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Abstract: This paper is an extended and updated version, presented at the INDIA 

2017 conference. Optimal resource provisioning for virtual services in the Cloud 

computing is one of the concerns nowadays. For cloud computing service providers, 

reducing the number of physical machines providing resources for virtual services in 

cloud computing is one of the efficient ways to reduce the amount of energy 

consumption, which in turn enhances the performance of data centers. Multi-

dimensional resource provisioning on a Heterogeneous Shared Hosting Platforms 

for virtual services is known as a NP-hard problem. Therefore, it is necessary to 

apply the metaheuristic algorithms for estimating the outcome of the problem. In this 

study, we propose the resource allocation problem for reducing the energy 

consumption. ECRA-SA algorithms were designed to solve it and were evaluated 

through CloudSim simulation tool compared with FFD algorithm. The experimental 

results show that the proposed ECRA-SA algorithm yields a better performance than 

FFD algorithm.  

Keywords: Resource allocation, simulated annealing, virtual service, cloud 

computing, energy consumption. 

1. Introduction 

The development of virtual technology and the applicability of cloud computing have 

led to the rapid growth of the need for physical machines in Data Centre (DC). Energy 

consumption by DC is represented between 1.1% and 1.5% of the total world-wide 

electric power consumption in 2010 [16]. This corresponds to the typical yearly 

electricity consumption of 120 million households, producing negative greenhouse 

effects and CO2 footprints. As a result, energy consumption increases more and more 

rapidly which can threat the environment and cause serious problems. A way to help 

with this issue is finding energy efficient techniques and algorithms to manage 

computing resources [3-5, 8, 11, 14]. 

http://books.google.com/books?hl=en&lr=&id=3DgxCgAAQBAJ&oi=fnd&pg=PA184&dq=info:rcIjXwt4ta8J:scholar.google.com&ots=fcg0-LlIyj&sig=7Wm3hbyWb-TGEZc2RUecvPmVHKM
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F e l l e r, R i l l i n g  and M o r i n [6] showed a resource allocation based on 

a homogeneous platforms model to provide the number of physical machines to 

virtual machine and proved that the energy consumption of the system is reduced if 

the number of used physical machines is diminished. We will explore the 

heterogeneous platforms as far as the resources of the physical machines are not  

the same [12, 13]. In [12, 25] the resource allocation problem is established and  

FFD algorithm is used to solve it. However, S e t z e r  and S t a g e [11] 

demonstrated that this algorithm tends to wasting capabilities. According to some 

reviews [3-5, 8, 11, 14], some practices of system resources allocation with the 

minimal energy consumption are pointed out and are just focused on power utilization 

on the CPU of physical machines. We believe that this burning is not only upon CPU 

but also over other appliances such as hard disk, bandwidth, etc.  

Therefore, this study aims to solve the problem of resource allocation (physical 

resources) for energy efficiency by virtual services on the heterogeneous platforms, 

which involves minimizing the system’s energy consumption. The main results are 

as follows: 

 Building the approaches of capability demand, resource allocation, and 

energy consumption for virtual service from heterogeneous shared hosting Platforms 

with condition that each virtual service will be a single virtual machine. 

 Stating the resource allocation problem for virtual services as an optimal 

problem: minimizing the energy consumption of the system.  

 Developing the ECRA-SA algorithm, which is based on the Simulated 

Annealing algorithm [13], and using CloudSim tool [3]. Comparison of energy 

consumption and the execution time between ECRA-SA and FFD algorithm. 

The rest of this study is organized as follows: Section 2 presents the related 

work. Section 3 presents a problem of energy consumption resource allocation. 

Section 4 proposes the ECRA-SA algorithms to solve the problem. Section 5 follows 

with experimental results. Section 6 is conclusion and suggests the future work. 

