
 59

BULGARIAN ACADEMY OF SCIENCES

CYBERNETICS AND INFORMATION TECHNOLOGIES  Volume 17, No 3

Sofia  2017 Print ISSN: 1311-9702; Online ISSN: 1314-4081

DOI: 10.1515/cait-2017-0030

Particle Swarm Optimization Based on Smoothing Approach for

Solving a Class of Bi-Level Multiobjective Programming Problem

Qingping He, Yibing Lv

School of Information and Mathematics, Yangtze University, Jingzhou 434023, China

E-mails: Heqp_2017@163.com lvyibing_2001@163.com

Abstract: As a metaheuristic, Particle Swarm Optimization (PSO) has been used to

solve the Bi-level Multiobjective Programming Problem (BMPP). However, in the

existing solving approach based on PSO for the BMPP, the upper level and the lower

level problem are solved interactively by PSO. In this paper, we present a different

solving approach based on PSO for the BMPP. Firstly, we replace the lower level

problem of the BMPP with Kuhn-Tucker optimality conditions and adopt the

perturbed Fischer-Burmeister function to smooth the complementary conditions.

After that, we adopt PSO approach to solve the smoothed multiobjective

programming problem. Numerical results show that our solving approach can obtain

the Pareto optimal front of the BMPP efficiently.

Keywords: Bi-level multiobjective programming problem, scalarization method,

optimality conditions, smoothing method, particle swarm optimization.

1. Introduction

Bi-level programming problem is a nested optimization problem, which is

characterized by the existence of two optimization problems in which the constraint

region of the upper level optimization problem (the leader) contains another

optimization problem called the lower level optimization problem (the follower)[1].

As a powerful tool to describe the hierarchy existing in the real life problem, bi-level

programming has been applied wildly in such areas as transportation systems [2],

inverse optimization value problem [3], transportation network design [4], etc.

Meanwhile, the wide application of the bi-level programming drives more and more

researchers to devote to this promising field. In fact, in the last two decades, many

papers have been published both from the theoretical and computational points of

view (see the monographs of D e m p e [1] and the reviews by D e m p e and

 60

Z e m k o h o [5], S i n h a, M a l o and D e b [6], and C o l s o n, M a r c o t t e and

S a v a r d [7]).

Bi-level Multiobjective Programming Problem (BMPP), where the leader, the

follower, or the both have multiple conflicting objectives, has successively drawn the

researchers’ attention both from the theoretical and computational points of view.

Here, we can roughly classify the feasible algorithms for the BMPP into two types.

The first one is the traditional numerical approach and the second one is the

evolutionary approach.

Focusing on the traditional numerical approach for the linear BMPP in which

both the leader and the follower have multiple objectives, N i s h i z a k i and

S a k a w a [8] give the three optimal solution definitions. They propose a feasible

algorithm based on K-th best algorithm for the linear bi-level single objective

programming problem. For the given lower level objective weights, L v [9] replaces

the lower level optimization problem with its optimality conditions and constructs a

multiobjective penalized optimization problem. Then, an exact penalized function

approach is proposed and some numerical results are reported; subsequently,

following the outline in [9] and regarding the lower level objective weights as the

upper level decision variables, L v and W a n [10] propose another exact penalty

function approach. For the linear BMPP, where the leader has single objective and

the follower has multiple objectives, A n k h i l i and M a n s o u r i [11] take the

margin function of the lower level problem as the penalty term, and construct the

corresponding penalized problem. Then, an exact penalty function algorithm is

proposed for the above BMPP. For the linear BMPP, where the leader has multiple

objectives and the follower has single objective, C a l v e t e and G a l e [12] prove

the existence of the weakly efficient solution and the efficient solution under the

condition that the constraint region is not empty, then present the frameworks of some

feasible algorithms. However, no numerical results are reported. In additions, for a

class of BMPP, where the lower level is a convex vector-programming problem, L v

and W a n [13] adopt the method of replacing the lower level problem with its

optimality conditions, after that smooth the complementary conditions with some

smoothing function. Then, a smoothing approach is proposed. It deserves pointing

out that the main drawback of the traditional numerical approach for the BMPP is

that only someone (weakly) efficient solution can be obtained. A recent study by

E i c h f e l d e r [14] suggests a refinement-based strategy in which the algorithm

starts with a uniformly distributed set of points on upper level variable, and some

(weakly) efficient solutions can be obtained.

