
 56

BULGARIAN ACADEMY OF SCIENCES

CYBERNETICS AND INFORMATION TECHNOLOGIES Volume 17, No 2

Sofia 2017 Print ISSN: 1311-9702; Online ISSN: 1314-4081

DOI: 10.1515/cait-2017-0016

An Approach to Self-Configuration of M2M Services

Evelina Pencheva

Faculty of Telecommunications, Technical University of Sofia, 8 Kliment Ohridski Blvd., 1756 Sofia,

Bulgaria

E-mail: enp@tu-sofia.bg

Abstract: The increased number of connected devices and Machine-to-Machine

(M2M) applications becomes business and technical challenge for network

operators. The complexity of connectivity challenge yields for appropriate

connectivity management solutions. The explosion of M2M services may result in

undesired service interaction. Despite of the considerable progress in service

interaction management, there is a lack of knowledge on the kind of interaction in

real M2M communication systems. In this paper, a method for service orchestration

between M2M applications which add value to basic device connectivity

management is proposed. The automatic resolving of service interaction using

policies allows service self-configuration and provisioning of adaptive service

continuity to end users.

Keywords: Machine-to-Machine communications, service orchestration, service

interaction, description logic, reasoning.

1. Introduction

Nowadays we are witnessing a widespread penetration of Machine-to-Machine

(M2M) communications and Internet of Things (IoT). By 2020, 95% of the devices

will be connected to the network using wireless technology. There are numerous

M2M applications in various areas of our lives such as e-health, intelligent systems

in transport and energy, and smart homes [1]. With the increase of connected

devices and end user requirements for new services, new challenges arise for

service providers. Preconditions for the provision of new M2M services and

applications are requirements for the associate quality of service and security. The

number of service providers is constantly growing and they need to cooperate with

each other in service provisioning to end users. Capabilities for cooperation

between service providers and for infrastructure management have reached the

limits of human capacity.

Adding new services is a challenge, since cooperation between multiple

service providers and network operators is difficult and requires considering of

specific requirements and constrains of any interested party. Service providers

 57

expect provision of services in ubiquitous multilayer infrastructure, including

virtualization of resources and transparent management. End users are not interested

in technology to provide the service, they want to install the service easily and use it

without specific configuration [2, 3].

Seamless service continuity is difficult to achieve due to service interaction

problem and static service configuration. Service interaction or feature interaction,

manifests itself as a function of services which is neither exactly the sum of every

service nor behaves as expected. Currently, services are configured for a set of users

and a type of access network [4]. The provision of adaptable service continuity

requires analysis of M2M environment in a real time and network reconfiguration.

The management plane and control plane shall orchestrate service self-

configuration based on service self-description capabilities and self-optimization of

different network resources.

In this paper, a method for M2M service orchestration is proposed. The

method is illustrated for services related to device connectivity management.

The paper is structured as follows. The next section describes the problem of

device connectivity management with use cases of service interactions. Section 3

presents the Open Mobile Alliance (OMA) Lightweight Machine-to-Machine

device management framework which is the base for the current research. In

Section 4, the proposed basic device connectivity model is presented and described

formally using descriptive logic. M2M service models that enhance basic device

connectivity management capabilities with additional features are presented in

Section 5. The content of Section 6 is formed by algorithmic method for M2M

service interaction detection and the respective method for M2M service interaction

resolution is described in Section 7. Section 8 presents the related work and

highlights the added value of the proposed method for service orchestration. The

conclusion discusses some implementation aspects.

2. Problem definition

The large and growing category of smart devices including sensors and actuators

requires remote configuration and control capabilities. There exists a plethora of

device with diverse characteristics in terms of computing and communication

capabilities, data rates and form factor which makes device management a real

challenge. Device management includes functions like automated device

configuration, over-the-air firmware updates, remote reboots, diagnostics and

troubleshooting, security and integrity.

Whatever the content and application domain are, all devices involved in

M2M communications require some kind of connectivity. Devices may be

connected using cellular bearers such as Global System for Mobile communications

(GSM), General Packet Radio Service (GPRS), cdmaOne, CDMA2000, EVolution-

Data Optimized (EV-DO), Enhanced Data rates for GSM Evolution (EDGE),

Universal Mobile Telecommunications System (UMTS), Digital AMPS

(IS-136/TDMA), Integrated Digital Enhanced Network (iDEN), Long Term

Evolution (LTE), etc. Devices may also use wireless technologies like Near Field

 58

Communications (NFC), WiFi Direct, WiFi Passpoint, WiGig, WiFi Miracast,

Bluetooth, ZigBee, Dash7, EnOcean etc. Different technologies have different

requirements for Quality of Service (QoS). Connectivity management encompasses

connection provisioning, management and analysis across networks to optimize

data consumption and cost. Connectivity management platform should at minimum

allow control on the device status and capabilities for choosing the best network

bearer to be used. The logic for bearer selection may be based on different policies

such as the device location and the requirements for charging.