2. Related work 

Resource management for shared hosting platforms has been investigated in many 

other studies. In particular, U r g a o n k a r, S h e n o y  and  R o s c o e  [20] propose a 

profiling technique for statistic of resource usage and minimum resource needs; 

A r o n, D r u s c h e l  and  Z w a e n e p o e l  [19], and C a s a n o v a   et al. [23] 

formulate the resource provisioning problem as a constrained optimization problem, 

in which machines are considered as a monolithic resource; S t i l l w e l l   et al. [22] 

further consider resource provisioning in a multi-dimension resource; H i e n, 

F r e d e r i c  and  M e n a u d  [21, 27] addressed the problem of autonomic virtual 

resource management for hosting service platforms with a two-level architecture, 

which isolates application specific functions from a generic decision-making layer. 

However, they focus only on efficiency of resource provisioning. Our study aims to 

solve the problem of energy efficiency resource allocation.   

H e r m e n i e r  et al. [24] proposed the Entropy resource manager for 

homogeneous clusters, which performs dynamic consolidation based on constraint 
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programming and takes migration overhead into account. However, instead of 

considering the homogeneous platforms, we will explore the heterogeneous physical 

machines environment, where resources configuration of the physical machines are 

not the same. 

J i a n f a n g, J u n j i e  and Q i n g s h a n  [26] used the cloud model and Discrete 

Particle Swarm Optimization algorithm to quantify the security of the task and virtual 

machine resources and the security cloud similarity to show the user’s security 

satisfaction. 

A number of practices can be applied to achieve energy efficiency. One of them 

is Dynamic Voltage and Frequency Scaling [2], a mechanism present in modern 

processors that consists of the combined change of the supply voltage and clock 

frequency. The main idea is to decrease the voltage and the frequency of the CPU by 

scaling it down when it is not fully utilized and also to do the opposite actions when 

it is being entirely utilized. Despite of the improvements in energy efficiency of the 

hardware, overall energy consumption continues to grow due to increasing 

requirements for computing resources.    

A r m b r u s t  et al. [14] studied the problem of request scheduling for multi-

tiered web applications in virtualized heterogeneous systems in order to minimize 

energy consumption while meeting performance requirements. They proposed a 

heuristic for a multidimensional packing problem as an algorithm for workload 

consolidation. In previous articles, we have published two algorithms. Which were 

used to detect deadlock in resources allocation heterogeneous distributed platforms 

[6, 8]. We provide deadlock detection algorithms and resolve the optimization 

problems of resources based the recovery of resources allocated. The most of the 

studies were set to study scheduling policy effectiveness in resources allocation.  

S o t o m a y o r  [15] proposed a lease-based model and implemented First-

Come-First-Serve scheduling algorithm and a greedy based virtual machine mapping 

algorithm to map leases that include some of virtual machines with/without start time 

and user duration to a set of homogeneous physical machines. Much of the research 

conducted homogeneous physical machines. 

Along with hardware design, energy efficiency is influenced on how the 

software manages the resources. Energy efficient resource management techniques 

were first introduced on mobile devices, where it has direct impact on battery lifetime 

[2]. These techniques can be adapted for servers and DCs. 

A r i a n y a n  et al. [1] have presented the strategies of power aware virtual 

machine placement techniques on a survey. They have discussed the used 

optimization algorithms to save power. They have classified the energy saving 

techniques in a Data Centre into static and dynamic methods. They have included in 

the Static Power Management class and Dynamic Power Management the techniques. 

F e l l e r, R i l l i n g  and M o r i n  [6] have presented a power aware 

optimization technique for virtual placement. They applied an ant colony 

optimization in dynamic workload placement to conserve energy. However, there is 

a high cost of computation time due to searching for optimum placement. 

Therefore, when proposing energy efficient resource allocation, one needs to be 

aware of the Service Level Agreement (SLA) to avoid performance degradation of 

http://www.vnulib.edu.vn:8000/dspace/handle/123456789/3628
http://www.vnulib.edu.vn:8000/dspace/handle/123456789/3628
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the consumer applications, including increased response times, timeouts or even 

failures. Therefore, Cloud providers have to establish Quality of Service (QoS) 

requirements to avoid SLA violations and meeting the QoS requirements while 

minimizing energy consumption. 

3. Energy consumption resource allocation problem 

3.1. System and resource model 

A heterogeneous shared platforms includes a cluster of physical machines has 

different resource configuration and is interconnected by a high-speed network 

device is deployed for sharing resources to virtual services is carried out in this paper. 

