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1. Introduction 

The majority of measures to stimulate competitiveness in economy to a large extent 
are focused on management and cooperation of small and medium-sized enterprises 
[4, 24]. One of the effective recommended polices is economic clustering. Studies in 
this area are mainly focused on regional and product integration. The results are 
related to identifying naturally occurring clusters, studying their effectiveness and 
expansion, through top-down management actions [23]. Economic cluster is a group 
of enterprises joined by stable economic, political and innovation social relations, 
which are not defined by an organised membership. The strategic purpose is 
increasing the degree of knowledge and establishing new networks of communication 
in the production of innovative products [25].  

When developing decision-making tools for cluster design, some of the 
approaches are based on multi-criteria methods working in a determined [5] and/or 
fuzzy environment. Researches related to the development of tools for clusters design 
has traditionally based on determinate information. Here is presented an attempt to 
solve decision-making problems using an approach based on methods of fuzzy sets 
theory since it gains popularity in variety of applications [10-13, 27]. The problem of 
selection of cluster structure design can be classified as a “poorly structured” task 
under uncertainty.  
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In the paper is proposed an approach for initial step of economic clustering that 
allows selected list of enterprises to be ranked in a descending order of their 
integrated development status assessments. The aim is to include them in a certain 
technological network node of the cluster by using multi-criteria decision methods 
under conditions of determinism or fuzziness. The suggested decision is based on 
descending ranking of integral score of enterprises’ business performance within 
nodes of predetermined Technological Network (TN). 

The tests are performed using software designs of fuzzy models [15-21] 
presented and tested in [6]. The solutions are based on several groups of algorithms 
classified as follows: 

A. Criteria – real numbers, fuzzy relations and/or fuzzy numbers 
 Weighting coefficients – real numbers: Algorithm with aggregation operators 

with weighting coefficients real numbers (ATOKRI1) and algorithm with 
aggregation operators without weighting coefficients for criteria (ATOKRI2); 

 Weighting coefficients – fuzzy relations: Algorithm with ranking function 
(ARAKRI1) and mixed data algorithm (ARAKRI3); 

 Weighting coefficients – real functions: Algorithm for crisp criteria with 
weighted coefficients – weighting functions (ATOKRIF). 

B. Criteria – only fuzzy numbers. 
C. No weighting coefficients – direct aggregation fuzzy numbers algorithm 
(ARAKRI2). 
The implementation of presented approach is illustrated by an example 

performed by above fuzzy algorithms and results are compared to classical multi-
criteria outranking method PROMETHEE II [3]. 

2. The economic clustering problem definition 

The economic clustering problem on a given technology network is defined as a 
multi-criteria selection task and is partially described in [25, 26].  

There are three tasks defined as: 
Task 1.  Preparing of a list of enterprises – potential participants in the cluster 

with an indication of their membership to a particular node of TN. 
Task 2.  Developing of a “passport” for each enterprise, according to a 

predetermined system of criteria. 
Task 3.  Assessing and ranking of enterprises scores in decreasing order on TN 

nodes. Based on this decision, selection of lists of potential participants for each node 
of TN. 

Diagram of the approach is shown in Fig. 1. Tasks 1 and 2 carry out the 
preparatory phase. Task 3 implements the analytical and decision-making stage. 

Task 1 is considering four steps. 
Step 1. Description and setting the number of nodes t in TN (branch affiliation, 

and relations in technological chain of production). 
Step 2. Setting lists of enterprisesnt, where n indicates the number of potential 

participants. Such list is prepared for each node t. 
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Step 3. Developing the structure of a “passport” for each node t. Assessments 
are performed for enterprises by nodes t individually.  

Step 4. Collecting, selecting and processing “passport” data. (For the purposes 
of this study, a universal “passport” structure is adopted for all t nodes.) 

Task 2 consists three steps. 
Step 1. Determination of ranking lists according to the number of nodes t. 
Step 2. Determination of number of alternatives and criteria. The number of 

alternatives depends on the number of enterprises. A “passport” determines the 
number of criteria. 

Step 3. Processing the primary information and selection of the type of input 
data. 

Task 3 is analysis of rankings and final selection of enterprises. 

 
Fig. 1. Diagram of economic clustering approach 

3. Data definitions 

A finite set of alternatives 𝐴 = {𝑎1, … , 𝑎𝑗 , … , 𝑎𝑛} is defined, evaluated by criteria  
𝐾 = {𝑘1, … , 𝑘𝑗 , … , 𝑘𝑚}. The weights of criteria are 𝑊 = {𝑤1, … , 𝑤𝑗 , … , 𝑤𝑚}. The final set 
A is the list of enterprises in a given node. The final set K contains Passport’s criteria. 
The input data are presented in Table 1. The number of tables equals the number of 
technological nodes in a cluster. 

The real numbers 𝑥𝑖𝑗 , 𝑖 = 1, … , 𝑛;  𝑗 = 1, … , 𝑚,  in the table are the assessment 
of the alternative 𝑎𝑖 by the criterion 𝑘𝑗. To each criterion 𝑘𝑗 is assigned a weighting 
coefficient 𝑤𝑗. The total number of selected criteria equals to m, such as 𝑚 = 𝑚1 +

𝑚2 + 𝑚3, where: 𝑚1 is the number of criteria that are set as crisp numbers, 𝑚2 is the 
number of criteria that are set as fuzzy relations, and 𝑚3 is the number of criteria that 
are given as fuzzy numbers. 
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Table 1. The input data 

Alternatives 
Criteria 

 
k1

 
… kj

 
… km

 

a1
 

x11
 

… x1j
 

… x1m
 

      

ai
 

xi1
 

… xij
 

… xim
 

 

... 

... 

... 

... 

... 

an
 

xn1
 

… xnj
 

… xnm
 

Weights of criteria
 

w1 … wj … wm 

4. Data presentation and different cases 

The combinations of data determine algorithms in use. The criteria data, weighting 
coefficients, and algorithms used are systematized in Table 2. 