Let us consider a payment application which controls the usage of network

bearers based on the current device provider’s credit. The application defines a

threshold under which the device provider’s balance is considered to be low. When

the balance is low the application requires the device to use the cheapest available

bearer. Applications like remote control and multiuser gaming require lower latency

which is one of the QoS parameters. Such applications may define thresholds

related to QoS parameters and request usage of network bearers that fulfil the QoS

requirements. A possible service interaction may occur when the payment

application requires usage of the cheapest bearer like GSM but the QoS application

requires using LTE due to latency requirements.

Another use case scenario is the interaction between location-based application

and data speed-based application. Location-based application may define an area in

which a preferred bearer has to be used, e.g. a WiFi bearer may be preferred in a

home area. Bandwidth hungry applications like video surveillance, transportation

services, and industrial control may require high data speeds which are not

supported by a particular technology. A possible service interaction may occur

when the device uses a network bearer that provides the requested data speeds and

enters an area where the preferred bearer does not support the required data speeds.

Having in mind the variety of cellular and wireless technologies, the supported

data speeds in uplink and downlink directions, different QoS parameters and other

policies for bearer preferences like location-based, credit-based, serving node-based

etc., a lot of combination of undesired service interactions may occur. The reduction

of device connectivity management complexity can be achieved by embedding

autonomic features in M2M service orchestration. The paper proposes a basic

device connectivity model and a method for automatic service orchestration

between M2M applications which add value to basic bearer selection procedure.

Next section presents the background for the current research.

3. OMA device management framework

OMA device management framework called LightWeight M2M (LWM2M)

provides an abstraction of device management which hides the complexity and is

technology independent [5]. LWM2M describes remote management procedures

between a server in the cloud or network, and a client in the device, and defines the

respective information model. Typical sequence of procedures performed by the

server and device in the context of connectivity management is as follows:

 59

1. The server establishes an observation relationship with the device to acquire

periodical or triggered notifications about line voltage and signal strength.

2. The device sends periodical or triggered notifications about line voltage and

signal strength.

3. The server queries about used and available network bearers.

4. The server initiates bearer selection.

5. The server queries about connectivity parameters.

6. The server creates and enables a new Access Point Name profile.

7. The server cancels observation.

The observed connectivity parameters include the used network bearer for the

current communication session, the list of current available network bearers, the

average value of the received signal strength indication used in the current network

bearer, and the received link quality. In order to observe connectivity parameters,

OMA specifications define a number of diagnostics and monitoring traps [6, 7]. The

trap mechanism employed by a management authority to enable the device to

capture and report events and other relevant information generated from various

components of the device, such as a protocol stack, device drivers, or applications.

OMA traps that may be used for connectivity management are geographic

trap, received power trap, call drop trap, QoS trap, and data speed trap. Geographic

trap may be used for location based bearer selection. It goes to active when a device

enters into a specific geographic area. Whenever the device leaves that specific

geographic area, the trap goes to inactive. The received power trap may be used for

bearer selection based on received signal strength at the device. It can be helpful in

connectivity optimization process when the received power of the device drops

below the server-specific value. Whenever a device’s received power drops below

an agent-specified value (TrapActivePower), it causes this trap to go active.

Alternatively, when device sensed power rises above another server specified value

(TrapInactivePower), it causes this trap to go inactive. In cases that the trap goes

active or inactive, the device notifies the server. The device can have several

instances of this kind of trap to monitor various network types (e.g., WiFi,

WCDMA, LTE, etc.). The remote server may observe the call drops in a predefined

period of time. If the device exposes QoS metrics functionality, then the server may

observe the received QoS at the device side using the QoS trap. The data speed trap

occurs whenever an average data speed reaches the certain threshold value.

OMA traps are defined as management objects. Each trap management object

has unique identifier and a tree structure that allows manipulation of its parameters.

The connectivity management control logic can query the device about the

connectivity parameters, i.e. the used network bearer, available network bearers,

signal strength, as well as network identities. Following preliminary defined

policies, the connectivity management logic may decide on the most appropriate

bearer to be used, based on diagnostics and monitoring information received by any

of the above described traps.

 60

4. Device connectivity management model

The approach to studying of M2M service interaction problem is based on author’s

previous work, where the problem is explored for CAMEL networks [8-11].

Customized Applications for Mobile Enhanced Logic (CAMEL) is service platform

for GSM and UMTS networks. The research was focused on human call-related

behavior. In [8] and [9], service interactions based on CAMEL originating and

terminating basic call models respectively and reasoned on interactions between

services available for calling and called party. In [10, 11], the focus is on CAMEL

mobility management models where service interactions are result of subscriber

mobility. CAMEL models are not applicable in the world of M2M communications

where devices are used for data transfer and the human interactions is lack or

limited.