As stated in our previous work [12], for each type of resource under 

consideration a physical machine may have one or more single element resource (i.e., 

one or more single real CPU, one or more single real memory, …) and aggregate 

resources. Thus, the resources of a physical machine are represented by an ordered 

pair of multi-dimensional resource vectors (𝐶𝑒 ,  𝐶𝑎). The elementary resource vector 

𝐶𝑒  gives the capacity of a single element in each dimension while the aggregate 

resource vector 𝐶𝑎  gives the sum of resource capacity counting all elements, in 

which,  

𝐶𝑒 = {𝑐𝑗𝑘
𝑒 |𝑘 = 1, . . . , 𝐷; 𝑗 = 1, . . . , 𝑀} and 𝐶𝑎 = {𝑐𝑗𝑘

𝑎  | 𝑘 = 1, . . . , 𝐷; 𝑗 = 1, . . . , 𝑀}, 

and 𝑐𝑗𝑘
𝑒 , 𝑐𝑗𝑘

𝑎  are items which represent the elementary resource and aggregate resource 

of a physical machine j for a resource type k, respectively. Inside, M be the number 

of physical machines and D be the dimension of resources. 

Similarly, the resource needs of virtual service are performed by an ordered pair 

of multi-dimensional resource needs vectors, including elementary one and aggregate 

one. In fact, each virtual service has two kinds of resource needs: rigid needs and 

fluid needs [12, 25].  

Hence, the rigid needs of a virtual service i for a resource type k are represented 

by a first ordered vector pair (𝑅𝑒 , 𝑅𝑎) which determines the resource demands in 

running the virtual service at the acceptable level, in which,  

𝑅𝑒 = {𝑟𝑖𝑘
𝑒 |𝑘 = 1, . . . , 𝐷; 𝑖 = 1, . . . , 𝑁}, and 𝑅𝑎 = {𝑟𝑖𝑘

𝑎 |𝑘 = 1, . . . , 𝐷; 𝑖 = 1, . . . , 𝑁}, 

and 𝑟𝑖𝑘
𝑒 , 𝑟𝑖𝑘

𝑎  are items which are to denote the elementary and aggregate rigid needs 

of a resource type k of a virtual service i,  respectively; N is the number of virtual 

services. 

The fluid needs of a virtual service i for a resource type k are represented by a 

second ordered vector pair (𝐹𝑒 , 𝐹𝑎), which displays the additional resource demand 

when running the virtual service at the maximum performance level; in which, 

𝐹𝑒 = {𝑓𝑖𝑘
𝑒 |𝑘 = 1, . . . , 𝐷; 𝑖 = 1, . . . , 𝑁}     and    𝐹𝑎 = {𝑓𝑖𝑘

𝑎|𝑘 = 1, . . . , 𝐷; 𝑖 = 1, . . . , 𝑁}. 

𝑓𝑗𝑘
𝑒 , 𝑓𝑗𝑘

𝑎  are items, which are to denote the elementary and aggregate fluid needs of 

the resource type k of a virtual service i, respectively. 

The utilization of all resources corresponding to fluid needs is linearly 

correlated. For example, if the virtual service is only provided by with a half of the 

CPU resource needs, the possibility is that it only uses half of the bandwidth I/O 

compared with the resource needs. This is consistent with the reality because when 
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the CPU resource needs cut down, this leads to the reduction of other resources 

consumed (in this case is the bandwidth I/O). For simplicity, the additional factor of 

all fluid needs can show the same value and its value is between 0 and 1, with 0 

coinciding with the case the virtual service is not provided the fluid resource, whereas 

with 1 conforming to the virtual service which executes at the maximum resource 

allocation. Therefore, resource needs of resource type k of virtual service i on 

physical machine j with additional factor are given by an ordered vector pair 

(𝑅𝑒 + 𝑄 × 𝐹𝑒 , 𝑅𝑎 + 𝑄 × 𝐹𝑎). In which, 𝑄 = {𝑞𝑖𝑗|𝑖 = 1, . . . , 𝑁; 𝑗 = 1, . . . , 𝑀}  is a 

vector of additional factor of virtual services when the user requests, and 𝑞𝑖𝑗 intends 

the additional factor of virtual service i on physical machine j. 