Table 2. Criteria data, weighting coefficients and algorithms 

Criteria data Non (w) (w) Real 
numbers 

(w) Fuzzy 
relations 

(w) Real 
functions 

One type 
criteria 

Real 
numbers m1 

ATOKRI2 ATOKRI1 or 
ATOKRI2 

ATOKRI1 -> 
ARAKRI 

ATOKRI  -> 
ATOKRIF 

or fuzzy 
relations m2 

 ATOKRI1 or 
ATOKRI2 ARAKRI ATOKRIF 

or fuzzy 
numbers m3 

 ARAKRI 1 or 
ARAKRI 2  

ARAKRI1 
or 

ARAKRI2 

Mixed type 
criteria 

Real 
numbers m1 

 
ARAKRI1, 

ATOKRI1 or 
ATOKRI2 

ATARR, 
ARAKRI1 

ARAKRI1, 
MMTRR, 
ATOKRIF 

Fuzzy 
relations m2 

 MMTRR   

Fuzzy 
numbers m3 

 ARAKRI3   

A block-diagram of algorithms application is given in Fig. 2. 
Case 1. Crisp criteria assessment and crisp weights 
All criteria – crisp (𝑚1 = 𝑚) and weighting coefficients – real numbers 

(𝑤1, … , 𝑤𝑚). The crisp criteria assessments are limited to fuzzy relations with certain 
properties. The calculations [22, 28] are using aggregation operator algorithm 
ATOKRI1 or algorithm with aggregation operator without weighting coefficients 
ATOKRI2, where transformations of ATOKRI1 fuzzy relations generated by 
ATOKRI1 are performed and then aggregation operators without weighting 
coefficients are used. 
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Fig. 2. Block-diagram of fuzzy algorithms application 

The algorithm ATOKRI1 uses data from Table 1. Since criteria assessments can 
be set in different measuring scales it is necessary to normalize 
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i j
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x x






   
 


 

where k(ai, aj),   ai, aj  A, k  {k1, k2, …, km}.  
For each column of Table 1 the corresponding fuzzy relation 𝑅𝑘 is calculated, 

i.e., for k-criteria. Corresponding fuzzy relation in the matrix is 
(1) 𝑅𝑘 = {𝜇𝑘(𝑎1, 𝑎𝑗}, 𝑖, 𝑗 = 1, … , 𝑛, 𝑘 = 1, … , 𝑚. 

The minimizing criteria should be transformed into maximizing.  
Relations 𝑅𝑘 are shrunk to aggregated relations R with the following matrix: 

(2)  𝑅 = {𝜇𝑘(𝑎1, 𝑎𝑗)}, 𝑖, 𝑗 = 1, … , 𝑛.  
The matrix elements are computed by aggregation operators with weighting 

coefficients {𝑤1, … , 𝑤𝑗, … , 𝑤𝑚}. The following operators are used and values for 
𝜇𝑘(𝑎𝑖, 𝑎𝑗) are derived form (1): 

(3) 
1

( , ) ( , ),
m

i j k k i j
k

a a w a a 


   where 0 ≤ wk  ≤ 1, 
1

1,
m

k
k

w


  

(4) 
1

( , ) [ ( , )] ,
kwm

i j k i j
k

a a a a 


   where 0 < wki  ≤ 1, 
1

1.
m

k
k

w
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For two operators above weights of the criteria are normalized: 
(5)   (ai, aj)= max{min( ( , ), )},k i j kk

a a w  where 0≤ wk ≤1, max{ } 1,kki
w   

k = 1, …, m, 
(6)   (ai, aj)= min{max( ( , ),1 )},k i j kk

a a w   where 0≤ wk≤ 1, max{ } 1,kki
w    

k = 1, …, m. 
For two operators above weights of the criteria are also normalized. 
There are obtained four aggregated relations, i.e., four matrices of type R (2). 

Each of matrices is recalculated to matrices R' in the following manner: 
(7) if (ai, aj)≥(aj, ai), then '(ai, aj)=(ai, aj) and '(aj, ai)=0. 

The matrices R' are rearranged to triangular matrices that show the order of 
alternatives in descending order depending on selected aggregation operator. 

The difference between ATOKRI2 and ATOKRI1 is in the choice of 
aggregation operators. ATOKRI2 uses operators without weighing coefficients. If the 
criteria weights are not set, then after obtaining the fuzzy relations 𝑅𝑘 , 𝑘 = 1, … , 𝑚,  
by (1) and recalculation of the minimizing criteria from the corresponding steps of 
ATOKRI1, aggregated relations are calculated by aggregating operators: 
(8) 𝜇(𝑎𝑖, 𝑎𝑗) = 𝛼 max{𝜇𝑘(𝑎𝑖, 𝑎𝑗)} + (1 − 𝛼)min{𝜇𝑘(𝑎𝑖, 𝑎𝑗)}, 

𝛼 ∈ [0, 1], 𝑖, 𝑗 = 1, … , 𝑛, 𝑘 = 1, … 𝑚; 
(9)  𝜇(𝑎𝑖, 𝑎𝑗) =

𝜆

𝑚
∑ 𝜇(𝑎𝑖 , 𝑎𝑗)𝑚

𝑘=1 + (1 − 𝜆) min{𝜇(𝑎𝑖 , 𝑎𝑗)}, 
 𝜆 ∈ [0,1], 𝑖, 𝑗 = 1, … , 𝑛; 

(10)𝜇(𝑎𝑖, 𝑎𝑗) = {[∏ 𝜇(𝑎𝑖 , 𝑎𝑗)𝑚
𝑘=1 ]

1−𝛾
[1 − ∏ (1 − 𝜇(𝑎𝑖, 𝑎𝑗))𝑚

𝑘=1 ]
𝛾

if 𝜇(𝑎𝑖 , 𝑎𝑗) ≠ 0.

0                                                                                                otherwise.
 

The values 𝜇𝑘(𝑎𝑖, 𝑎𝑗) are taken from (1). Coefficients 𝛼, 𝜆, 𝛾 are set according 
to particular task. It can be experimented with different values. 

Since aggregated relations (aggregated matrices of type R(2)) are obtained then 
the other steps of ATOKRI1 algorithm are followed, i.e., each matrix is recalculated 
to R' matrices by (7). The R' matrices are ranked and produce triangular matrices that 
show descending order of alternatives depending on selected aggregation operator. 
In order to use the above aggregation operators, if criteria weights are set, the steps 
of the algorithm are following: the values of the matrices 𝑅𝑘 , 𝑘 = 1, … , 𝑚, by (1), are 
transformed: 
(11)   𝜇𝑘

1(𝑎𝑖 , 𝑎𝑗) = (1 − 𝑤𝑘) + 𝜇𝑘(𝑎𝑖, 𝑎𝑗) − (1 − 𝑤𝑘)𝜇𝑘(𝑎𝑖, 𝑎𝑗), 𝑖, 𝑗 = 1, . . . , 𝑛, 
or 
(12)  𝜇𝑘

2(𝑎𝑖, 𝑎𝑗) = 𝑤𝑘𝜇𝑘(𝑎𝑖, 𝑎𝑗), 
where 𝜇𝑘(𝑎𝑖, 𝑎𝑗) is a corresponding element of the matrix (1). 