In order to send information over the network, any device needs connectivity.

The study on M2M service interaction is based on the basic Device connectivity

management model, shown in Fig.1.

In disconnected state, the device is not connected to the network and can not

communicate. The device moves to connected state when it is turned on and after

successful registration with the server. In connected state, the device uses one of the

supported network bearers. The server may configure the received power trap in

order to observe the used bearer signal power. When the received power drops, the

server is notified and it sets a timer with the time guarded hysteresis of the received

power. The device moves to marginal state. In marginal state, the device moves to

connected state when the signal received power rises and then the server resets the

hysteresis timer. In marginal state, when the hysteresis timer expires, the server

queries the device about connectivity parameters and the device moves to badSignal

state. In badSignal state, if there are not available network bearers, the server

requests the device to disconnect. In badSignal state, if there is an available network

bearer, the server requests the device to change the used bearer. In any state but

disconnected, the device may be disconnected due to de-registration initiated by the

server or the device.

Fig. 1. Basic device connectivity management model

Disconnected

Connected

Marginal

Register

SignalDrop/

setTimer

SignalRise/

resetTimer

TimerExpiry/

getParameters

BadSignal

Parameters

(available)/

ChangeBearer

Parameters(unavailable)/

disconnect

Deregister,

disconnect

*(Disconnected)

Disconnected

 61

Description logic is used to formally describe the basic device connectivity

management model.

First, atomic concepts, relations and constants are fixed. Assume that there are

a finite set of devices which consists of devices in the M2M system.

The following concepts express the device state and facts related to the device

connectivity:

Roles represent actions or notifications about events related to device

connectivity management.

Concepts and roles are used to specify the Device Connectivity Management

Model (CMM). The Terminology Box (TBox) consists of expressions that represent

how the device can change its state, and:

(1) disconnected⊑register.connectedb,

(2) connectedb⊑getParameters.connectedb,

(3) connectedb⊑parameters.connectedb⊓availablec,

(4) connectedb⊑parameters.connectedb⊓availablec,

(5) connectedb⊑(signalDrop⊓setTimer).marginalb,

(6) marginalb⊑(signalRise⊓resetTimer).connectedb,

(7) marginalb⊑(timerExpiry⊓getParameters).badSignalb,

(8) badSignalb⊑parameters.(badSignalb⊓availablec),

(9) badSignalb⊓availablec⊑changeBearer.connectedb,

(10) badSignalb⊑parameters.(badSignalb⊓availablec),

(11) badSignalb⊓availablec⊑disconnect.disconnected,

(12) connectedb⊑(disconnect⊔deregister).disconnected,

disconnected – the device is disconnected

connectedb – the device is connected by bearer b

marginalb – the device’s received power of bearer b is below a server-specified value

badSignalb – the device needs to change the used bearer b

availableb – the bearer b is available

Register – the device registers to the server

getParameters – the server queries the device about connectivity parameters

parameters – the device provides the requested connectivity parameters

signalDrop – the received power drops below server-specified value (TrapActivePower)

signalRise – the received power rises above server-specified value (TrapInactivePower)

setTimer – the server sets the time guarded hysteresis of the received power

timerExpiry – the time guarded hysteresis of the received power is over

deregister – the device de-registers with the server

disconnect – the server requests the device to disconnect

changeBearer – the server instructs the device to change the used bearer

 62

(13) marginalb⊑(disconnect⊔deregister).disconnected,

(14) badSignalb⊑(disconnect⊔deregister).disconnected.

The Assertion Box (ABox) contains one statement presenting the initial state

for each device:

s0:⊓dDevices disconnected.

To express the fact that each device is in exactly one state at any moment the

following statement is used:

⊤⊑(⊔d1,d2CMM, d1d2
(s1⊓s2))⊓(⊔dCMM s).

The device state changes by means of actions defined as action functions. An

action function FuncCMM for given state corresponds to the possible transitions in

the CMM. For example, the expression FuncCMS(connectedb)= signalDrop}

{disconnect}{deregister} means that, if the device is connected, the received

power of the used bearer may drop, the device may disconnect or deregister.

The fact that each device can change the CMM state only by means of certain

actions is represented by the following statement: for all sCMM, and all

RFuncCMM (s), s⊑R.s.

5. Service models

Services are modelled as transformations on the knowledge base using contexts

C[φ] as subformula φ of any formula ψ.

5.1. Location-based bearer selection

The Location-based Bearer Selection (LBS) service assumes that there is a

predefined geographic area in which a preferred bearer is used. The transformation

of the basic device connectivity management model for LBS is shown in Fig. 2.