3.2. Energy consumption model 

In order to estimate the energy consumption of the physical machines, we choose 

approximately the power consumption at a physical machine 𝑗 as a linear function 

(1)    𝑃𝑗(𝑢𝑗) = (𝑃𝑗
max − 𝑃𝑗

idle) × 𝑢𝑗 + 𝑃𝑗
idle   ∀𝑗.   

Among them, 𝑃𝑗
max and 𝑃𝑗

idle are the power of physical machine 𝑗 in the 

maximum used utilities state and idle state, respectively; 𝑢𝑗 is the total used utilities 

of all resources on the physical machines 𝑗, 𝑢𝑗 ∈ [0, 1], and it is  

(2)     𝑢𝑗 = ∑
𝑢𝑗𝑘

𝑐𝑗𝑘
𝑎

𝐷
𝑘=1 =   ∑

∑ (𝑟𝑖𝑘
𝑎 +𝑞𝑖𝑗 ×𝑓𝑖𝑘

𝑎 )×𝑥𝑖𝑗
𝑁
𝑖=1

𝑐𝑗𝑘
𝑎

𝐷
𝑘=1         ∀𝑗.   

In there, 𝑢𝑗𝑘  is a resource 𝑘 of a physical machine 𝑗 that it is allocated for virtual 

services, 𝑐𝑗𝑘
𝑎  is the capacity of aggregate resource 𝑘 on a physical machine 𝑗. The 

physical machines are not used, it will be shut down. Therefore, the energy 

consumption of the 𝑁 physical machines in the period ∆𝑡 is set as  

(3)    𝐸(𝑡) = {
∆𝑡 × ∑ 𝑃𝑗(𝑢𝑗)𝑀

𝑗=1     if   𝑢𝑗  ≠ 0,

 0               otherwise.
  

3.3. Objective function and constraints 

Assuming that each virtual service consists of a single virtual machine, which has a 

fixed resource, needs. An Energy Consumption Resource Allocation (ECRA) 

problem for virtual service is formulated by as follows:  

Let 𝑁 be virtual services, indexed by 𝑖 =  1, … , 𝑁;  𝑁 > 0, 𝑀 be physical 

machines having the different resource configuration, recorded by 𝑗 =  1, … , 𝑀, 
𝑀 > 0.  Each physical machine provides 𝐷  types of resource, listed by  

𝑘 =  1, . . . , 𝐷;  𝐷 > 0.  Use  𝑟𝑖𝑘
𝑒 , 𝑟𝑖𝑘

𝑎  to denote the elementary rigid needs and 

aggregate rigid needs of service 𝑖 for resource type 𝑘; 𝑓𝑖𝑘
𝑒 , 𝑓𝑖𝑘

𝑎  stand for the elementary 

fluid needs and aggregate fluid needs of service 𝑖 for resource type 𝑘; 𝑐𝑗𝑘
𝑒 , 𝑐𝑗𝑘

𝑎  imply 

the elementary resource and aggregate resource of physical machine 𝑗 for resource 

type 𝑘, and 𝑞𝑖𝑗 intends the additional factor of service 𝑖 on physical machine 𝑗. A 

binary variable 𝑥𝑖𝑗 that is equal to 1 if service 𝑖 is allocated the resource by physical 

machine 𝑗 and 0 otherwise. Finally, 𝑃𝑗
max and 𝑃𝑗

idle are the power of physical machine 
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𝑗 in the maximum used utilities state and idle state, respectively. Given these 

notations, an ECRA problem is described as follows. 