Evolutionary approach, which can obtain the (weakly) efficient solutions for the

multiobjective programming problem efficiently, has been widely applied to solve

BMPP. D e b and S i n h a [15] as well as S i n h a and D e b [16] discuss BMPP

based on evolutionary multiobjective optimization principles. Based on the above

studies, D e b and S i n h a [17] propose a viable and hybrid evolutionary-local-

search based algorithm, and present challenging test problems. S i n h a [18] presents

a progressively interactive evolutionary multiobjective optimization method for bi-

level multiobjective programming problem.

 61

It is noted that as a metaheuristic, Particle Swarm Optimization (PSO) [19] has

proved to be a competitive algorithm for optimization problems compared with other

algorithms such as Genetic Algorithm (GA) and Simulating Algorithm (SA). It can

converge to the optimal solution rapidly. Z h a n g et al. [20] use some improved PSO

algorithms to solve BMPP. Subsequently, Z h a n g et al. [21] propose a hybrid

particle swarm optimization with crossover operator for some high dimensional

BMPP. Then, some numerical results are presented to illustrate the superiority of the

improved PSO. It is noted that in the above references on solving bi-level

multiobjective programming problem using PSO approach, the model of the upper

and lower level solving their own problems interactively is adopted.

In this paper, based on our previous work [13], we will adopt a different tack

from the existing PSO approach for the BMPP. Our strategy can be outlined as

follows. For a class of BMPP, where the lower level is a convex vector optimization

problem, we replace the lower level problem with its optimality conditions. After

that, we smooth the complementary conditions with some smoothing function and

obtain the corresponding smoothed multiobjective programming problem. Then, a

particle swarm optimization approach is proposed to solve the smoothed

multiobjective programming problem and the approximate efficient solutions for the

BMPP are obtained.

This paper is organized as follows. In the following Section 2, we firstly

introduce the mathematical model and some basic definitions of the efficient

solutions of the bi-level multiobjective programs. In addition, the smoothing method

for the BMPP, which we obtain in our previous work [13], is introduced. A particle

swarm optimization approach for the smoothed multiobjective programming problem

is proposed in Section 3. In Section 4, we report some numerical results to illustrate

the PSO approach. Finally, we conclude this paper with some remarks.

2. Bi-level multiobjective programming and smoothing method

The bi-level multiobjective programming problem considered in this paper can be

formulated as:

(1) (,)
min (,),

s.t. (),

x y
F x y

y S x

where)(xS denotes the efficient solution set of the following lower level

optimization problem,

(2)
() min (,),

s.t. (,) 0,

x
y

P f x y

g x y 

and
nRx ,

mRy , and
pmn RRF : , : n m qf R R  ,

lmn RRg : are

continuously differentiable functions.

To facilitate the discussion, we also introduce the following notations, which is

presented in our previous work [13]. Let  0),(:),( yxgyxS denote the

 62

constraint region of problem (1),  0),(,:  yxgRyRxS mm

y denote the

projection of S onto the leader’s decision space. In additions, let),(yxI denote the

set of the active constraints, i.e.,

(3)  liyxgiyxI i ,,1,0),(::),( .

Definition 2.1. A point),(yx is feasible to problem (1) if Syx ),(, and

)(xSy .

Definition 2.2. A point *)*,(yx is a Pareto optimal solution to problem (1) if it

is feasible and there exists no other feasible point),(yx , such that

),(),(yxFyxF  and *)*,(),(yxFyxF  .

Through this paper, we make the following assumptions:

)(1A The constraint region S is nonempty and compact.

)(2A For each given upper level variable x , the lower level problem)(xP is a

convex vector optimization problem, and the partial gradient),(yxgiy ,

),(yxIi , is linear independent.

Assumption)(1A guarantees that the feasible region of problem (1) is

nonempty, and assumption)(2A can make us adopt some scalarization method to

transform the lower level problem into the corresponding scalar optimization problem

[13]. That is, based on assumption)(2A , we can transform problem (1) into the

following bi-level multiobjective programming problem, where the lower level is a

scalar optimization problem [13],

(4)

(, ,)

1

min (,),

s.t. 1,

0,

min , (,) ,

s.t. (,) 0.

x y

q

i
i

y

F x y

f x y

g x y

















Let (,)x  denote the optimal solution set of the lower level problem in

problem (2). On the relationships between the Pareto optimal solutions of problem

(2) and that of the original problem (1), we have the following result.