When the device registers, the server queries the device about its location and

connectivity parameters. If the device is in the specified area and it does not use the

preferred bearer and the preferred bearer is available, the server requests the device

to change the bearer. If the device is out of the area, it may enter the area. If the

device is in area, it may exit the area. Additional concepts representing facts are

defined:

The following relationship is true: outOfArea≡inArea

enter – the device enters the specified area

exit – the device exits the specified area

location – the device sends its location

getLocation – the server queries about device’s location

inArea – the device is located in the specified area

outOfArea – the device is located out of the specified area

preferredb – the bearer b is the preferred one in the specified area

 63

The refinement for LBS service is defined by the following statements:

(15) C1[LBS⊓disconnected]⊑register.C2[connectedb],

(16) C3[LBS⊓connectedb]⊑getLocation.C4[connectedb],

(17) C5[LBS⊓connectedb]⊑location.C6[connectedb⊓inArea],

(18) C7[LBS⊓connectedb]⊑location.C8[connectedb⊓outOfArea],

(19) C9[LBS⊓connectedb⊓inArea]⊑

parameters.C10[connectedb⊓inArea⊓preferredb],

(20) C11[LBS⊓connectedb⊓inArea]⊑

parameters.C12[connectedb⊓inArea⊓preferredc⊓availablec],

Fig. 2. Location-based bearer selection

Connected

Connected⊓

inArea

Marginal

SignalDrop/

setTimer

BadSignal

Parameters

No

Connected⊓

inArea⊓preferred

Connected⊓
outOfArea

Register

SignalDrop/

setTimer

timerExpiry/

getParameters

Connected

Is the device in

the area?

Is the used

bearer the

preferred one?

No Is the

preferred

bearer an

available

one?

Yes

Yes/ changeBearer

No

Enter/ getParameters

Disconnected

Location/getParameters

Parameters

Yes

Exit

Yes /

changeBearer,

getLocation
Disconnected

No /

disconnect

Is there an

available

bearer?

Connected

SignalRise /

resetTimer,

getLocation

SignalDrop/

setTimer

Enter,

Exit

Connected⊓

outArea

exit

getLocation

Deregister,

disconnect

*(Disconnected)

Disconnected

 64

(21) C13[LBS⊓connectedb⊓inArea⊓preferredc⊓availablec]⊑

changeBearer. C14[connectedc⊓inArea⊓preferredc],

(23) C15[LBS⊓connectedb⊓inArea]⊑exit. C16[connectedb⊓outOfArea],

(24) C17[LBS⊓connectedb⊓outOfArea]⊑enter.C18[connectedb⊓inArea],

(25) C19[LBS⊓marginalb]⊑(exit⊔enter).C20[marginalb],

(26) LBS⊑ (connectedb⊓inArea⊓preferredc⊓availablec).

5.2. Credit-based bearer selection

The Credit-based Bearer Selection (CBS) service assumes that the device provider

has prepaid subscription. If the device provider’s balance is low, the device needs to

use the cheapest bearer. Real-time information about device provider’s balance may

be acquired by means of Policy and Charging Control (PCC) functionality

standardized for mobile networks. The PCC concept is designed to enable flow

based charging including online credit control and policy control which supports

service authorization and quality of service management [12].

The transformation of the basic device connectivity management model for

CBS is shown in Fig. 3.

The server queries about the device provider’s balance status and device

connectivity parameters. If the balance is lower than the server defined threshold

and the device does not use the cheapest bearer, and the cheapest bearer is

available, the server requests the device to change the bearer to the cheapest one.

The device provider’s balance may increase above a server-defined threshold or

decrease under a server-defined threshold. Additional concepts representing facts

are defined as follows:

There exists the following statement in the TBox: lowBalance≡highBalance.

Additional roles representing actions and notifications are also defined.

The refinement for LBS service is defined by the following statements:

(27) C21[CBS⊓disconnected]⊑register.C22[connectedb],

(28) C23[CBS⊓ connectedb]⊑getBalance.C24[connectedb],

(29) C25[CBS⊓connectedb]⊑balance.C26[connectedb⊓lowBalance],

(30) C27[CBS⊓connectedb]⊑balance.C28[connectedb⊓highBalance],

lowBalance – the device provider’s balance is low

highBalance – the device provider’s balance is low

cheapestb – the bearer b is the cheapest one

increase – the device provider’s balance increases above a server-defined threshold

decreases – the device provider’s balance decreases under a server-defined threshold

balance – the server receives device provider’s balance status

getBalance– the server queries about device provider’s balance status

 65

(31) C29[CBS⊓connectedb⊓lowBalance]⊑

parameters.C30[connectedb⊓lowBalance⊓cheapestb],

Fig. 3. Credit-based bearer selection

(32) C31[CBS⊓connectedb⊓lowBalance]⊑

parameters.C32[connectedb⊓lowBalance⊓cheapestc⊓availablec],

(33) C33[CBS⊓connectedb⊓lowBalance⊓cheapestc⊓availablec]⊑

changeBearer.C34[connectedc⊓lowBalance⊓cheapestc],

(34) C35[CBS⊓connectedb⊓lowBalance⊓cheapestc⊓availablec]⊑
disconnect.C36[disconnected],

Connected

Connected⊓

lowBalance

Marginal

SignalDrop/

setTimer

BadSignal

Parameters

Yes/ changeBearer

Deregister,

disconnect

Connected⊓

highBalance

Register

SignalDrop

/ setTimer

TimerExpiry/

getParameters

Connected

Is the balance

low?