(4)    𝑥𝑖𝑗 ∈ {0,1},  𝑞𝑖𝑗 ∈ [0,1]    ∀𝑖, 𝑗,  

(5)    ∑ 𝑥𝑖𝑗
𝑀
𝑗=1 = 1    ∀𝑖,  

(6)    (𝑟𝑖𝑘
𝑒 + 𝑞𝑖𝑗 × 𝑓𝑖𝑘

𝑒 ) × 𝑥𝑖𝑗  ≤  𝑐𝑗𝑘 
𝑒    ∀𝑖, 𝑗, 𝑘,  

(7)    ∑ (𝑟𝑖𝑘
𝑎 + 𝑞𝑖𝑗 × 𝑓𝑖𝑘

𝑎) × 𝑥𝑖𝑗
𝑁
𝑖=1 ≤ 𝑐𝑗𝑘 

𝑎    ∀𝑗, 𝑘,   

(8)   (∑ (∑ ((𝑃𝑗
max − 𝑃𝑗

idle)𝐷
𝑘=1 ×

∑ (𝑟𝑖𝑘
𝑎 +𝑄𝑖𝑗×𝑓𝑖𝑘

𝑎 )𝑁
𝑖=1

𝑐𝑗𝑘 
𝑎 × 𝑥𝑖𝑗 + 𝑃𝑗

idle))) × 𝑡 → min.𝑀
𝑗=1  

Constraint (4) defines the domain of the variables. Constraint (5) determines the 

state that resources for service 𝑖 are provided by exactly one physical machine 𝑗. 

Constraint (6) states that the elementary resource of the physical machine 𝑗 does not 

overcome, and constraint (7) disposes that the aggregate resource of the physical 

machine 𝑗 does not overcome. Finally, formulation (8) is the optimized objective to 

minimum the energy consumption in a time period  𝑡.  

4. Solution based on simulated annealing algorithm 

The Simulated Annealing (SA) algorithm [13] is a well studied meta-heuristic. The 

key feature of simulated annealing is that it provides a mechanism to escape local 

optima in hopes of finding a global optimum for the optimization problems. 

To describe the specific features of a simulated annealing algorithm for discrete 

optimization problems, several definitions are needed. Let Ω be the solution space 

(i.e., the set of all possible solutions). Let f: Ω → ℜ be an objective function defined 

on the solution space. The goal is to find a global minimum, ω* (i.e., ω*  Ω such 

that f(ω*) ≤ f(ω) for all ω  Ω). The objective function must be bounded to ensure 

that ω* exists. Define E(ω) to be the neighbourhood function for ω  Ω. Therefore, 

associated with every solution, ω  Ω, are neighbouring solutions, E(ω), that can be 

reached in a single iteration of a local search algorithm. 

Simulated annealing starts with an initial solution ω  Ω. A neighbouring 

solution ω E(ω) is then generated (either randomly or using some pre-specified 

rule). Simulated annealing is based on the Metropolis acceptance criterion, which 

models how a thermodynamic system moves from the current solution (state) ω  Ω 

to a candidate solution ω E(ω), in which the energy content is being minimized. 

The candidate solution, ω, is accepted as the current solution based on the acceptance 

probability.  

Therefore, the algorithm is used a temperature global variable T. Initially, T is a 

very high value and it is decreased to the lower value after each of iteration. In 

specific loop, the cost function is considered for two solutions: the current solution 

and the neighbouring solution. If neighbouring solution is better than the current 

solution, it will be selected. In contrast, the neighbouring one can still be accepted in 

the hope of escaping local extreme for searching global extreme with a probability, 

which is, depends on the cost function value between the current one, so far best 

explanation and parameter value T. The algorithm will stop after looking for a global 

optimal value or a temperature as the value Tmin. 
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In summary, the pseudo code of ECRA-SA algorithm to solve an ECRA 

problem is shown as an Algorithm 1. 

Algorithm 1: ECRA-SA 

Input:  

   – Number of virtual services N, type of resources D and additional factor 𝑞𝑖𝑗. 

   – Number of physical machines M. 