Theorem 2.1 [13]. Let
_ _

(,)x y be a Pareto optimal solution of problem (1). Then

for all
_

1

: , 1
q

q

i

i

R   



 
    

 
 , the point

_ _ _

(, ,)x y  is a Pareto optimal

solution of problem (2). Conversely, if the point
_ _ _

(, ,)x y  is a Pareto optimal solution

of problem (2), then
_ _

(,)x y is a Pareto optimal solution of problem (1).

 63

Going one step further to the problem (2), we replace the lower level scalar

optimization problem with its Kuhn-Tucker optimality conditions [13], and problem

(2) can be reduced as the following multiobjective programming problem with

complementary conditions:

(5)

(, , ,)

1

1

T

min (,),

s.t. 1,

, (,) (,) 0,

(,) 0,

(,) 0,

0, 0,

x y u

q

i
i

l

y j y j
j

F x y

f x y u g x y

u g x y

g x y

u















   





 

where the term
lRu is the Lagrangian multiplier.

To facilitate the depiction, we also adopt the following notations [13]. Let

1 : n m q l mH R R    ,
2 : n m q l lH R R    ,

3 : n m q l lH R R    ,
4 : n m q lH R R    ,

5 : n m q l qH R R    , which is defined as:

(6)

1 1

1

2 2

3 3

4 4

1

5 5

() : (, , ,) : , (,),

() : (, , ,) : (,),

() : (, , ,) : ,

() : (, , ,) : 1,

() : (, , ,) : .

l

y j y j

j

q

i

i

H w H x y u f u g x y

H w H x y u g x y

H w H x y u u

H w H x y u

H w H x y u

 





 

 





    

 

 

  

 





Based on the above notations (4), problem (3) can be rewritten as:

(7)

1

2 3

2

3

4

5

min (),

s.t. () 0,

(), () 0,

() 0,

() 0,

() 0,

() 0.

F w

H w

H w H w

H w

H w

H w

H w













Let *w be a feasible point to problem (5), we also define the following index set:

 64

(8)

 

 

 

 

2 3

2 3

2 3

5

(*) : (*) 0, (*) 0, 1, , ,

(*) : (*) (*) 0, 1, , ,

(*) : (*) 0, (*) 0, 1, , ,

(*) : (*) 0, 1, , .

i i

i i

i i

i

w i H w H w i l

w i H w H w i l

w i H w H w i l

w i H w i q

 

 

 

 

    

    

    

   

In the following context, the following assumption is satisfied.

3()A Let *w is feasible to problem (5), the gradient vectors
1 (1, ,),iH i m 

2 ()iH i     ,
3 ()iH i     ,

4H ,
5 ()iH i   are linearly independent.

It is known that problem (5) is a nonsmooth multiobjective problem. In addition,

in our previous work [13], to overcome the nonsmooth of problem (5), we adopt the

following so-called perturbed Fischer-Burmeister function RRR  

2: , which

has the formulation

(9)   22),,(bababa

to smooth problem (5). Moreover, the perturbed Fischer-Burmeister function

),,( ba has the property (, ,) 0 0, 0, .
2

a b a b ab


      

Based on the perturbed Fischer-Burmeister function (7), we can smooth the

complementary conditions 2 3(), () 0H w H w  in problem (5) as follows:

(10)
2 2

3 2 2 3() () () () 0, 1, , .i i i iH w H w H w H w i l     

Then for every 0  we can obtain the following smooth multiobjective

programming problem:

(11)

1

2 2

3 2 2 3

4

5

min (),

s.t. () 0,

() () () () 0, 1, , ,

() 0,

() 0.

i i i i

F w

H w

H w H w H w H w i l

H w

H w





     





On the relationships between the Pareto optimal solutions of the smoothed

problem (9) and that of problem (5), we have the following result in our previous

work [13].

