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Abstract: Several Job scheduling algorithms have been developed for Hadoop-

MapReduce model, which vary widely in design and behavior for handling different 

issues such as locality of data, user share fairness, and resource awareness. This 

article focuses on empirically evaluating the performance of three schedulers: First 

In First Out (FIFO), Fair scheduler, and Capacity scheduler. To carry out the 

experimental evaluation, we implement our own Hadoop cluster testbed, consisting 

of four machines, in which one of the machines works as the master node and all four 

machines work as slave nodes. The experiments include variation in data sizes, use 

of two different data processing applications, and variation in the number of nodes 

used in processing. The article analyzes the performance of the job scheduling 

algorithms based on various relevant performance measures. The results of the 

experiments are evident of the performance being affected by the job scheduling 

parameters, the type of applications, the number of nodes in the cluster, and size of 

the input data.  

Keywords: Big Data, Hadoop, MapReduce, job scheduling, analysis, experimental 

evaluation. 

1. Introduction 

For today’s era of the digital world, generating data rapidly, MapReduce [1] provides 

an ideal framework for the processing of such large data by using parallel and 

distributed programming approaches. In the MapReduce, a computation is divided 

into two functions: Map and Reduce. These two functions can be modified based on 

the type of processing needed by an application. The MapReduce works with Hadoop 

[2] for processing a large number of datasets, which may be structured or 

unstructured. The architecture needed for processing using MapReduce consists of 

one Master node (running JobTracker) and many Slave nodes (running 

TaskTrackers). Hadoop is an open-source framework that enables distributed 

processing of large datasets through its distributed file system and distributed 
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processing framework. Hadoop also provides a reliable shared storage system called 

as Hadoop Distribute File System (HDFS). HDFS provides access to files in the 

cluster [3]. HDFS is highly fault-tolerant and is designed to be deployed on low-cost 

hardware. HDFS is implemented by two components: NameNode and DataNodes. 

The NameNode component, present at a master node, manages the file system 

namespace and is a centralized service. The DataNodes component stores the blocks 

of data. Another component Secondary NameNode is responsible for periodic 

checkpointing. 

As Hadoop is a new framework, it still requires improvements in few aspects 

[4]. One of improvement directions is Job scheduling. However, Job scheduling in 

Hadoop is complex and it gets affected by many parameters; therefore, the study of 

existing job scheduling is needed before any attempt is made for any improvement. 

Job scheduling controls the order of tasks to be run and the allocation of resources, 

which directly affects the overall performance of the applications and system 

resource utilization of Hadoop cluster. The performance of job scheduling in the 

cluster depends on upon the job configurable parameters, scheduler configurable 

parameters, cluster configuration, and input data. There are more than 180 parameters 

in the Hadoop. A few important parameters include the number of replicas of input 

data and the number of parallel map/reduce tasks to run. Configuring various job 

scheduling parameters in order to get overall good performance from the system is 

still a challenging task. 

Existing research works, e.g., [5, 6], show that the performance of MapReduce 

applications depends on the cluster configuration, job configuration settings, and 

input data. In their work, First In First Out (FIFO) scheduler was used for 

experiments. The work in [7] presents an evaluation among FIFO, Fair, and Fair with 

delay scheduling. Adding delay time to Fair scheduler increase the processing of jobs. 

In [8], Cloud benchmark suite CloudRank-D is used to evaluate different Hadoop job 

schedulers, which include FIFO scheduler, Fair scheduler, Fair scheduler with delay, 

Capacity scheduler, and Hadoop On Demand (HOD). 

This article focuses on the experimental evaluation of schedulers, which are 

present in Hadoop, namely FIFO, Fair, and Capacity scheduler. To perform 

experiments, we have created our own Hadoop cluster of 4 nodes, which has one 

master and four slaves. The performance of these three schedulers is compared by 

using performance metrics, which are CPU/processing time, Turnaround time, Data 

processed per second, and Data locality rate. Our goal is to demonstrate empirically, 

based on a real testbed not on a simulation, that different parameters, workloads, and 

different applications play a significant role in the performance of the schedulers as 

well as on the system. 

The structure of this article is as follows. Section 2 presents background and 

discusses related work. Section 3 presents preparation of Hadoop cluster testbed, 

which we use for carrying out experiments. Section 4 discusses experiment settings 

including Hadoop cluster setup, performance metrics, and input dataset. Section 5 

presents empirical evaluation focusing on the results and their analysis. Finally, 

Section 6 presents the conclusion and provides future directions. 
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2. Background and related work 

Hadoop is a widely used open-source implementation of Google MapReduce [1]. 