Output: List of used physical machines, 𝑆best.   
Step 1.  𝐝𝐨𝐮𝐛𝐥𝐞   𝑇 ← 𝑇0;  𝑇min; 
Step 2.  𝑆best ← initSolution(𝑀, 𝑁); // Execute initialization solution by FFD 

Step 3.  𝐸best  ←  according to Equation (3); 
Step 4.  𝐰𝐡𝐢𝐥𝐞 (𝑇 >  𝑇min) 𝐝𝐨  

Step 5.     𝐟𝐨𝐫  𝑙 ∶=  1 𝐭𝐨 𝐿 𝐝𝐨 // L is the number of iterative 

Step 6.            𝑆current ←  𝑆best;       
Step 7.            𝐸current ←  according to Equation(3);      
Step 8.     𝑆neighbor ←  currentNeighborSolution (𝑀, 𝑁); // Execute the current  

                                                                                          // neighbouring solution 

Step 9.            𝐸neighbor  ← according to Equation(3);      

Step 10.        𝐢𝐟 (𝐸neighbor < 𝐸current) 𝐭𝐡𝐞𝐧 

Step 11.              𝑆current  ←  𝑆neighbor; 

Step 12.              𝐸current ←  according to Equation(3); 
Step 13.         𝐞𝐧𝐝 𝐢𝐟     

Step 14.         𝐢𝐟(𝐞𝐱𝐩(
𝐸neighbor−𝐸current

𝑇
) > 𝐫𝐚𝐧𝐝𝐨𝐦(0,1))  

Step 15.              𝑆current  ←  𝑆neighbor; 

Step 16.              𝐸current ←  according to Equation(3); 
Step 17.        𝐞𝐧𝐝 𝐢𝐟 

Step 18.        𝐢𝐟 (𝐸current < 𝐸best) 𝐭𝐡𝐞𝐧 

Step 19.             𝑆best ←  𝑆current; 

Step 20.             𝐸current ←  according to Equation(3); 
Step 21.         𝐞𝐧𝐝 𝐢𝐟 

Step 22.     𝐞𝐧𝐝 𝐟𝐨𝐫  𝑙 ∶=  0 𝐭𝐨 𝐿  
Step 23.     𝑇 ←  𝑇 × (1 − CR);     // CR is a Cooling Rate       

Step 24.  𝐞𝐧𝐝 𝐖𝐡𝐢𝐥𝐞 

Step 25.  𝐫𝐞𝐭𝐮𝐫𝐧 𝑆best; 
Firstly, we will initialize the initial temperature 𝑇0 and the final temperature 

𝑇min. We obtain the initial solution 𝑆best by FFD [12] and calculate the objective 

function 𝐸best. Next, an initial solution 𝑆best is showed a current solution 𝑆current. 

We generate a feasible neighboring solution, 𝑆neighbor, using the random resource 

allocation method (based on the Algorithm 2) and calculate the objective function, 

𝐸neighbor, and determine the Metropolis condition (i.e., if  𝐸neighbor < 𝐸current then 

the new solution, 𝑆neighbor, be accepted as the initial solution for next loop. 

Otherwise, if (exp (
𝐸neighbor−𝐸current

𝑇
) > random(0, 1)) then new solution 𝑆neighbor 

can be accepted). If the iteration value L is not enough then we continue. Finally, 
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reduce the temperature 𝑇, if the new temperature is not greater than the stopping 

temperature 𝑇min stop and output the optimal solution 𝑆best.  

Algorithm 2: 𝐂𝐮𝐫𝐫𝐞𝐧𝐭𝐍𝐞𝐢𝐠𝐡𝐛𝐨𝐫𝐒𝐨𝐥𝐮𝐭𝐢𝐨𝐧() 
Input:  

– Number of virtual services N, type of resources D and additional factor 𝑞𝑖𝑗. 

– Number of current physical machines Mcurrent. 

Output: List of used physical machines, allocation.   
Step 1. 𝐟𝐨𝐫  𝑖 ∶=  1 𝐭𝐨  𝑁  𝐝𝐨  
Step 2.   𝐢𝐧𝐭  rand ←  𝐫𝐚𝐧𝐝𝐨𝐦(𝑀current); 
Step 3.   𝐟𝐨𝐫  𝑗 ∶=  rand  𝐭𝐨  𝑀current  𝐝𝐨  
Step 4.     𝐟𝐨𝐫  𝑘 ∶=  1  𝐭𝐨  𝐷  𝐝𝐨  
Step 5.     Sum𝑖𝑘