Theorem 2.2 [13]. Let w
 be a Pareto optimal solution of problem (9) and

suppose that
_

w w  as 0  , and the assumption 3()A holds at
_

w . Then w
 is

a KKT point of problem (9) with multiplier (, , ,)u v     ; Moreover, if

' ' ' '(, , ,) (, , ,)u v u v       as 0  , then
_ _

(,)x y is a Pareto optimal

solution to problem (1).

 65

Based on Theorem 2.2, the nonsmooth multiobjective programming problem (5)

can be progressively approximated by a sequence of smooth multiobjective

programming problem (9). That means we can obtain the approximate Pareto optimal

solution of problem (5) by solving problem (9). In fact, in our previous work [13],

we adopt the numerical approach, such as -constraint approach, to solve problem (9)

and obtain some Pareto optimal solution of the original problem (1). Here, we

consider adopting PSO approach to solve problem (9), and obtain the Pareto optimal

front of problem (1).

3. Particle swarm optimization for problem (9)

3.1. Overview of the PSO algorithm

Particle Swarm Optimization (PSO) is a kind of evolutionary algorithm, which has

been widely studied in recent years. It is first proposed by K e n n e d y and

E b e r h a r t [19] in 1995 and successfully applied to the optimization problem, and

then it has been effectively extended to some other aspects.

In PSO, the population is referred as a swarm and the individuals are called

particles. Like other evolutionary algorithms, PSO performs searches using a

population of individuals that are updated from iteration to iteration. To find the

optimal or approximately optimal solution, each particle changes its searching

direction according to two factors, its own best previous experience and the best

experience of the entire swarm in the past. In the process of searching optimal

solution, each particle changes its velocity and position according to the following

formulas:

(12)
1 1 1 2 2

1 1

() (),

,

t t t t g t

t t t

v w v c r P x c r P x

x x v



 

       

 

where 1r and 2r are random numbers in (0, 1); w is the inertia weight; 1c , 2c are

acceleration factors, which are the positive constant parameters; tP is the personal

best position for a particle;
gP is the global best position in the entire swarm. If the

search space is D-dimensional, the velocity and position are represented as

),,,(321 tDtttt vvvvv  ,),,,(321 tDtttt xxxxx  , and the same with

),,,(321 tDtttt PPPPP  ,),,,(321 gDgggg PPPPP  .

3.2. The algorithm for solving multiobjective problem (9)

As mentioned above, we can obtain the approximate Pareto optimal solution of the

original problem (1) by solving the smoothed multiobjective programming problem

(9). In addition, in the following contents, we use PSO to solve problem (9).

 66

Definition 3.1. Let next

dw and last

dw be the next and the last adjacent particles of

the d-th particle dw , respectively. The crowding distance of the d-th individual

particle dw is definied as

(13)

next last

max min

1

() ()
,

p

m d m d
d

m mm

F w F w

F F








∑

where p is the number of the objectives in problem (9); next()m dF w , last()m dF w and

)(dm wF are respectively the fitness values of m-th objective in problem (9);
max

mF

and
min

mF are the maximum and minimum values of the m-th objective, respectively.

The crowding distance is introduced as the index to judge the distance between

the particle and the adjacent particle, and it reflects the congestion degree of no

dominated solutions. In the population, the larger the crowding distance, the sparser

and more uniform.

Definition 3.2. The infeasibility threshold  is defined as

(14)
0 (1 5 / 4), 0.8 ,

0, 0.8 ,

t N t N

t N




  
 



where 0 is an initial value allowed by constraint violation degree, t is the current

evolution generation, and N is the maximal evolution generation.

From the above formula (11), we can know that the infeasibility threshold 

decreases with the increase of the evolution generation.

Definition 3.3. The degree of the individual particle violating the constraints in

problem (9) is defined as

5 1

1 1

2 2

3 2 2 3 4

1

() max((),0) max(() ,0)

max(() () () () ,0) max(() ,0).

q m

d i d j d

i j

l

d d d d d

C w H w H w

H w H w H w H w H w   




  

 



   

       

 



where  is the tolerance of the equation constraints, which reflects the degree of the

strictness on the equation constraints.

We firstly outline the PSO approach for the multiobjective programming

problem. In the feasible solution space, we uniformly and randomly initialize the

particle swarms and select the no dominated solution particles consisting of the elite

set. After that by the methods of congestion degree choosing (the congestion degree

can make the particles distribution more sparse) and the dynamic  infeasibility

dominating the constraints, we remove the no dominated particles in the elite set.