For each relation 𝑅𝑘, 𝑘 = 1, … , 𝑚, is obtained two matrices 𝑅𝑘
1 = {𝜇𝑘

1(𝑎𝑖, 𝑎𝑗},  
𝑅𝑘

2 = {𝜇𝑘
2(𝑎𝑖, 𝑎𝑗}. For R(2) are used aggregation operators (8), (9), (10) for respective 

aggregated relations. Calculations proceed by following the other steps of ATOKRI1 
algorithm (see Fig. 2). 
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Case 2. Crisp criteria assessments without weighing coefficients 
All criteria are crisp, 𝑚1 = 𝑚. Criteria weights are not specified – the crisp 

estimates of criteria are reduced to fuzzy relations with certain properties and 
calculations are performed with ATOKRI2 (see Fig. 2). 

Case 3. Ccrisp criteria assessments and weighting  coefficients – real  functions 
All criteria are crisp, 𝑚1 = 𝑚. Weighting coefficients are real functions 

𝑓1(𝑥), … , 𝑓𝑚(𝑥), 𝑥 ∈ [0, 1] – crisp criteria estimates are reduced to fuzzy relations 
using ATOKRI1 algorithm, then ATOKRIF is used for crisp criteria with weighting 
coefficients – weighting functions. 

The difference between ATOKRIF and ATOKRI algorithms is in the choice of 
weighting coefficients for criteria. ATOKRIF uses as weighting coefficients 
weighting functions 𝑓1(𝑥), … , 𝑓𝑚(𝑥), 𝑥 ∈ [0, 1], with arguments the elements of 
corresponding matrices (1).  

The input data for ATOKRIF are fuzzy relations. If relations are derived from 
ATOKRI1, they have the proper properties to obtain a ranking. If relations are set, 
they must be checked for required properties. If requirements are not met, they are 
transformed into respective relations. So, the relations are processed with MMTRR 
algorithm. Let obtained from ATOKRI1 relations are 𝑅𝑘 , 𝑘 = 1, … , 𝑚. Aggregated 
relations are calculated by selection of one of the following weighing functions. The 
setting of relevant function parameters that must meet conditions: 

 Linear functions 
(13)  𝑓𝑘(𝑥) = 1 + 𝛽𝑘𝑥, 0 ≤ 𝛽𝑘 ≤ 1, 𝑘 = 1, … , 𝑚, 𝑚 ≥ 2.   

 Parametric linear functions 
(14) 𝑓𝑘(𝑥) = 𝑎𝑘

1+𝛽𝑘𝑥

1+𝛽𝑘
= 𝛾𝑘(1 + 1 + 𝛽𝑘𝑥). 

0 ≤ 𝛼𝑘 ≤ 1, 0 ≤ 𝛽𝑘 ≤ 1, 𝛾𝑘 =  
𝛼𝑘

1 + 𝛽𝑘
, 𝑘 = 1, … , 𝑚. 

 Quadratic functions 
(15) 𝑓𝑘(𝑥) = 1 + (𝛽𝑘 − 𝛾𝑘)𝑥 + 𝛾𝑘𝑥2, 𝛽𝑘 ≥ 0, 𝛾𝑘 ≥  0, 𝑘 = 1, … , 𝑚. 

Function’s parameters are unrelated and different for different functions. 
For each relation 𝑅𝑘 , 𝑘 = 1, … , 𝑚 a new degree of preference for each criteria k 

are calculated with corresponding weighting function: 

𝜇𝑘
𝑤(𝑎𝑖, 𝑎𝑗) = {

1                                               if 𝑎𝑖 = 𝑎𝑗

𝑓𝑘(𝜇𝑘(𝑎𝑖, 𝑎𝑗))𝜇𝑘(𝑎𝑖 , 𝑎𝑗)

𝑆(𝑎𝑖 , 𝑎𝑗)
     if 𝑎𝑖 ≠ 𝑎𝑗

,   𝑖, 𝑗 = 1, 2, 3, 𝑘 = 1, 2, 

where 𝑆(𝑎𝑖 , 𝑎𝑗) = ∑ 𝑓𝑘(𝜇𝑘(𝑎𝑖, 𝑎𝑗))𝑚
𝑘=1 , 𝑓𝑘(. ) is one of weighting functions  

(13)-(15). 
The result is m matrices 𝑅𝑘

𝑤 = {𝜇𝑘
𝑤(𝑎𝑖, 𝑎𝑗}, 𝑖, 𝑗 = 1, … , 𝑛, 𝑘 = 1, … , 𝑚. 

These matrices are combined into a matrix of the type R(2), the elements of 
which are obtained by sum of corresponding elements of matrices 𝑅𝑘

𝑤. Based on the 
R-type matrix, other steps of ATOKRI1 algorithm are followed (see Fig. 2), i.e., 
recalculation to the matrices R' by (7). The resulting matrix R' is reordered to obtain 
a triangular matrix that shows descending ranking of alternatives. 
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Case 4. Crisp criteria assessments and fuzzy relation of preference for criteria 
weights 

All criteria are crisp 𝑚 = 𝑚1. A fuzzy relation of preference W is set for criteria 
weight – the crisp criteria estimates are reduced to fuzzy relations with ATOKRI1. 
Then ARAKRI is used for fuzzy relations of alternatives and weights of criteria. In 
ARAKRI the input data are fuzzy relations of type (1) between alternatives by each 
criterion and a fuzzy relation between criteria. The input data for criteria can be both 
crisp (as in Table 1) and fuzzy relations of type (1). For crisp criteria, the first steps 
of ATOKRI1 algorithm calculate fuzzy relations of alternatives. If criteria 
assessments are set directly as fuzzy relations, then it is checked for additive 
transitivity properties of reciprocal relations. If not, the initial relations are 
transformed (using ATARR algorithm described in Case 7) into new fuzzy relations 
with necessary properties. The weighting coefficients of criteria are given as a fuzzy 
relation with certain properties of: 

(16) 𝑊 = {
0.5,            𝑖 = 𝑗
1 − 𝑤𝑖,𝑗, 𝑖 ≠ 𝑗

, 𝑖, 𝑗 = 1, … , 𝑚.  