𝑒 ← 𝑟𝑖𝑘
𝑒 + 𝑞𝑖𝑗 × 𝑓𝑖𝑘

𝑒  ; // calculate the total of element resource 

needs 
Step 6.      Sum𝑖𝑘

𝑎 ← 𝑟𝑖𝑘
𝑎 + 𝑞𝑖𝑗 × 𝑓𝑖𝑘

𝑎  ; // calculate the total of aggregate resource 

needs 
Step 7.        𝐢𝐟(𝑐𝑗𝑘

𝑒 ≥ Sum𝑖𝑘
𝑒  𝐚𝐧𝐝 𝑐𝑗𝑘

𝑎 ≥ Sum𝑖𝑘
𝑎 )        

Step 8.             𝑐𝑗𝑘
𝑎 ← 𝑐𝑗𝑘

𝑎 − Sum𝑖𝑘
𝑎  ;      

Step 9.        𝐞𝐧𝐝 𝐢𝐟 
Step 10.    𝐞𝐧𝐝 𝐟𝐨𝐫  𝑘 ∶=  1  𝐭𝐨  𝐷 
Step 11.    Allocation [𝑖]  ←  𝑗; 
Step 12.          𝐛𝐫𝐞𝐚𝐤;  
Step 13.   𝐞𝐧𝐝 𝐟𝐨𝐫  𝑗 ∶=  rand  𝐭𝐨  𝑀current 
Step 14.  𝐞𝐧𝐝 𝐟𝐨𝐫  𝑖 ∶=  1  𝐭𝐨  𝑁 
Step 15.  𝐫𝐞𝐭𝐮𝐫𝐧 Allocation; 
M i t r a  et al. [18] have shown that a Simulated Annealing algorithm converges 

in the limit to a globally optimal solution with probability 1. Therefore, the  

ECRA-SA algorithm will converge after the finite iteration steps (i.e., 𝑇 =  𝑇min).  

Let N be the number of virtual services, M be the number of physical machines, 

D be the dimension of resources, 𝑇 be initialized temperature and 𝐿 be the number of 

loop. The complexity of algorithm is calculated as follows:  

 An initializing solution: O(𝐷 × 𝑁 × 𝑀), a neighbouring solution:  

O(𝐷 × 𝑁 × 𝑀), the estimating of cost function: O(𝐷 × 𝑀). Therefore, the 

complexity of algorithms:  

O(𝐷 × 𝑁 × 𝑀) +O(𝑇 × 𝐿 × (O(𝐷 × 𝑁 × 𝑀)+O(𝐷 × 𝑀))). 

 If 𝐷, 𝑇, 𝐿 are considered as a constant, this algorithm have the computational 

complexity of O(𝑁 × 𝑀). 

5. Numerical result and evaluation 

5.1. Simulation 

To assess the ECRA-SA algorithm, we compared this algorithm to the FFD [25] by 

using the CloudSim tool [3]. CloudSim is used to enable modelling and simulation 

of cloud computing systems and application provision environments. It supports the 
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modelling of cloud system components such as Data Centre, Hosts, Virtual Machines 

(VMs) and resource provision policies (Fig. 1).  

 

Fig. 1.  CloudSim components 

As presented in Section 3, each virtual service is one separate virtual machine. 

Therefore, we inherited the Vm layer to extend the resource need features of virtual 

machine and the Host layer to extend the resource features of physical machine. 

Meanwhile, we inherited the VMAlloctonPolicy layer to perform the resource 

allocation policy for virtual machine based on the ECRA-SA algorithm. The 

experimental data are extracted from the real data as indicated in [1, 2]. Table 1 

presents the resource characteristics and the power of physical machines. The 

resource characteristics of virtual machines, which are similar to the virtual machines 

of Amazon EC2 cloud, are adjusted to suit the problem, shown in Table 2. 