Then, the objectives can be approximated.

The details of the proposed PSO algorithm for problem (9) can be described as

follows.

Proposed PSO Algorithm

 67

Step 1. Give the particle population size M (including the position x and the

velocity v) and the maximal evolution generation N. Select the initial infeasibility

threshold 0 , and let 0t  .

Step 2. Update each particle in the particle group:

Step 2.1. Archive the no dominated solutions of the particle swarm in the

external elite set and calculate the congestion distance and the degree of the

individual particle violating the constraints)(wC on each nondominated solution in

the external elite set. The distances are made in descending order. Then randomly

select one particle as the global optimal position Pg from the archived elite set.

Step 2.2. Update the velocity and position of the particle by the Formula (10).

If the position of a particle exceeds the preset boundary, the position of the particle

is equal to its boundary value and its velocity is multiplied by “–1” to search the

particle in the opposite direction.

Step 3. Update the external elitist set: Compare the updated nondominated

solutions of the particle swarm with the nondominated solutions in the external elites,

and decide whether the nondominated solutions in the particle swarm should be

archived in the external elite set. If the solution in the particle swarm satisfies the

domination relation, it needs to judge whether the external elitist set is full: if it is not

full, the nondominated solution is archived directly; otherwise, the following steps

are adopted:

Step 3.1. Archive all nondominated solutions of the external elite set in

descending order according to the congestion distance.

Step 3.2. Randomly pick a particle in the M particles of the sorted set and replace

it with the particle that needs to be archived.

Step 4. Update the local optimal position of the particle:

Step 4.1. Update the global optimum position if the position of the particle

updated dominates its historical optimal position.

Step 4.2. If the updated particle position does not dominate its historical

optimum position, according to 50% chance to retain its best position in history.

When the degree of all the particles in the nondominated set violating the constraints

)(wC is zero, the algorithm terminates and we get the approximate Pareto optimal

solutions *w and the values (*)F w . Otherwise, go to Step 5.

Step 5. If t N we get the approximate Pareto optimal solutions *w and the

values (*)F w . Otherwise, set 1t t  , and go to Step 2.

4. Numerical results

The Generational Distance (GD) is an indicator to estimate the average distance

between the obtained optimal Pareto solutions and the theoretical optimal solutions.

It can be defined as

1GD ,

N

ii
d

N




 68

where N is the number of the obtained optimal solutions and id is the Euclidean

distance in objective space between each of the founded optimal solutions and the

nearest member of the theoretical optimal solution set. It is obvious that GD 0

means the all the founded optimal solutions belong to the theoretical optimal solution

set.

SPacing (SP) is an indicator to describe the distribution uniformity of the

obtained Pareto solutions. It can be defined as
2

E

1 1

E

1

()
SP ,

M n

m im i

M

mm

d d d

d nd

 



 




 



where
1 1 2 2min ((,) (,) (,) (,) , (, 1,2, ,)i j i i

i jd F x y F x y F x y F x y i j n     ;

d is the mean of all id ;
E

md is the Euclidean distance between the extreme solutions

in the obtained Pareto optimal solution set and the theoretical Pareto optimal solution

set on the m-th objective; M is the number of the upper level objective function; n

is the number of the obtained solutions. It is obvious that SP 0 means that all the

obtained Pareto solutions distribute evenly in objective space.

To verify the feasibility and effectiveness of the above PSO approach for the bi-

level multiobjective programming problem, we give some numerical results. The

perturbed Fischer-Burmeister function parameter 0.01  and the PSO parameters

are set as follows: 0.7w  and 1 2 1.5c c  . We make the programs and use a

personal computer (CPU: Intel Pentium 2.26 GHZ, RAM:1G) to execute the

programs.

Example 1. This example is taken from [22], where , .x R y R  The particle

population size and the maximal evolution generation for the above example are

respectively set as 100, 50M N  ,

(15)

2 T

2 T

max (2 ,) ,

s.t. 0 15,

max (, 2) ,

s.t. 0,

2 4,

2 33,

0.

x

y

x y x y

x

x y x y

x y

x y

x y

y

  

 

 

  

 

 



For Example 1, in [22] the authors discuss two decision mechanisms: semi-

cooperation decision mechanism and pure-independence, two solutions

(,) (15,0), and (,) (15,8)x y x y  are founded. Fig. 1 shows the two solutions and

the Pareto optimal front by our PSO for Example 1. It can be seem that the solution

 69

(15, 8) is not in the theoretical optimal solution set and the optimal solutions we found

can integrally describe the Pareto optimal front.