After receiving the matrices by all criteria 𝑅𝑘 , 𝑘 = 1, … , 𝑚, i.e., one obtained 
from ATOKRI1 and the other verified for required properties, there are given two 
possibilities for joining each matrix pair to include the elements of the matrix W. If 
the fuzzy relations are consistent with criteria 𝑅1, … , 𝑅𝑚, then by merging 𝑅𝑖 and 𝑅𝑗, 
taking into account respective elements of the matrix W it is obtained a new relation 
𝑅𝑖𝑗 and since 𝑅𝑖𝑗 = 𝑅𝑗𝑖, the number p of the new relation will be equal to the 
combination of two elements of m, i.e., 𝑝 =

𝑚(𝑚−1)

1.2
. For aggregation of these new 

pairs p, ATOKRI2 algorithm is used and the next steps are proceed (Fig. 2). 
Case 5. Criteria evaluations – fuzzy relations, weighting coefficients are real 

numbers 
All criteria set fuzzy relations of preference between alternatives, 𝑚2 = 𝑚 and 

weighting coefficients are real numbers. Fuzzy relations are checked for max-min 
transitivity (using MMTRR algorithm). Those that are not are transformed into new 
relations. ATOKRI1 with aggregation operators with weighted coefficients is used 
and/or ATOKRI2 where weight transformations of fuzzy relations are performed. 
Then aggregation operators without weighting coefficients are used. The algorithm 
MMTRR includes: 

A. Verification algorithm for max-min transitivity of two relations: 
1. It is given a relation 𝑅 = ‖𝑟𝑖𝑗‖, 𝑟𝑖𝑗 = 1, 𝑖, 𝑗 = 1, … , 𝑛.  
2. If 𝑟𝑖𝑗 ≥ min(𝑟𝑖𝑘,𝑟𝑘𝑗) , ∀𝑖, 𝑗, 𝑘 = 1, … , 𝑛, relation is max-min transitive, 

otherwise it is transformed into max-min transitive relation using the following 
algorithm. 

B. Algorithm for obtaining a max-min transitive relation: 
1. It is given a relation 𝑅 = ‖𝑟𝑖𝑗‖, 𝑖, 𝑗 = 1, … , 𝑛. 
2. Calculate: 

𝑅2 = 𝑅 ∘ 𝑅 = ‖𝑟𝑖𝑗
2‖, 𝑟𝑖𝑗

2 = max{min (𝑟𝑖𝑘, 𝑟𝑘𝑗}, 𝑖, 𝑗, 𝑘 = 1, … , 𝑛, 
𝑅3 = 𝑅2 ∘ 𝑅 = ‖𝑟𝑖𝑗

3‖, 𝑟𝑖𝑗
3 = max{min (𝑟𝑖𝑘

2 , 𝑟𝑘𝑗}, 𝑖, 𝑗, 𝑘 = 1, … , 𝑛. 
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3. For a matrix of 𝑛 × 𝑛 dimensions, n is the number of matrices, where  
 𝑅𝑖 = 𝑅𝑖−1 ∘ 𝑅, 𝑖 ≥ 2 𝑅𝑖 = ‖𝑟𝑖𝑗

𝑖 ‖, 𝑟𝑖𝑗
𝑖 = max{min (𝑟𝑖𝑘

𝑖−1, 𝑟𝑘𝑗}, 𝑖, 𝑗, 𝑘 = 1, … , 𝑛. 
4. The transitive closing of R is a transitive fuzzy relation that contains 𝑅𝑇 and 

𝑅𝑇 = 𝑅⋃𝑅2⋃ … ⋃𝑅𝑛. 
Case 6. Criteria assessments – fuzzy relation, weighting coefficients are real 

functions 
All criteria are set as fuzzy relations of preference between alternatives, i.e., 

𝑚2 = 𝑚. Weighting coefficients are real functions 𝑓1(𝑥), … , 𝑓𝑚(𝑥), 𝑥 ∈ [0, 1]. Using 
MMTRR algorithm fuzzy relations are checked for certain properties. Then the steps 
of ATOKRIF are proceeding. 

Case 7. Criteria assessments and weighting coefficients are fuzzy preference 
relations 

All criteria are set as fuzzy relations of preference between alternatives, i.e., 
𝑚2 = 𝑚. Fuzzy preference relation W (weights) of criteria is given. Fuzzy relations 
are checked for the additive transitivity of reciprocal relations with ATARR 
algorithm [12]. The next steps of ARAKRI are proceeding (Fig. 2).  

Case 8. Criteria assessments – fuzzy numbers and weighting coefficients are 
real numbers 

All criteria give fuzzy numbers for evaluations of alternatives, i.e., 𝑚3 = 𝑚 and 
weighting coefficients are real numbers 𝑤1, … , 𝑤𝑚. One or more algorithms 
ARAKRI are used when evaluating the fuzzy numbers. For these algorithms, it is 
required estimates of alternatives for all criteria to be fuzzy or real numbers. Two 
approaches are then proposed for decision-making. One is ARAKRI1 algorithm, 
where fuzzy numbers are replaced by a corresponding real index by a ranking 
function. The aggregation is by aggregating operators depending on set weights of 
criteria. The other is ARAKRI2 algorithm where no ranging function is used, but 
aggregating operators directly generates aggregated fuzzy numbers. The advantage 
of ARAKRI2 is the smaller amount of input data needed. As this method does not 
require weighting coefficients, memory complexity is reduced and expert’s 
subjectivity is substantially less [6]. 