Table 1.  Type of physical machine 

Type of physical machine 
CPU 

(MHz) 

RAM 

(GB) 

BW 

(GB per 1 s) 

Disk 

(GB) 

Pidle 

(kW) 

Pmax 

(kW) 

HP proliant G4 2 core × 1860 4 1 20 86 117 

HP proliant G5 2 core × 2660 4 1 40 93.7 135 

IBM Server × 3250 4 core × 2933 8 1 600 46.1 113 

IBM Server × 3550 6 core × 3067 16 1 800 58.4 222 

Table 2.  Type of virtual machine 

Type of virtual 

machine 
CPU(MHz) RAM(GB) 

BW 

(GB per 1 s) 
DISK(GB) 

Virtual Machine 1 2500 0.85 0.45 5 

Virtual Machine 2 2000 3.75 0.35 10 

Virtual Machine 3 1000 1.7 0.25 15 

Virtual Machine 4 500 0.613 0.15 20 

5.2. The experimental results 

The parameters of the ECRA-SA algorithms are used: T0=1000; CR=5; Tmin=0; 

L=100. The number of virtual machines (represents for the number of virtual 

services) in the experimental is 100; 200; 300; 400; 500 respectively and the energy 
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consumption in a time period of 𝑡 = 24 hours. Measure unit of energy consumption 

is kW.h, and the runtime of algorithm is calculated by second (s). The performed time 

is measured by a PC having an Intel(R) Core(TM) i5–3235M 2.60 GHz, RAM 4Gb 

microprocessor. Moreover, we use the next formula to compare the gain energy 

consumption between two algorithms:  

(9)    Gain Energy (%) =
𝐸FFD−𝐸ECRA-SA

𝐸ECRA-SA × 100,  

where 𝐸FFD is the energy consumption when using the FFD algorithm and 𝐸ECRA-SA 

is the energy consumption when using the ECRA-SA algorithm, respectively. 

Table 3.  Used physical machines and consumed energy 

 

 

Fig. 2.  The graph of runtime and consumed energy 

Based on the results in Table 3 and Fig. 2, we showed that consumed energy of 

ECRA-SA algorithm is better than FFD. Because the FFD algorithm tends to use a 

large number of physical machines, the ECRA-SA algorithm uses a more efficient 

global search solution. However, the execution time of the ECRA-SA algorithms are 

larger than FFD algorithm. A reason of this is affected by parameter of the number 

of iterations in ECRA-SA algorithms, which provides a mechanism to escape local 

optima in hopes of finding a global optimum for the optimization problems. However, 

the execution time of the algorithm is short and it can be applied in practice. 

The ECRA-SA algorithm could give optimal or non-optimal results depending 

on the input value of the algorithm, including the number of virtual services N, the 

number of resource types D, rigid needs of virtual service and the resource capacity 

of physical machines. 

No of VM Algorithm Times (s) Energy (kW.h) Gain Energy (%) 

100 
FFD 0.031 201.284  

ECRA-SA 0.038 193.000 4.292 

200 
FFD 0.078 396.706  

ECRA-SA 0.088 392.490 1.074 

300 
FFD 0.116 597.989  

ECRA-SA 0.125 577.754 2.297 

400 
FFD 0.144 793.411  

ECRA-SA 0.160 772.185 2.749 

500 
FFD 0.200 994.694  

ECRA-SA 0.218 972.439 2.289 
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If the resource capacity of the physical machine is strong enough and the 

resource needs of the virtual service are low, the ECRA-SA algorithm gives a good 

effective. The best case of the algorithm is that when the first loop an acceptable 

solution (the value of objective function is a best value), then the algorithm stops and 

offers the acceptable solution.  

The worst case is that finished all loops that do not find any solutions and the 

execution time of the algorithm is very large because of the algorithm complexity. 

This case occurs when the resource needs of virtual service are too large, and the 

system does not have enough resources to provide. 

6. Conclusion  

The article presents the Multi-Objective Resource Allocation problem for virtual 

services with the optimal constraints: minimize the energy consumption of the 

system. We propose the ECRA-SA algorithm based on the Simulated Annealing 

method. We also set up, assessed and compared it with the FFD algorithm through 

the parameters consumed energy and execution time. The algorithms were executed 

on the real data by CloudSim tool. The experimental outstanding shows that the 

energy consumption proposed by the ECRA-SA algorithm is better than the 

performance of FFD algorithm. For the future work, the proposed approach will be 

extended for multi-objective dynamic resource allocation. 
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