Fig. 1. The obtained Pareto optimal front of Example 1

Example 2. This example is taken from [23], where , ,x R y R  and we set

the particle population size and the maximal evolution generation as

100, 50M N  .

(16)

Tmax (4 , 2) ,

s.t. 0 3,

max (, 2),

s.t. 3,

2 4,

2 12,

3 2 4,

0.

x

y

x y x y

x

y y

x y

x y

x y

x y

y

   

 

 

   

  

 

   



For Example 2, in [23], the authors use a fuzzy interactive method and five

optimal solutions with different satisfactoriness of the upper level decision maker are

founded. Fig. 2 shows the Pareto optimal front by our PSO in Example 3. It can be

seem that the optimal solutions we found can integrally describe the Pareto optimal

front, and the optimal solutions in [23] are included.

 70

Fig. 2. The obtained Pareto optimal front of Example 2

Example 3. This example is taken from [24], where , ,x R y R  and we set

the particle population size and the maximal evolution generation as

200, 50,M N 

(17)

2 2 T

2 T

min (, (10)) ,

s.t. 0 15,

min (, (30)) ,

s.t. 0,

0 15.

x

y

x y x y

x

y y x

y x

y

   

 



 

 

 Fig. 3. The obtained Pareto optimal front of Example 3

 71

Fig. 3 shows the Pareto optimal front of Example 3. In [20], the authors have

also presented a PSO method for BMPP, in which the BMPP is transformed to solve

many multiobjective optimization problems in the upper level and the lower level

interactively with a predefined count.

Fig. 4. The theoretical Pareto optimal front of Example 3 and the obtained upper level Pareto optimal

fronts while
*x varies

Fig. 4 shows the theoretical Pareto optimal front of Example 3 and three

obtained upper level Pareto optimal fronts with different upper decision variable
*x .

It can be seen that each of the three obtained upper level Pareto optimal fronts has

only one intersection with the theoretical Pareto optimal front of Example 3. This

PSO method has to solve a series of multiobjective optimization problems in the

upper level to find all theoretical optimal solutions.

Example 4. This example is taken from [25], where ,x R y R  and we set

the particle population size and the maximal evolution generation as

200, 50,M N 

(18)

2 2 T

2 2 T

min (,(10)) ,

s.t. 0,

0 15,

min ((2 30) , 0.5) ,

s.t. 0 15.

x

y

x y

x y

x

x y x y

y



  

 

  

 

 72

Fig. 5 shows the obtained Pareto front by the PSO method in [20] and our PSO

for Example 4, it can be seen that both the two obtained Pareto optimal fronts are

very close to the theoretical Pareto optimal front.

To highlight the advantage of our PSO, a series of contrast numerical

experiments between our PSO and the PSO method in [20] are conducted. In order

to eliminate the difference of each experiment, we executed both the two algorithms

for 50 times for each example. Table 1 shows the comparison of results between the

two algorithms considering the two indicators previously described and the execution

time (ET, in seconds). Considering the generation distance and the spacing, it can be

seen that our PSO performs better than the PSO method in [20] except for example

2, in which the performance of our PSO is slightly worse. However, our PSO is much

more efficient with respect to the execution time.

Fig. 5. The obtained Pareto optimal front of Example 4

Table 1. Results of the General Distance (GD), SPacing (SP) and Execution Time (ET) for the four

examples

Example

GD SP ET(s)

PSO

in [20]

Our

PSO

PSO

in [20]

Our

PSO

PSO

in [20]