Is the used bearer

the cheapest one?

No Is the cheapest

bearer an

available one?

Yes

No/ disconnect

No

Decrease/ getParameters

*(Disconnected)

Disconnected

Disconnected

Balance/getParameters

Parameters

Yes

Increase

Yes /

ChangeBearer,

getBalance
Disconnected

No /

disconnect

Is there an

available

bearer?

Connected

SignalRise /

resetTimer,

getBalance

Increase,

decrease

Disconnected Decrease/

disconnect

getBalance

 66

(35) C37[CBS⊓connectedb⊓highBalance]⊑

descrease.C38[connectedb⊓lowBalance],

(36) C39[CBS⊓connectedb⊓lowBalance]⊑

(descrease⊓disconnect).C40[disconnected],

(37) C41[CBS⊓connectedb⊓lowBalance]⊑increase.C42[connectedb⊓highBalance],

(38) C43[CBS⊓marginalb]⊑(decrease⊔increase).C44[marginalb],

(39) CBS⊑ (connectedb⊓lowBalance⊓cheapestc⊓availablec).

5.3. Other services related to device connectivity management

By the use of OMA Diagnostic and monitoring traps different connectivity

management services may be defined.

The QoS bearer selection service may use the QoS trap. The service requires

configuration of lower QoS threshold and upper QoS threshold, where the value

format must be interpreted according to the parameter definition. The QoS trap is

enabled when its value is equal or greater than the specified value of lower QoS

threshold, or its value is minor or equal than the value of upper QoS threshold. The

knowledge base for QoS bearer selection procedure is expanded with new concepts

related to QoS thresholds, new roles reflecting the increase and decrease of the

value of QoS parameters, as well as statements that represent the relationship

between QoS concepts and roles.

The Call drop bearer selection service may use the call drop trap. The service

configures the start and end times of the observation and initiates bearer selection

procedure whenever a call drop occurs in a specified period. The call drop trap has

to be considered in the context of data session drops for machine type

communications. The knowledge base for this service is extended with new

concepts, roles related to occurrence of data session drops and statements for bearer

selection logic.

Data speed bearer selection service may use the data speed trap. The service

configures different data speed traps for uplink and downlink. Low speed data traps

become active when the average data speed calculated for the given period reaches

below the server defined lower threshold value. High speed data traps become

active when the average data speed calculated for the given period reaches above

this higher threshold value. The service initiates bearer selection whenever the data

speed trap goes to active. The knowledge base for this service is extended with new

concepts representing low and high data speed thresholds for both directions, new

roles for trap activity and statements for bearer selection logic.

6. Service interaction as satisfiability problem

When introducing new services, it is important to find out whether a new service is

contradictory to existing concepts, i.e., whether it satisfies or not the statement in

the TBox representing the connectivity management model.

 67

A standard tableau method is used, where the tableau t ≝ { b | p: C } is a set

of prefixed formulae where the prefix of given formula is consisted of a binary

string b := ε | (1|0)+ and a string of alternating names p := n(Rm)+, and C is concept.

Here ε is the empty string, n and m are individual names, R is role names, and ()+

denotes one or more occurrences. The method is shown in Table 1.

Table 1. Tableau method

Conjunction:

Dpb

Cpb

DCpb

:|

:|

:|

Disjunction:

Dpb

Cpb

DCpb

M

M

:|1

:|0

:|

bM maximal for b

Existence:

CpRnb

CRpb

:|

.:|

pRn new (unless pR exists in the

branch)

Implication:

DCpb :|

p present in b and C ⊑DT

The algorithm for detection of service interaction is illustrated for LBS and

CBS services. The service interaction occurs when the device is in the specified

area and uses the preferred bearer as to LBS, and the device provider’s balance

decreases under predefined value and the CBS requires a change to the cheapest

bearer.

Let us assume that the device provider is subscribed for both LBS and CBS.

Starting with the axiom in the ABox we apply statements in the TBox related to the

event sequence that leads to the undesired situation.

Algorithm
Step 1. Initially, the device is disconnected. Applying Conjunction to the start

formula 〈ε | s0: ⊓dDevicesdisconnected〉gives

〈ε | s0: disconnected〉,
Step 2. Applying Implication to rule (1) produces

〈ε | s0: disconnected ⊔registered.connectedb〉,
Step 3. Applying Disjunction gives two branches:

 Step 3.1.〈0 | s0: disconnected〉which is closed because of appearance

of 〈ε | s0: disconnected〉in this segment.

