight; 1c , 2c  are 

acceleration factors, which are the positive constant parameters; tP  is the personal 

best position for a particle; 
gP  is the global best position in the entire swarm. If the 

search space is D-dimensional, the velocity and position are represented as 

),,,( 321 tDtttt vvvvv  , ),,,( 321 tDtttt xxxxx  , and the same with

),,,( 321 tDtttt PPPPP  , ),,,( 321 gDgggg PPPPP  . 

3.2. The algorithm for solving multiobjective problem (9) 

As mentioned above, we can obtain the approximate Pareto optimal solution of the 

original problem (1) by solving the smoothed multiobjective programming problem 

(9). In addition, in the following contents, we use PSO to solve problem (9).  
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Definition 3.1. Let next

dw  and last

dw  be the next and the last adjacent particles of 

the d-th particle dw , respectively. The crowding distance of the d-th individual 

particle dw  is definied as 

(13)   

next last

max min

1

( ) ( )
,

p

m d m d
d

m mm

F w F w

F F








∑  

where p is the number of the objectives in problem (9); next( )m dF w , last( )m dF w  and 

)( dm wF  are respectively the fitness values of m-th objective in problem (9); 
max

mF  

and 
min

mF  are the maximum and minimum values of the m-th objective, respectively. 

The crowding distance is introduced as the index to judge the distance between 

the particle and the adjacent particle, and it reflects the congestion degree of no 

dominated solutions. In the population, the larger the crowding distance, the sparser 

and more uniform. 

Definition 3.2. The infeasibility threshold   is defined as 

(14)   
0 (1 5 / 4 ), 0.8 ,

0, 0.8 ,

t N t N

t N




  
 


 

where 0  is an initial value allowed by constraint violation degree, t  is the current 

evolution generation, and N  is the maximal evolution generation. 

From the above formula (11), we can know that the infeasibility threshold   

decreases with the increase of the evolution generation. 

Definition 3.3. The degree of the individual particle violating the constraints in 

problem (9) is defined as 

5 1

1 1

2 2

3 2 2 3 4

1

( ) max( ( ),0) max( ( ) ,0)

max( ( ) ( ) ( ) ( ) ,0) max( ( ) ,0).

q m

d i d j d

i j

l

d d d d d

C w H w H w

H w H w H w H w H w   




  

 



   

       

 



where   is the tolerance of the equation constraints, which reflects the degree of the 

strictness on the equation constraints. 

We firstly outline the PSO approach for the multiobjective programming 

problem. In the feasible solution space, we uniformly and randomly initialize the 

particle swarms and select the no dominated solution particles consisting of the elite 

set. After that by the methods of congestion degree choosing (the congestion degree 

can make the particles distribution more sparse) and the dynamic   infeasibility 

dominating the constraints, we remove the no dominated particles in the elite set. 

Then, the objectives can be approximated.  

The details of the proposed PSO algorithm for problem (9) can be described as 

follows.  

Proposed PSO Algorithm 
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Step 1. Give the particle population size M (including the position x  and the 

velocity v ) and the maximal evolution generation N. Select the initial infeasibility 

threshold 0 , and let 0t  . 

Step 2. Update each particle in the particle group: 

Step 2.1. Archive the no dominated solutions of the particle swarm in the 

external elite set and calculate the congestion distance and the degree of the 

individual particle violating the constraints )(wC  on each nondominated solution in 

the external elite set. The distances are made in descending order. Then randomly 

select one particle as the global optimal position Pg from the archived elite set. 

Step 2.2. Update the velocity and position of the particle by the Formula (10). 

If the position of a particle exceeds the preset boundary, the position of the particle 

is equal to its boundary value and its velocity is multiplied by “–1” to search the 

particle in the opposite direction. 

Step 3. Update the external elitist set: Compare the updated nondominated 

solutions of the particle swarm with the nondominated solutions in the external elites, 

and decide whether the nondominated solutions in the particle swarm should be 

archived in the external elite set. If the solution in the particle swarm satisfies the 

domination relation, it needs to judge whether the external elitist set is full: if it is not 

full, the nondominated solution is archived directly; otherwise, the following steps 

are adopted: 

Step 3.1. Archive all nondominated solutions of the external elite set in 

descending order according to the congestion distance. 

Step 3.2. Randomly pick a particle in the M particles of the sorted set and replace 

it with the particle that needs to be archived. 

Step 4. Update the local optimal position of the particle: 

Step 4.1. Update the global optimum position if the position of the particle 

updated dominates its historical optimal position. 