Evaluations of the alternatives according to criteria in ARAKRI1 are fuzzy 
numbers given in a matrix form 

(17) , 

where the fuzzy numbers are of the type: �̃�𝑖𝑗 = (𝑎𝑖𝑗
1 ,  𝑎𝑖𝑗

2 ,  𝑎𝑖𝑗
,3,  𝑎𝑖𝑗

4 ), 𝑖 = 1, … , 𝑛, 

 𝑗 = 1, … , 𝑚, 𝑎𝑖𝑗
1 ≤ 𝑎𝑖𝑗

2 ≤  𝑎𝑖𝑗
3 ≤  𝑎𝑖𝑗

4  are real numbers and for corresponding criteria 
these assessments could be of different scales and unification and normalization of 
fuzzy numbers is needed. The unified and normalized fuzzy number  
�̃�𝑖𝑗 = (𝑧𝑖𝑗

1 ,  𝑧𝑖𝑗
2 , 𝑧𝑖𝑗

3 ,  𝑧𝑖𝑗
4 ), is estimated by formula   



























nmnjnn

imijii

mj

mj

AAAa

AAAa

AAAa
kkk

~~~

~~~

~~~
............

1

1

11111

1







 38 

�̃�𝑖𝑗=(�̃�𝑖𝑗−𝑎𝑗
min)

𝑑𝑎
 , 𝑖 = 1, … , 𝑛, 𝑗 = 1, … , 𝑚. 

If some of criteria are maximizing and some minimizing, then for the 
minimization of criteria the additions of the fuzzy numbers to fuzzy number  
(1, 1, 1, 1) are calculated. The unified and normalized fuzzy indexes 𝐹(�̃�𝑖𝑗) are 
calculated using the ranging function 
(18) 𝐹(�̃�𝑖𝑗) = 𝑘𝐹1(�̃�𝑖𝑗) + (1 − 𝑘)𝐹2(�̃�𝑖𝑗), 𝑘 ∈ [0, 1], 
where: 

𝐹1(�̃�𝑖𝑗) = 𝑎𝑖𝑗
1 +

(𝑎𝑖𝑗
4 −𝑎𝑖𝑗

1 )+(𝑎𝑖𝑗
3 −𝑎𝑖𝑗

2 )

2
×

1

√(𝑎𝑖𝑗
4 −𝑎𝑖𝑗

3 )
2

+1

, 

𝐹2(�̃�𝑖𝑗) = 𝑎𝑖𝑗
4 −

(𝑎𝑖𝑗
4 −𝑎𝑖𝑗

1 )+(𝑎𝑖𝑗
3 −𝑎𝑖𝑗

2 )

2
×

1

√(𝑎𝑖𝑗
2 −𝑎𝑖𝑗

1 )
2

+1

. 

Since assessments are already real numbers, it comes to a classical decision-
making problem. If criteria are of equal importance, aggregation operators without 
weighting coefficients (ATOKRI2 with matrices rows) are used. If weights of criteria 
are different real numbers, then either aggregation operators of ATOKRI1 or 
ATOKRI2 with matrix columns are used. If criteria weights are different real 
functions, ATOKRIF is used to aggregate the scores according to different criteria. 
Then the next steps of these algorithms are proceeded (see Fig. 2). 

ARAKRI2 does not calculate fuzzy number indices to obtain aggregate 
estimates, and aggregated fuzzy numbers are obtained using direct aggregators and 
operations between fuzzy numbers. The first steps are the same as in ARAKRI1, and 
the index matrix of unified and normalized fuzzy numbers of (17) is used to determine 
the maximum and minimum fuzzy number of a given series. If criteria weighting are 
not set, aggregation operators without weighting coefficients (ATOKRI2) are used. 
If the weighting coefficients are real numbers, they are normalized and then either 
aggregation operators with weighting coefficients (ATOKRI1) or aggregation 
operators without weighting coefficients are used, but the fuzzy numbers are 
multiplied by the corresponding weights (ATOKRI2). If weighting functions are 
specified, ATOKRIF with matrices rows is used (see Fig. 2). As a result, for each 
alternative aggregated fuzzy numbers are obtained, which should be ranked in 
descending order. For this purpose, the indices (18) are calculated. The ranking of 
alternatives correspond to the ranking of indices. 

Case 9. Criteria evaluations – fuzzy numbers and weighting coefficients are real 
functions 

All criteria set fuzzy numbers, i.e., 𝑚3 = 𝑚 and criteria weights are different 
real functions 𝑓1(𝑥), … , 𝑓𝑚(𝑥), 𝑥 ∈ [0, 1] – ARAKRI1 and/or ARAKRI2 are used, 
then ATOKRIF is used (see Fig. 2). 

Case 10. Criteria and weighting coefficients – different 
The criteria are different, i.e., 𝑚 = 𝑚1 + 𝑚2 + 𝑚3. ATOKRI1 is used for 𝑚1 

criteria, MMTRR for 𝑚2 criteria, and ARAKRI3 for 𝑚3 criteria. Since these 
algorithms reduce initial information to fuzzy preference relations depending on 
weighted coefficients of criteria, the task is reduced to one of the Cases 5-7. 
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With ARAKRI3, the set of alternatives has been evaluated by various criteria, 
e.g., quantitative (utility functions), qualitative (crisp, nonfuzzy rankings), fuzzy 
relations, fuzzy numbers. It is necessary to bring this information to a common scale. 
A basic approach is to obtain fuzzy relations from available data by comparing the 
evaluations of alternatives pairwise for each criterion. In order to unify information, 
fuzzy relations on these criteria must be obtained. Using the index (18) it is possible 
to compare each pair of fuzzy numbers to obtain a membership degree of fuzzy 
relation. The ARAKRI1 algorithm indexes (18) from the matrix with unified and 
normalized fuzzy numbers is used. Then for each pair of alternatives 𝑎𝑖 , 𝑎𝑗 and 
criteria is calculated the following value: 

𝜇𝑘(𝑎𝑖, 𝑎𝑗) = 0.5 +
𝐹(�̃�𝑖𝑘) − 𝐹(�̃�𝑗𝑘)

2(𝐹𝑘
max − 𝐹𝑘

min)
, 

where 𝐹𝑘
max,  𝐹𝑘

min are indices of the largest and smallest fuzzy number of the fuzzy 
numbers series for k-th criteria. 

Thus, for each criterion whose evaluations are fuzzy numbers, a fuzzy relation 
of type (1) is obtained. This fuzzy relation is used in calculations of ATOKRI. 

The solution of Task 3 is to analyse the rankings received in Task 2 and to select 