 Step 3.2.〈1 | s0: registered.connectedb〉,

Step 4. Applying Existence leads to new state s1:〈1 | s0: registered s1:

connectedb〉,

 68

Step 5. In connected state, the device is queried about its location. We derive

rule (16) from the knowledge base. Applying Implication and than Disjunction

produces:

 Step 5.1.〈10 | s0: connectedb〉which is closed because of appearance of

〈1 | s0: registered s1: connectedb〉in this segment.

 Step 5.2.〈11 | s0 registered s1: connectedb⊔getLocation.connectedb〉to

which after applying Existence produces 〈11 | s0: registered s1: connectedb

getLocation s1: connectedb〉.

Step 6. We consider the case when the device is in the specified area. The next

derivation is rule (17). The consecutive application of Implication, Disjunction and

Existence results in:

〈111| s0 registered s1 getLocation s1 location s2: connectedb⊓inArea〉.

Step 7. If the device is in the specified area, it is queried about its connectivity

parameters. We derive rule (2) and apply Implication, Disjunction and Existence,

which produces:

〈1111| s0 registered s1 getLocation s1 location s2 getParameters s2:

connectedb⊓inArea〉.

Step 8. Let the device uses the preferred bearer in the specified area. We apply

Implication, Disjunction and Existence to rule (19) and the result is:

〈11111| s0 registered s1 getLocation s1 location s2 getParameters s2 parameters

s3:connectedb⊓ inArea⊓preferredb〉.

Step 9. Let the device provider’s balance initially be high. We derive rules

(28) and (30) for which Implication, Disjunction and Existence are applied. The

result is

〈1111111| s0 registered s1 getLocation s1 location s2 getParameters s2 parameters s3

getBalance s3 balance s4: connectedb⊓inArea⊓preferredb⊓highBalance〉.

Step 10. After some time the device provider’s balance decreases under a

specified threshold.

Again Implication, Disjunction and Existence are consecutively applied to rule

(35). The result is:

〈11111111| s0 registered s1 getLocation s1 location s2 getParameters s2 parameters

s3 getBalance s3 balance s4 decrease s5:

connectedb⊓inArea⊓preferredb⊓lowBalance〉.

Step 11. The device is queried about its connectivity parameters. Implication,

Disjunction and Existence are applied again to rules (2) and (32) which leads to:

〈1111111111| s0 registered s1 getLocation s1 location s2 getParameters s2

parameters s3 getBalance s3 balance s4 decrease s5 getParameters s5 parameters s6:

connectedb⊓inArea⊓preferredb⊓lowBalance ⊓cheapestc⊓availablec〉.

Step 12. When the device provider’s balance is low and there is unused

cheapest bearer, the CBS service requires a bearer change. We derive rule (33) and

after the consecutively application of Implication, Disjunction and Existence the

result is

 69

〈1111111111| s0 registered s1 getLocation s1 location s2 getParameters s2

parameters s3 getBalance s3 balance s4 decrease s5 getParameters s5 parameters s6

changeBearer s7:connectedc⊓inArea⊓preferredb ⊓lowBalance⊓cheapestc〉 which

contradicts to (26) as to LBS, namely

(connectedb⊓inArea⊓preferredc⊓availablec).

The result is closed tableau which means that δLBS(δCBS(CMM)) interacts on

activation {LBS}{CBS}.

7. Resolving service interaction

Once detected, service interactions may be resolved by policies. The policies define

the service behavior in case of service interworking and they are expressed also by

contexts.

Different policies may be defined for LBS and CBS interworking, based on

service priority. The priority of i service is denoted by Pi.

If both services have equal priorities, i.e., PLBS=PCBS, the policy may request

device disconnection in case the cheapest bearer is not the preferred one in the

specified area. This is the case when no negotiation between services is possible:

(40) C45[LBS⊓CBS⊓PLBS=PCBS⊓connectedb⊓inArea⊓preferredb⊓

lowBalance⊓cheapestc⊓availablec]⊑disconnect.C46[disconnected].

If a negotiation between both services is possible, then the policy depends on

the higher service priority. In case of PLBS<PCBS, the policy requires bearer change

to the cheapest bearer nevertheless it is not the preferred one in the specified area:

(41) C47[LBS⊓CBS⊓PLBS<PCBS⊓connectedb⊓inArea⊓preferredb⊓

lowBalance⊓cheapestc⊓availablec]⊑changeBearer.C48[connectedc⊓

inArea⊓preferredb⊓lowBalance⊓cheapestc].