Step 4.2. If the updated particle position does not dominate its historical 

optimum position, according to 50% chance to retain its best position in history. 

When the degree of all the particles in the nondominated set violating the constraints 

)(wC  is zero, the algorithm terminates and we get the approximate Pareto optimal 

solutions *w  and the values ( *)F w . Otherwise, go to Step 5. 

Step 5. If t N  we get the approximate Pareto optimal solutions *w  and the 

values ( *)F w . Otherwise, set 1t t  , and go to Step 2. 

4. Numerical results 

The Generational Distance (GD) is an indicator to estimate the average distance 

between the obtained optimal Pareto solutions and the theoretical optimal solutions. 

It can be defined as 

1GD ,

N

ii
d

N
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where N is the number of the obtained optimal solutions and id  is the Euclidean 

distance in objective space between each of the founded optimal solutions and the 

nearest member of the theoretical optimal solution set. It is obvious that GD 0  

means the all the founded optimal solutions belong to the theoretical optimal solution 

set. 

SPacing (SP) is an indicator to describe the distribution uniformity of the 

obtained Pareto solutions. It can be defined as 
2

E

1 1

E

1

( )
SP ,

M n

m im i

M

mm

d d d

d nd

 



 




 

  

where 
1 1 2 2min ( ( , ) ( , ) ( , ) ( , ) , ( , 1,2, , )i j i i

i jd F x y F x y F x y F x y i j n     ; 

d  is the mean of all id ; 
E

md  is the Euclidean distance between the extreme solutions 

in the obtained Pareto optimal solution set and the theoretical Pareto optimal solution 

set on the m-th objective; M  is the number of the upper level objective function; n  

is the number of the obtained solutions. It is obvious that SP 0  means that all the 

obtained Pareto solutions distribute evenly in objective space. 

To verify the feasibility and effectiveness of the above PSO approach for the bi-

level multiobjective programming problem, we give some numerical results. The 

perturbed Fischer-Burmeister function parameter 0.01   and the PSO parameters 

are set as follows: 0.7w   and 1 2 1.5c c  . We make the programs and use a 

personal computer (CPU: Intel Pentium 2.26 GHZ, RAM:1G) to execute the 

programs. 

Example 1. This example is taken from [22], where , .x R y R   The particle 

population size and the maximal evolution generation for the above example are 

respectively set as 100, 50M N  , 

(15)    

2 T

2 T

max ( 2 , ) ,

s.t. 0 15,

max ( , 2 ) ,

s.t. 0,

2 4,

2 33,

0.

x

y

x y x y

x

x y x y

x y

x y

x y

y

  

 

 

  

 

 



 

For Example 1, in [22] the authors discuss two decision mechanisms: semi-

cooperation decision mechanism and pure-independence, two solutions

( , ) (15,0), and ( , ) (15,8)x y x y   are founded. Fig. 1 shows the two solutions and 

the Pareto optimal front by our PSO for Example 1. It can be seem that the solution 



 69 

(15, 8) is not in the theoretical optimal solution set and the optimal solutions we found 

can integrally describe the Pareto optimal front. 

 

Fig. 1. The obtained Pareto optimal front of Example 1 

Example 2. This example is taken from [23], where , ,x R y R   and we set 

the particle population size and the maximal evolution generation as

100, 50M N  . 

(16)   

Tmax ( 4 , 2 ) ,

s.t. 0 3,

max ( , 2 ),

s.t. 3,

2 4,

2 12,

3 2 4,

0.

x

y

x y x y

x

y y

x y

x y

x y

x y

y

   

 

 

   

  

 

   



 

For Example 2, in [23], the authors use a fuzzy interactive method and five 

optimal solutions with different satisfactoriness of the upper level decision maker are 

founded. Fig. 2 shows the Pareto optimal front by our PSO in Example 3. It can be 

seem that the optimal solutions we found can integrally describe the Pareto optimal 

front, and the optimal solutions in [23] are included. 
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Fig. 2. The obtained Pareto optimal front of Example 2 

Example 3. This example is taken from [24], where , ,x R y R   and we set 

the particle population size and the maximal evolution generation as 

200, 50,M N   

(17)   

2 2 T

2 T

min ( , ( 10) ) ,

s.t. 0 15,

min ( , ( 30)) ,

s.t. 0,

0 15.

x

y

x y x y

x

y y x

y x

y

   

 



 

 

 

 

    Fig. 3. The obtained Pareto optimal front of Example 3 
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Fig. 3 shows the Pareto optimal front of Example 3. In [20], the authors have 

also presented a PSO method for BMPP, in which the BMPP is transformed to solve 

many multiobjective optimization problems in the upper level and the lower level 

interactively with a predefined count.  