SMEs to be included in the cluster structure (see Fig. 1). 

5. Testing and analysis 

The following case study is considered: Technological Network (TN) with five nods 
(1 – manufacturers, 2 – suppliers, 3 – processors, 4 – research units, 5 – merchants); 
25 enterprises selected in groups of five for each node; element of TN described with 
14 criteria (Table 3). The list presented in Table 3 is an example. A define different 
set of criteria could be defined. 

Table 3. List of criteria “Passport”  
No Notation Description  

1 (k1) Export orientation index = Export Vol. /Vol. of marketed production 
2 (k2) Profitability > 0 
3 (k3) General Liquidity ratio ≥ 1 Financial independence (k4) ≥ 0.67 
4 (k4) Financial independence ≥ 0.67 
5 (k5) Solvency  

6 (k6) Profitability {Recommended thresholds: Node 1> 0.05; Node 2> 0.1;  
Node 3> 0.14; Node 4> 0.2; Node 5> 0.25} 

7 (k4) General Liquidity ratio (k3) ≥ 1 Financial independence ≥ 0.67 
8 (k8) Load capacity of the installed capacity => expert assessment  
9 (k9) Predictive evaluation for marked extending => expert assessment  

10 (k10) Sustainability Index of Research Institute Relations => expert assessment  
11 (k11) Technological Development Index => expert assessment 
12 (k12) Innovation Activity Index => Investment costs/Operation costs 

13 (k13) Index of investment activity in human resources = Inv. in human resource  
/Operation costs 

14 (k14) Infrastructure Index => expert assessment 
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Required input data: 
1. Assessing of alternatives by criteria. Assessments refer to crisp criteria, fuzzy 

relations, and fuzzy numbers; 
2. Values of possible weighting coefficients of criteria: 
 real numbers 𝑤1, … , 𝑤𝑗, … , 𝑤𝑚, where 𝑤𝑗, 𝑗 = 1, … , 𝑚; 
 parameters of real functions 𝑓1(𝑥), … , 𝑓𝑚(𝑥), 𝑥 ∈ [0, 1], where 𝑓𝑗(𝑥), 

𝑗 = 1, … , 𝑚, are functions of types (13), (14), (15); 
 the relation matrix of preference W of type (16). 
Since the calculation procedure is identical, here are presented the data only for 

Node 3 (Processors). 
The Assessments of criteria presented as crisp numbers are given in Table 4. 

The first column contains identification of the assessed alternative. The first row 
shows the number of evaluated criterion, as shown in Table 3. 

Table 4. Criteria assessments – crisp numbers 
Identification k1 k2 k3 k4 k5 k6 k7 k8 k9 k10 k11 k12 k13 k14 

3.1 0.500 0.600 2.286 0.714 1.579 1.600 0.050 4 4 3 4 0.400 0.030 4 
3.2 0.462 0.583 1.800 0.662 1.364 2.167 0.027 3 3 4 4 0.417 0.042 6 
3.3 0.467 0.500 2.111 0.661 1.592 1.875 0.037 5 4 4 4 0.388 0.048 5 
3.4 0.398 0.323 3.117 0.686 1.817 2.542 0.032 4 5 5 5 0.287 0.034 6 
3.5 0.352 0.244 2.707 0.885 3.240 2.346 0.032 4 6 4 5 0.298 0.025 7 

 
The scores of fuzzy criteria number of the type �̃�𝑖𝑗 = (𝑎𝑖𝑗

1 , 𝑎𝑖𝑗
2 , 𝑎𝑖𝑗

3  , 𝑎𝑖𝑗
4 ),    

𝑖 = 1, … , 𝑛, 𝑗 = 1, … , 𝑚, where 𝑎𝑖𝑗
1 ≤ 𝑎𝑖𝑗

2 ≤ 𝑎𝑖𝑗
3 ≤ 𝑎𝑖𝑗

4  are real numbers. 
In Tables 5, 6, 7 and 8 are presented assessments for 𝑎𝑖𝑗

1 , 𝑎𝑖𝑗
2 , 𝑎𝑖𝑗

3  , 𝑎𝑖𝑗
4 . 

Table 5. Assessments for 𝑎𝑖𝑗
1  

Identifi- 
cation 1 2 3 4 5 6 7 8 9 10 11 12 13 14 

3.1 0.148 0.356 0.486 0.053 0.215 0.000 0.023 3 3 2 3 0.113 0.005 3 
3.2 0.110 0.339 0.000 0.001 0.000 0.567 0.000 2 2 3 3 0.130 0.017 5 
3.3 0.115 0.256 0.311 0.000 0.228 0.275 0.010 4 3 3 3 0.101 0.023 4 
3.4 0.046 0.079 1.317 0.025 0.453 0.942 0.005 3 4 4 4 0.000 0.009 5 
3.5 0.000 0.000 0.907 0.224 1.876 0.746 0.005 3 5 3 4 0.011 0.000 6 

Table 6. Assessments for 𝑎𝑖𝑗
2  

Identifi- 
cation 1 2 3 4 5 6 7 8 9 10 11 12 13 14 

3.1 0.58 0.81 2.89 0.77 2.13 2.11 0.06 5 5 4 5 0.47 0.04 5 
3.2 0.55 0.79 2.40 0.72 1.92 2.67 0.04 4 4 5 5 0.49 0.05 7 
3.3 0.55 0.71 2.72 0.72 2.15 2.38 0.05 6 5 5 5 0.46 0.06 6 
3.4 0.48 0.53 3.72 0.75 2.37 3.05 0.04 5 6 6 6 0.36 0.04 7 
3.5 0.44 0.45 3.31 0.95 3.79 2.85 0.04 5 7 5 6 0.37 0.04 8 
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Table 7. Assessments for 𝑎𝑖𝑗
3  

Identifi- 
cation 1 2 3 4 5 6 7 8 9 10 11 12 13 14 

3.1 1.46 1.71 7.70 2.22 5.97 6.32 0.1298 6 6 5 6 1.187 0.1124 6 
3.2 1.42 1.69 7.21 2.17 5.76 6.89 0.1068 5 5 6 6 1.204 0.1244 8 
3.3 1.42 1.61 7.52 2.16 5.98 6.59 0.1168 7 6 6 6 1.175 0.1304 7 
3.4 1.35 1.43 8.53 2.19 6.21 7.26 0.1118 6 7 7 7 1.074 0.1164 8 
3.5 1.31 1.35 8.12 2.39 7.63 7.06 0.1118 6 8 6 7 1.085 0.1074 8 

Table 8. Assessments for 𝑎𝑖𝑗
4  

Identifi- 
cation 1 2 3 4 5 6 7 8 9 10 11 12 13 14 

3.1 1.891 2.156 10.103 2.939 7.889 8.424 0.165 7 7 6 7 1.545 0.148 7 
3.2 1.853 2.139 9.617 2.887 7.674 8.991 0.142 6 6 7 7 1.562 0.160 8 
3.3 1.858 2.056 9.928 2.886 7.902 8.699 0.152 8 7 7 7 1.533 0.166 8 
3.4 1.789 1.879 10.934 2.911 8.127 9.366 0.147 7 8 8 8 1.432 0.152 8 
3.5 1.743 1.800 10.524 3.110 9.550 9.170 0.147 7 8 7 8 1.443 0.143 8 

Criteria Assessments as fuzzy relations are calculated by a matrix of fuzzy 