In case of PLBS>PCBS, the policy requires the device to use the preferred bearer

until the device provider’s balance goes down to zero:

(42) C49[LBS⊓CBS⊓PLBS>PCBS⊓connectedb⊓inArea⊓preferredb⊓

lowBalance⊓cheapestc⊓availablec]⊑

C50[connectedc⊓inArea⊓preferredb⊓lowBalance].

8. Related work

The survey on service orchestration research shows that works consider either high

level architectural principles or specific implementations, but do not propose a

structural approach to resolving conflict between services.

In [13], the authors argue the usage of ontologies in service interoperability

issues presenting ontology for resources and operations. The potential of ontology

allows coping with problems in service interaction also as in the proposed approach.

Chen and Gian present an orchestration environment VIPLE (Visual IoT/Robotics

 70

Programming Environment), which is an IoT middleware with open interfaces to

IoT devices [14]. Im and Jeong propose a new service platform that facilitates the

implementation of new applications by composing and orchestration of prebuilt

components that provide the context information of mobile devices such as location

and contacts [15]. Their platform adopts event-driven architecture to work

intelligently with context awareness and do not consider the device connectivity. In

[16], the authors propose a service oriented middleware that leverages the

convergence of cloud and fog computing along with software defined networking

and network function virtualization. They describe a system which abstracts

connected entities as services and allows applications to orchestrate these services

with end to end QoS requirements. In comparison, the approach proposed in this

paper deals also with requirements based on device location and charging. A service

architecture which includes various devices for providing web base IoT services is

described in [17]. The authors also propose a service platform which supports

service orchestration and composition with device objectification. D’Angelo,

Ferretti and Ghini claim that agent-based, adaptive parallel and distributed

simulation approaches are needed for IoT environments, together with multi-level

simulation, which provide means to perform highly detailed simulations, on

demand. They present a use case concerned with the simulation of smart territories

[18].

Works on IoT service orchestration focus on the process of integrating

applications and/or services together to automate a process, or synchronize data in

real-time, but do not consider the problem of service interaction which appears to

be an essential part of service orchestration problems.

Despite of the progress in developing approaches for modeling, detecting, and

resolving service interactions, there is a lack of sufficient knowledge on the kind of

service interactions that occur in real-world M2M systems [19]. Instances of the

service interaction problem have been studied in different IoT applications like

home automation [20], automotive systems [21], systems of services [22] and in

many other fields. In [23], the authors present a method to check for feature

interactions in a system assembled from independently developed concurrent

processes as found in many reactive systems which combines and refines existing

definitions and adds a set of activities. The method is illustrated on a home

automation example. The compositionality and modularity are considered to be in

the base of the problem instances, while the difference between the individual

views, interpretations and eventual solutions, is considerable [24]. An example for

such significant difference might be given when comparing the views on service

interactions of automotive systems engineering and of service systems in aspects

like functionality, parallelism, structure etc.

This paper considers service interaction problem in M2M environment using

abstraction on device connectivity. Device connectivity management is context

independent and common for all type of devices that acquire IoT connectivity using

cellular or wireless technology. The presented algorithm for automatic discovery of

service conflicts is based on standard reasoning. It may be used for implementation

 71

of M2M service orchestration and resolving service interactions by applying

policies.

9. Conclusion

With the constant trend for increase of the number of smart devices equipped with

sensors and actuators and used in different application areas, seamless service

continuity is difficult to achieve due to the lack of dynamic provisioning.

Being smart, the devices need to connect in order to communicate with other

devices. In this paper, a basic device connectivity model and a method for

automatic service orchestration between M2M applications which add value to

basic bearer selection procedure are proposed. It is important to mention that the

proposed method for reasoning and resolving service interaction can be automated

since the programmability of the reasoning algorithm. The formal description of the

presented models can be translated from description logic into Ontology Web

Language description where concepts are represented by classes, roles by properties

and statements in the TBox and ABox as restrictions. There exist a number of

ontology editors and frameworks for constructing domain models and knowledge-

based applications with ontologies and reasoners to infer logical consequences from

a knowledge base.

The proposed method for resolving service interaction using policies allows

self-configuration of services. The level of human involvement in the network

management can be reduced due to automatic orchestration of services provided by

different service providers with coherence and consistency in order to provide

adaptable service continuity to end users.

Acknowledgements: The research is under the support of the project ДH07/10-2016 funded by

National Science Fund, Ministry of Education and Science, Bulgaria.

R e f e r e n c e s

1. H u i, L., C. M i n. Research on the Distribution System Simulation of Large Company’s Logistics

under Internet of Things Based on Traveling Salesman Problem Solution. – Cybernetics and

Information Technologies, Vol. 16, 2016, No 5, pp.78-97.