Generally, many commodity computers are used to build a MapReduce cluster, in 

which one computer acts as the master node and others as slave nodes. A Hadoop 

cluster uses HDFS to manage its data. HDFS divides each file into a small fixed-size 

(e.g., 64 MB) blocks and stores several (e.g., 3) replicas of each block in local disks 

of cluster machines. In a MapReduce job, input files are read from HDFS and a Map 

task is preferably scheduled on a machine that contains a replica of the corresponding 

input data. MapReduce uses the replication feature of HDFS for improving the 

performance. MapReduce uses terms job and task. A MapReduce job is composed of 

many tasks, in which a task carries out either map or reduce processing. The job 

scheduler runs on the JobTracker node; it plays an important role in deciding where 

the tasks of a particular job will be executed in the cluster. Three widely used Job 

schedulers in Hadoop are as follows. 

2.1. Schedulers 

This sub-section briefly discusses salient characteristics of three schedulers: FIFO, 

Fair, and Capacity schedulers. 

2.1.1. FIFO scheduler 

The default scheduler in Hadoop is FIFO [7]. In FIFO scheduler, the jobs are 

submitted to a single queue and are executed sequentially. For assignment of tasks, 

the scheduler follows the strict FIFO job order. FIFO does not allocate any task from 

other jobs if the first job in the queue still has an unassigned map task. The drawback 

of this scheduler is that the strict FIFO job order reduces data locality, and only after 

completion of the previous job, next jobs in the job queue are assigned to nodes. 

2.1.2. Fair scheduler 

The Fair scheduler [9, 10] is developed by Facebook. The fair scheduler assigns 

resources to each job such that on average each job gets an equal share of available 

resources. The Fair scheduler groups jobs into named pools based on the configurable 

attributes such as user name and UNIX group, and then the scheduler performs fair 

sharing between these pools. Each pool has a guaranteed capacity i.e., the minimum 

number of Map and Reduce slots. By default, all pools have equal shares of resources 

(Map and Reduce task slots). The fair scheduler also supports pre-emption of tasks. 

The jobs that require less time for execution can access CPU early. If there is only 

one job running in the cluster, it gets resources of the entire cluster. If any pool is not 

using its slots, then these idle slots can be used by other pools. 

2.1.3. Capacity scheduler 

The Capacity scheduler [9, 11] is developed by Yahoo. The Capacity scheduler is 

designed for multiple organizations sharing a large cluster. The Capacity scheduler 

provides a minimum capacity and shares excess capacity among users. A capacity is 

assigned to each queue. Several queues are created each with configurable Map and 
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Reduce slots. The Capacity refers to the size of Map and Reduce slots. Within each 

queue, jobs are scheduled in FIFO order. When a TaskTracker slot becomes free, the 

queue with minimum load is chosen, from which the oldest remaining job is chosen. 

The Capacity scheduler supports the priority of jobs. Jobs with higher priority have 

access sooner to resources as compared to jobs with lower priority. The priority of 

the job is adjusted based on the time the job was submitted. The overall capacity of 

the cluster is the sum of capacities of each queue. If any of the queue’s allocated 

capacity is unused, then this capacity is assigned to other queues. The Capacity 

scheduler has the ability to control the allocation of resources based on physical 

machine resources. The Capacity scheduler understands the scheduling tasks based 

on memory consumption of job’s task.   

2.2. Related work 

Job scheduling algorithms play an important role in the performance of the Hadoop-

based system. In recent past, various studies with experimental and theoretical 

aspects of job scheduling and other related topics have been reported in the literature. 

G u  et al. [12] carried out a detailed analysis of MapReduce execution 

environment and showed vital issues of the execution environment. Their analysis 

suggested and empirically demonstrated the use of instant messaging mechanism 

instead of existing heartbeat messages. The work in [13] proposed enhancement to 

Hadoop MapReduce framework; existing MapReduce framework can run well in 

homogeneous clusters, not in heterogeneous clusters. Their work proposed the 

enhancements in the design of MapReduce framework that can handle node 

heterogeneity during phases such as data distribution, task scheduling, and job 

control. A theoretical and experimental examination on scheduling in MapReduce 

was reported in [14]. Their work formulated MapReduce server-job organizer 

problem and showed that it is NP-complete. As a solution to this problem, their work 

initially developed 3-approximation algorithm, and then proposed a fast heuristic 

algorithm. Their work carried out an evaluation of the proposed algorithm via 

simulation and real system, on Amazon EC2. L i,  J i a n g  and  R u i z  [15] modelled 

the problem of makespan minimization of periodical batch jobs as a two-stage hybrid 

flow-shop scheduling problem. Their work designed three heuristics to solve the 

problem and showed further improvement using data locality of tasks. 