 

 

Fig. 4. The theoretical Pareto optimal front of Example 3 and the obtained upper level Pareto optimal 

fronts while 
*x varies 

Fig. 4 shows the theoretical Pareto optimal front of Example 3 and three 

obtained upper level Pareto optimal fronts with different upper decision variable 
*x . 

It can be seen that each of the three obtained upper level Pareto optimal fronts has 

only one intersection with the theoretical Pareto optimal front of Example 3. This 

PSO method has to solve a series of multiobjective optimization problems in the 

upper level to find all theoretical optimal solutions. 

Example 4. This example is taken from [25], where ,x R y R   and we set 

the particle population size and the maximal evolution generation as  

200, 50,M N   

(18)   

2 2 T

2 2 T

min ( ,( 10) ) ,

s.t. 0,

0 15,

min (( 2 30) , 0.5 ) ,

s.t. 0 15.

x

y

x y

x y

x

x y x y

y
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Fig. 5 shows the obtained Pareto front by the PSO method in [20] and our PSO 

for Example 4, it can be seen that both the two obtained Pareto optimal fronts are 

very close to the theoretical Pareto optimal front. 

To highlight the advantage of our PSO, a series of contrast numerical 

experiments between our PSO and the PSO method in [20] are conducted. In order 

to eliminate the difference of each experiment, we executed both the two algorithms 

for 50 times for each example. Table 1 shows the comparison of results between the 

two algorithms considering the two indicators previously described and the execution 

time (ET, in seconds). Considering the generation distance and the spacing, it can be 

seen that our PSO performs better than the PSO method in [20] except for example 

2, in which the performance of our PSO is slightly worse. However, our PSO is much 

more efficient with respect to the execution time. 

 
Fig. 5. The obtained Pareto optimal front of Example 4 

Table 1. Results of the General Distance (GD), SPacing (SP) and Execution Time (ET) for the four 

examples 

Example  

GD SP ET(s) 

PSO  

in [20] 

Our  

PSO 

PSO  

in [20] 

Our  

PSO 

PSO  

in [20] 

Our  

PSO 

Example 1 

Max 3.27×10–4 4.27×10–4 1.48×10–1 2.89×10–1 1089.26 62.65 

Min 2.69×10–4 9.87×10–5 6.13×10–2 4.78×10–2 676.54 49.14 

Average 3.12×10–4 2.07×10–4 7.78×10–2 6.74×10–2 745.26 55.47 

Example 2 

Max 4.23×10–4 1.04×10–2 2.11×10–2 6.49×10–2 1447.03 117.78 

Min 8.71×10–5 4.49×10–3 7.46×10–3 3.32×10–2 864.54 87.54 

Average 3.47×10–4 5.56×10–3 1.55×10–2 4.15×10–2 1078.30 91.13 

Example 3 

Max 2.04×10–4 1.44×10–4 1.22×10–3 3.77×10–3 454.44 57.54 

Min 6.77×10–5 6.41×10–5 4.37×10–3 9.89×10–4 273.97 39.56 

Average 9.43×10–5 8.55×10–5 2.02×10–3 1.97×10–3 329.44 51.77 

Example 4 

Max 7.59×10–5 5.44×10–5 2.17×10–3 4.33×10–3 459.63 62.23 

Min 3.81×10–5 2.26×10–5 9.49×10–4 9.49×10–4 212.26 40.48 

Average 5.01×10–5 4.89×10–5 1.57×10–3 1.35×10–3 287.91 47.71 
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5. Conclusions 

In this paper, we propose a different solving approach for the BMPP based on PSO. 

The main difference of the solving approach proposed here comparing to that in the 

existing references is that we only need to solve the corresponding smoothed 

multiobjective programming problem to obtain the Pareto optimal front of the BMPP. 

The numerical results prove that our PSO is a high efficiency and accurate method.  

It is noted that in our solving approach based on PSO for the BMPP, we just 

adopt the original PSO algorithm. In recent years, the PSO algorithm is applied in 

many fields such as social network [26], neural networks optimization [27], reservoir 

operation [28], etc. The researchers have proposed some modified PSO algorithms 

[29] and combinatorial PSO algorithms [30] for the optimization problem. Our future 

work will be to lead these modified PSO approaches into our solving approach. 
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