2. W e y r i c h, M., C. E b e r t. Reference Architectures for the Internet of Things. – IEEE Software,

January/February 2016, pp. 112-116.

https://www.computer.org/csdl/mags/so/ 2016/01/mso2016010112.pdf

3. K i m, J., J. L e e, J. K i m, J. Y u n. M2M Service Platforms: Survey, Issues, and Enabling

Technologies. – IEEE Communications Surveys & Tutorials, Vol. 16, First Quarter 2014,

No 1, pp. 61-76.

4. A p e l, S., C. K a s t n e r, B. G a r v i n. Exploring Feature Interactions in the Wild: The New

Feature Interaction Challenge. – In: Proc. of 5th International Workshop on Feature-Oriented

Software Development, FOSD, ACM, 2013, pp.1-8.

5. D a t t a, S., C. B o n n e t. A Lightweight Framework for Efficient M2M Device Management in

OneM2M Architecture. – In: International Conference on Recent Advances in Internet of

Things (RIoT’15), 2015, pp.1-6.

6. Open Mobile Alliance. Diagnostics and Monitoring Management Object. – OMA-TS-

DiagMonTrapMO-V1_0-20090414-C, 2009.

 72

7. Open Mobile Alliance. Diagnostics and Monitoring Trap Events Specifications. – OMA-TS-

DiagMonTrapEvents-V1_2-20131008-A, 2013.

8. P e n c h e v a, E., I. A t a n a s o v. Detection of CAMEL Feature Interaction. – International

Journal on Information Technology and Security, 2010, No 1, pp. 25-42.

9. A t a n a s o v, I., E. P e n c h e v a. CAMEL Service Interaction Detection. – International Journal

on Information Technologies and Control, 2010, Issue 4, pp. 2-9.

10. A t a n a s o v, I., E. P e n c h e v a. A Formal Approach to Service Interaction Detection in Mobile

Networks. – In: 10th WSEAS Int. Conf. on Software Engineering, Parallel and Distributed

Systems (SEPADS’11), Cambridge, UK, 2011, pp. 118-123

11. A t a n a s o v, I., E. P e n c h e v a. Reasoning on Service Interaction in Mobile networks. –

International Journal of Computers and Communications, Vol. 15, 2011, No 2, pp. 59-66.

12. 3GPP Technical Specification Group Services and System Aspects. – Policy and Charging Control

Architecture, Release 13, V13.7.0, 2016.

13. A n d r o c e c, D., N. V r c e k. Ontologies for Platform as Service APIs Interoperability. –

Cybernetics and Information Technologies, Vol. 16, 2026, No 4, pp. 29-44.

14. C h e n, Y., Q. X i n, S. G u a n. Keynote Speech 1: Creating IoT Applications through Visual

Programming and Service Orchestration. – In: 2016 IEEE Information Technology,

Networking, Electronic and Automation Control Conference, Chongqing, China, 2016,

pp. 1-7.

15. I m, C., C, J e o n g. ISOMP: An Instant Service-Orchestration Mobile M2M Platform. – Hindawi

Mobile Information System, Vol. (2016), 2016 Article ID 7263729, pp.1-16.

16. G u p t a, H., S. B. N a t h, S. C h a k r a b o r t y, S. K. G h o s h. SDFog: A Software Defined

Computing Architecture for QoS Aware Service Orchestration over Edge Devices. Cornell

University Library, arXiv:1609.01190 [cs.NI].

17. L e e, N., H. L e e, W. R y u. Considerations for Web of Object Service Architecture on IoT

Environment. – International Journal of Smart Home, Vol. 9, 2015, No 1, pp. 195-202.

18. D’A n g e l o, G., S. F e r r e t t i, V. G h i n i. Simulation of the Internet of Things. Cornell

University Library, arXiv:1605.04876 [cs.NI].

19. A p e l, S., J. A t l e e, L. B a r e s i, P. Z a v e. Feature Interactions: The next Generation. Report

form Dagstuhl Seminar 14281, 2014, pp. 1-5.

20. M a t e r n a g h a n, C., K. T u r n e r. Policy Conflicts in Home Automation. – Computer

Networks, Vol. 57, 2013, Issue 12, pp. 2429-2241.

21. D o m i n g u e z, A. L. Detection of Feature Interactions in Automotive Active Safety Features.

PhD Thesis, School of Computer Science, University of Waterloo, 2012.

22. L i n, Y. B., et al. EasyConnect: A Management System for IoT Devices and Its Applications for

Interactive Design and Art. – IEEE Internet of Things, Vol. 2, 2015, Issue 6, pp. 551-561.

23. P e d e r s e n, T., T. L e G u i l l y, A. P. R a v n, A. S k o u. A Method for Model Checking

Feature Interactions. – In: 10th International Joint Conference on Software Technologies

(ICSOFT’15), Colmar, Alsace, France, 2015, pp. 1-10.

24. Z a v e, P. Modularity in Distributed Feature Composition. – In: Software Requirements and

Design: The Work of Michael Jackson. Good Friends Publishing, 2010, pp. 267-290.