relation of weights. The values for α, β and γ and the fuzzy relations for weighting 
coefficients used for all five Nodes are presented in Tables 9 and 10. Equal crisp 
weighting coefficients are introduced for all criteria. 

Table 9. Values for α, β, γ 

Coefi- 
cient 

Criteria 
1 2 3 4 5 6 7 8 9 10 11 12 13 14 

α 0.1 0.150 0.020 0.10 0.12 0.080 0.06 0.015 0.080 0.090 0.09 0.015 0.015 0.065 
β 0.1 0.080 0.060 0.05 0.05 0.045 0.02 0.015 0.018 0.012 0.10 0.130 0.150 0.170 
γ 0.2 0.150 0.045 0.01 0.01 0.015 0.15 0.170 0.090 0.040 0.02 0.030 0.045 0.025 

Table 10. Weighting fuzzy relation values 
Weigh- 

ting Weighted relations 

W 

0.5 0.6 0.3 0.2 0.8 0.2 0.3 0.6 0.8 0.4 0.5 0.3 0.2 0.4 
0.4 0.5 0.8 0.8 0.3 0.6 0.7 0.5 0.3 0.6 0.9 0.7 0.6 0.4 
0.7 0.2 0.5 0.4 0.6 0.4 0.8 0.7 0.9 0.7 0.6 0.4 0.5 0.3 
0.8 0.2 0.6 0.5 0.6 0.4 0.4 0.4 0.8 0.7 0.6 0.6 0.8 0.4 
0.2 0.7 0.4 0.4 0.5 0.3 0.5 0.6 0.2 0.3 0.4 0.8 0.6 0.7 
0.8 0.4 0.6 0.6 0.7 0.5 0.3 0.2 0.7 0.4 0.6 0.5 0.4 0.7 
0.5 0.3 0.2 0.6 0.5 0.7 0.5 0.3 0.4 0.2 0.7 0.8 0.7 0.5 
0.7 0.5 0.3 0.6 0.4 0.8 0.7 0.5 0.4 0.4 0.6 0.5 0.8 0.5 
0.4 0.7 0.1 0.2 0.8 0.3 0.6 0.6 0.5 0.2 0.3 0.5 0.4 0.9 
0.2 0.4 0.3 0.3 0.7 0.6 0.8 0.6 0.8 0.5 0.4 0.5 0.5 0.8 
0.5 0.1 0.4 0.4 0.6 0.4 0.3 0.4 0.7 0.6 0.5 0.6 0.7 0.4 
0.7 0.3 0.6 0.4 0.2 0.5 0.2 0.5 0.5 0.5 0.4 0.5 0.4 0.3 
0.8 0.4 0.5 0.2 0.4 0.6 0.3 0.2 0.6 0.5 0.3 0.6 0.5 0.2 
0.6 0.6 0.7 0.6 0.3 0.3 0.5 0.5 0.1 0.2 0.6 0.7 0.8 0.5 
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The descending rankings of enterprises by five Nodes are presented in Tables 
11 and 12. The first columns contain the names of algorithms. The second column 
shows weighted coefficients. The last columns present the ranking. Numbers 1 
through 5 are enterprises’ identifiers in a given node, with the entire rank derived 
from algorithm presented in the corresponding rows.  

Table 11. Fuzzy algorithms ranking for Node 1, Node 2 and Node 3 
Algorithm Weights Node 1 Node 2 Node 3 

ATOKRI 1 W mean 3 2 5 1 4 3 4 5 2 1 4 5 3 1 2 

ATOKRI 2 MaxMin 3 2 4 5 1 3 4 5 1 2 3 4 5 2 1 

ATOKRI 2 MinAvg 2 3 5 4 1 4 5 2 3 1 5 4 1 3 2 

ARAKRI MaxMin ATOKRI MinAvg 2 3 5 1 4 3 4 5 2 1 5 4 1 3 2 

ARAKRI MaxProd ATOKRI MinAvg 2 3 5 1 4 3 4 5 2 1 4 5 1 3 2 

ATOKRIF Linear 2 3 5 4 1 3 4 5 2 1 3 4 5 1 2 

ATOKRIF ParLinear 2 3 5 1 4 3 4 5 1 2 5 4 2 3 1 

ATOKRIF Quadratic 2 3 5 4 1 3 4 5 2 1 3 4 5 1 2 

АARAKRI 2 MaxMin 4 2 3 5 1 5 1 2 3 4 5 4 3 2 1 

АARAKRI 2 MinAvg 3 2 5 4 1 5 4 3 2 1 4 5 3 2 1 

АARAKRI 2 Gamma 3 2 5 4 1 5 3 4 2 1 5 4 3 2 1 

 
For Node 1 (Table 11), ATOKRI algorithms rank as leading enterprises 3, 2, 

and 5 (1 and 4 may be excluded from further consideration). ARAKRI algorithms 
specify enterprises 2, 3 and 5 (5 and 4 may be excluded). ATOKRIF algorithms give 
the same ranking for the first three positions – 2, 3 and 5. The results form 
AARAKRI2 algorithm also indicates 3, 2 and 5 ranked on top three. Finally, it can 
be noted that the algorithms give close ranking for first places (enterprises 2, 3  
and 5). 

For Node 2 (Table 11) the ATOKRI refers to enterprises 3, 4, and 5 as top 
ranking (2 and 1 can be excluded). The ARAKRI specify 3, 4, and 5 as the leading 
(2 and 1 can be excluded from further consideration). The ATOKRIF gives the same 
ranking for the first three positions as 3, 4 and 5. The AARAKRI refer to 5 as top of 
the list, but for the rest of the data ranking is different. Finally, fuzzy algorithms give 
almost identical solutions and rank enterprises 3, 4 and 5 on the top. 

The ranking for Node 3 (Table 11) of ATOKRI algorithms show as leading 
enterprises 4, 5 and 3, and the offsetting in ranking is a result of different weighted 
coefficients. Enterprises 4, 5 and 3 can be included form the list (2 and 1 may be 
excluded). The algorithms ARAKRI indicate 5 and 4 as leading. For the third, fourth 
and fifth ranked enterprises algorithms give the same result respectively 1, 3 and 2. 
ATOKRIF algorithms give the first three positions to 3, 4 and 5. In essence, the 
AARAKRI algorithms give a similar result. 

For Node 4 (Table 12) ATOKRI algorithms rank enterprises 2, 1 and 5 top 
positions, and the offset in ordering is a result of different weighting coefficients. 
ARAKRI algorithms give close ranking – the first three are 1, 2 and 4. The ATOKRIF 
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algorithms give the first three positions to 2, 5 and 1, with the same ranking of the 
third position for 1. AARAKRI2 gives the first position to 5 and the second to 2. In 
conclusion, fuzzy algorithms give predominantly the first positions to 1, 2 and 5. 

The ranking for Node 5 (Table 12) show an almost identical ranking for the top 
three to 4, 1 and 5.  

The results obtained using fuzzy algorithms for selecting enterprises to fill TN 
can be summarized as follows: Node 1 {3, 2, 5}, Node 2 {3, 4, 5}, Node 3 {4, 5, 3}, 