Our

PSO

Example 1

Max 3.27×10–4 4.27×10–4 1.48×10–1 2.89×10–1 1089.26 62.65

Min 2.69×10–4 9.87×10–5 6.13×10–2 4.78×10–2 676.54 49.14

Average 3.12×10–4 2.07×10–4 7.78×10–2 6.74×10–2 745.26 55.47

Example 2

Max 4.23×10–4 1.04×10–2 2.11×10–2 6.49×10–2 1447.03 117.78

Min 8.71×10–5 4.49×10–3 7.46×10–3 3.32×10–2 864.54 87.54

Average 3.47×10–4 5.56×10–3 1.55×10–2 4.15×10–2 1078.30 91.13

Example 3

Max 2.04×10–4 1.44×10–4 1.22×10–3 3.77×10–3 454.44 57.54

Min 6.77×10–5 6.41×10–5 4.37×10–3 9.89×10–4 273.97 39.56

Average 9.43×10–5 8.55×10–5 2.02×10–3 1.97×10–3 329.44 51.77

Example 4

Max 7.59×10–5 5.44×10–5 2.17×10–3 4.33×10–3 459.63 62.23

Min 3.81×10–5 2.26×10–5 9.49×10–4 9.49×10–4 212.26 40.48

Average 5.01×10–5 4.89×10–5 1.57×10–3 1.35×10–3 287.91 47.71

 73

5. Conclusions

In this paper, we propose a different solving approach for the BMPP based on PSO.

The main difference of the solving approach proposed here comparing to that in the

existing references is that we only need to solve the corresponding smoothed

multiobjective programming problem to obtain the Pareto optimal front of the BMPP.

The numerical results prove that our PSO is a high efficiency and accurate method.

It is noted that in our solving approach based on PSO for the BMPP, we just

adopt the original PSO algorithm. In recent years, the PSO algorithm is applied in

many fields such as social network [26], neural networks optimization [27], reservoir

operation [28], etc. The researchers have proposed some modified PSO algorithms

[29] and combinatorial PSO algorithms [30] for the optimization problem. Our future

work will be to lead these modified PSO approaches into our solving approach.

R e f e r e n c e s

1. D e m p e, S. Foundation of Bi-Level Programming. London, Kluwer Academic Publishers, 2002.

2. S t o i l o v a, K., T. S t o i l o v, V. I v a n o v. Practical Bi-Level Optimization as a Tool for

Implementation of Intelligent Transportation Systems. – Cybernetics and Information

Technologies, Vol. 17, 2017, No 2, pp. 97-105.

3. L v, Y., Z. C h e n, Z. W a n. A Penalty Function Method Based on Bi-Level Programming for

Solving Inverse Optimal Value Problems. – Applied Mathematics Letters, Vol. 23, 2010,

pp. 170-175.

4. Y a n g, H., M. G. H. B e l l. Transport Bi-Level Programming Problems: Recent Methodological

Advances. – Transportation Research, Vol. 35, 2001, pp. 1-4.

5. D e m p e, S., A. B. Z e m k o h o. The Bi-Level Programming Problem: Reformulations, Constraint

Qualifications and Optimality Conditions. – Mathematical Programming, Vol. 138, 2013,

No 1-2, pp. 447-473.

6. S i n h a, A., P. M a l o, K. D e b. A Review on Bi-Level Optimization: From Classical to

Evolutionary Approaches and Applications. – IEEE Transactions on Evolutionary

Computation, PP(99), 2017, pp. 1-1.

7. C o l s o n, B., P. M a r c o t t e, G. S a v a r d. An Overview of Bi-Level Optimization. – Annals of

Operations Research, Vol. 153, 2007, pp. 235-256.

8. N i s h i z a k i, I., M. S a k a w a. Stackelberg Solutions to Multiobjective Two-Level Linear

Programming Problem. – Journal of Optimization Theory and Applications, Vol. 103,1999,

No 1, pp. 161-182.

9. L v, Y. An Exact Penalty Function Approach for Solving the Linear Bi-Level Multiobjective

Programming Problem. – Filomat, Vol. 29, 2015, No 4, pp. 773-779.

10. L v, Y., Z. W a n. Solving Linear Bi-Level Multiobjective Programming Problem via Exact Penalty

Function Approach. – Journal of Inequalities and Applications, Vol. 2015, 2015, 258.

11. A n k h i l i, Z., A. M a n s o u r i. An Exact Penalty on Bi-Level Programs with Linear Vector

Optimization Lower Level. – European Journal of Operational Research, Vol. 197, 2009,

No 1, pp. 36-41.

12. C a l v e t e, H., C. G a l e. Linear Bi-Level Programs with Multi Objectives at the Upper Level. –

Journal of Computational and Applied Mathematics, Vol. 234, 2010, pp. 950-959.