Node 4 {1, 2, 5}, Node 5 {4, 5, 1}. 

Table 12. Ranking of fuzzy algorithms for Node 4 and Node 5 

Algorithm Weights Node 4 Node 5 

ATOKRI 1 W mean 2 1 5 3 4 4 1 5 2 3 

ATOKRI 2 MaxMin 1 4 5 2 3 4 1 5 2 3 

ATOKRI 2 MinAvg 2 3 1 5 4 4 5 1 2 3 

ARAKRI MaxMin ATOKRI MinAvg 1 2 4 5 3 4 1 5 2 3 

ARAKRI MaxProd ATOKRI MinAvg 1 2 4 5 3 4 1 5 2 3 

ATOKRIF Linear 2 5 1 3 4 4 1 5 2 3 

ATOKRIF ParLinear 5 2 1 4 3 4 5 1 2 3 

ATOKRIF Quadratic 2 5 1 3 4 4 1 5 2 3 

АARAKRI 2 MaxMin 5 2 1 3 4 4 5 1 2 3 

АARAKRI 2 MinAvg 1 3 5 4 2 4 5 1 2 3 

АARAKRI 2 Gamma 5 2 4 3 1 4 5 1 2 3 

 
For verification the above results are compared to rankings obtained by 

PROMETHEE II outranking method shown in Table 13. 
 

Table 13. PROMETHEE II ranking of Nodes 1, 2, 3, 4 and 5 
Node 1 Node 2 Node 3 Node 4 Node 5 

Ident. Φ1 Ident. Φ2 Ident. Φ3 Ident. Φ4 Ident. Φ5 
1.3 1.0535 2.4 1.1175 3.4 0.6959 4.1 0.1344 5.4 1.6573 

1.2 0.4662 2.3 0.4186 3.5 0.6446 4.2 0.0524 5.5 0.5616 

1.5 0.0987 2.5 0.2725 3.3 –0.0956 4.5 0.0265 5.1 0.4032 

1.4 –0.2696 2.2 –0.2192 3.1 –0.3735 4.3 –0.147 5.2 –0.7616 
1.1 –1.4764 2.1 –1.37 3.2 –0.8563 4.4 –0.1601 5.3 –1.5932 

 
The results are summarized as follow: Node 1: {3, 2, 5, 4, 1}, Node 2: {4, 3, 5, 

2, 1}, Node 3: {4, 5, 3, 1, 2}, Node 4: {1, 2, 5, 3, 4} and Node 5: {4, 5, 1, 2, 3}. 
As the whole, it can be assumed that the results obtained from fuzzy algorithms 

and those of PROMETHEE II coincide. The small shifts in the ranking are most likely 
due to differences in input data. This comparison is important in that, in the absence 
of significant differences, the use of fuzzy algorithms gives more freedom in selection 
and precision of input data and some inaccuracies do not affect the quality of the 
recommended solutions. PROMETHEE II is a classical method that has proven its 
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working ability, but it works with accurate data, which due to the specifics of the task 
is not always possible. The confirmed results show that a fuzzy algorithm approach 
would find its place in solving the task of economic clustering. 

6. Conclusion 

The presented paper proposes an approach to solving a problem for selection of 
enterprises – potential participants in economic cluster using fuzzy sets theory 
methods. The approach implementation is illustrated by an example performed by 
fuzzy algorithms with results compared to PROMETHEE II multi-criteria outranking 
method. The test confirms the concept that, in solving application problems, the use 
of fuzzy algorithms gives a good quality solution.  

From the test shown, fuzzy algorithms require significantly more complex input 
information, which can be interpreted as a difficulty. In this regard, it is appropriate 
to clarify the specific conditions that would require preferring fuzzy algorithms to 
classical ones. The answer should be sought in the terms of problem formulation, 
which initially is defined as a “poorly structured problem under uncertainty”, because 
the goal is to design a cluster structure from enterprises where it is difficult to set a 
clear target function. Presumably, the enterprise management models, including 
economic clustering are burdened with poorly structured information that makes it 
difficult to implement by traditional decision-support methods. This means that the 
development of such technologies requires this factor to be taken into account. 

One of the advantages of the proposed approach is that it is autonumouse to 
decision-making tools used. This allows future development and improvement to be 
sought in the application of a variety of methods in domain of soft computing area 
[1]. As a further development it could be considered experiments with additional 
fuzzy algorithms for group a priory multi-criteria decision making such as TOPSIS 
method and a combination of two fuzzy methods by applying IT2FN – DEMATEL 
and VIKOR. TOPSIS method is a compensatory method that provides more realistic 
modelling of multi-criteria analysis task compering to non-compensatory methods  
[8, 9]. Another line in future development could be fined in the implementation of 
InterCriteria Analysis (ICA) method. It offers a new way in comparison of individual 
criteria out of set of criteria by which a set of objects are evaluated [2, 14, 29]. 

Fuzzy algorithms give freedom in a way that input data is set, and in particular 
do not require accurate estimates. Given the subject of reaches – economic clustering, 
the problem of availability of accurate data is serious due to insufficient historical 
data available. 

Acknowledgements: The author is thankful for the support provided by the Bulgarian National Science 
Fund under Grand No DFNI-I-02-5 “InterCtriteria Analysis: A New Approach to Decision Making”. 
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