13. L v, Y., Z. W a n. A Smoothing Method for Solving Bi-Level Multiobjective Programming

Problems. – Journal of the Operations Research Society of China, Vol. 2, 2014, No 4,

pp. 511-525.

14. E i c h f e l d e r, G. Multiobjective Bi-Level Optimization. – Mathematical Programming, Vol. 124,

2010, pp. 419-449.

 74

15. D e b, K., A. S i n h a. Solving Bi-Level Multiobjective Optimization Problems Using Evolutionary

Algorithms. – In: Lecture Notes in Computer Science, Evolutionary Multi-Criterion

Optimization, Vol. 5467, 2009, pp. 110-124.

16. S i n h a, A., K. D e b. Towards Understanding Evolutionary Bi-Level Multiobjective Optimization

Algorithm. Technical Report KanGAL, Report No 2008006, 2008.

17. D e b, K., A. S i n h a. An Evolutionary Approach for Bi-Level Multiobjective Problems. –

Communications in Computer and Information Science, Vol. 35, 2009, pp. 17-24.

18. S i n h a, A. Bi-Level Multi-Objective Optimization Problem Solving Using Progressively

Interactive EMO. – In: Lecture Notes in Computer Science, Evolutionary Multi-Criterion

Optimization, Vol. 6576, 2011, pp. 269-284.

19. K e n n e d y, J., R. E b e r h a r t. Particle Swarm Optimization. Perth, Aust: IEEE, Piscataway, NJ,

USA, 1995.

20. Z h a n g, T., T. S. H u, Y. Z h e n g, X. N. G u o. An Improved Particle Swarm Optimization for

Solving Bi-Level Multiobjective Programming Problem. – Journal of Applied Mathematics,

Vol. 2012, 2012.

21. Z h a n g, T., T. S. H u, Y. Z h e n g, X. N. G u o. Solving Bi-Level Multiobjective Programming

Problem by Elite Quantum Behaved Particle Swarm Optimization. – Abstract and Applied

Analysis, Vol. 2012, 2012, ID 102482.

22. S h e n g, H., W. Z h o n g, N. X u. A Multiobjective Analysis of the Bi-Level Decision Making

Problem and its Decision Method. – Journal of Systems Engineering, Vol. 11, 1996, No 4,

pp. 1-6.

23. Z h e n g, Y., Z. W a n. A Fuzzy Interactive Method for a Class of Bi-Level Multiobjective

Programming Problem. – Expert Systems with Applications, Vol. 38, 2011, No 8,

pp. 10384-10388.

24. L i n, D., Y. C h o u, M. L i. Multiobjective Evolutionary Algorithm for Multi-Objective Bi-Level

Programming Problem. – Journal of Systems Engineering, Vol. 22, 2007, No 2, pp. 181-184.

25. T e n g, C., L. L i, H. L i. A Class of Genetic Algorithms on Bi-Level Multiobjective Decision

Making Problem. – Journal of Systems Science and Systems Engineering, Vol. 9, 2000, No 3,

pp. 290-293

26. L i, Z. H., L. L. H e, H. Z h a n g. A Novel Social Network Structural Balance Based on the Particle

Swarm Optimization Algorithm. – Cybernetics and Information Technologies, Vol. 15, 2015,

No 2, pp. 23-35.

27. L i, H. A Teaching Quality Evaluation Model Based on a Wavelet Neural Network Improved by

Particle Swarm Optimization. – Cybernetics and Information Technologies, Vol. 14, 2014,

No 3, pp. 110-120.

28. S a b e r c h e n a r i, K., H. A b g h a r i, H. T a b r i. Application of PSO Algorithm in Short-Term

Optimization of Reservoir Operation. – Environmental Monitoring and Assessment, Vol. 188,

2016, No 12, p. 667.

29. D o n g, Y., C. S. W u, H. M. G u o. Particle Swarm Optimization Algorithm with Adaptive Chaos

Perturbation. – Cybernetics and Information Technologies, Vol. 15, 2015, No 6, pp. 70-80.

30. S u, Y. X., R. C h i. Multi-Objective Particle Swarm-Differential Evolution Algorithm. – Neural

Computing and Applications, Vol. 28, 2017, No 2, pp. 407-418.