Energy saving without degradation in the performance of the system is an 

important research direction. A recent research in [16] proposed two energy-aware 

MapReduce scheduling algorithms that reduce energy cost incurred without violation 

of SLA in Hadoop clusters. Some usage scenarios may demand completing jobs 

before the specified deadline. In this direction, T a n g  et al. [17] proposed 

MapReduce Task Scheduling algorithm for Deadline constraints in Hadoop platform 

(MTSD) that allows a user to specify the deadline for completing a job. The proposed 

algorithm meets the deadline by using the proposed data distribution model that 

distributes data based on nodes’ capacity level, which it detects using node 

classification algorithm. In pay-as-you-go model, customers may want to finish their 

jobs within specified budgets, and possibly before deadlines. A study in [18] 
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modelled a batch of MapReduce jobs as a workflow and scheduled the jobs on 

heterogeneous VMs in a cloud with satisfying budget and deadline constraints. 

In a computer network based distributed system such as Hadoop, the probability 

of failure of any entity cannot be ignored. Such assumption is considered in the 

research work [19]. Their work proposed replication-based fault tolerance 

mechanism that addresses node and task failure and showed that their replication-

based fault tolerance mechanism outperforms existing rescheduling-based fault 

tolerance of Hadoop system. Another related research work considers the decision of 

starting backup tasks on appropriate nodes. C h e n  et al. [20] proposed History-based 

Auto-Tuning (HAT) MapReduce scheduler that accurately estimates the progress of 

tasks to allow launching of backup tasks on appropriate nodes. Scalable computing 

on Cloud was attempted by G u n a r a t h n e  et al. [21]. Their work proposed 

Twiser4Azure, which is an iterative MapReduce runtime for Windows Azure Cloud. 

Twiser4Azure allows novel programming model to solve problems such as Multi-

Dimensional Scaling and K-Means Clustering that can involve iterative MapReduce 

computations. Their work also included a decentralized cache aware task scheduling 

to provide fault tolerant execution of computations. 

As a Hadoop system allows distributed storage of data, efficient access to data 

can improve the performance of applications. A research work in [22] proposed 

HPSO (High-Performance Scheduling Optimizer) that enhances the scheduling 

algorithm based on pre-fetching of data needed to map tasks. This pre-fetching 

reduces the time needed to transfer data over the network and hence improves the 

performance. Some scientific data processing applications, e.g., data analytics, need 

to process a very large amount of data. In this direction, the S e h r i s h  et al. [23] 

proposed a MapReduce-based framework to support execution of HPC analytics 

applications, which generally need transferring of large data from an HPC storage 

system to a data intensive computing system, i.e., MapReduce. Their proposed 

framework eliminates multiple scans of data. Their work also implemented a data-

centric scheduler for improving the performance of HPC analytics applications. 

Another related work for the scientific domain was reported in [24]. Their work 

proposed G-Hadoop, which is an extension of MapReduce framework, that allows 

the use of nodes of distributed data centres to solve very large-scale data analysis 

scientific applications such as used in High Energy Physics (HEP) and Large Hadron 

Collider (LHC) experiments. 

Survey works help researchers in understanding the relevant concepts and the 

state-of-the-art. A study in [25] proposed a novel multidimensional classification 

framework to classify scheduling algorithms used in MapReduce. The classification 

is in three dimensions: (1) quality requirements of a MapReduce system;  

(2) scheduling entities; (3) adaptation to dynamic environments. Their work analysed 

various scheduling algorithms used in MapReduce in depth based on the proposed 

classification framework. Another composition in [26] surveyed various works 

focused on distributed data management and data processing using MapReduce 

framework. Their study provided comprehensive coverage of MapReduce system, 

various implementations of MapReduce, MapReduce implementation of database 

operators (e.g., join operations), and database systems using MapReduce processing. 
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Their study also discussed possible optimizations, i.e., extensions to MapReduce, for 

scheduling. A survey work in [27] presented a survey of various technical aspects of 

MapReduce framework with a focus on advantages and disadvantages. Their work 

also discussed various schedulers used for MapReduce jobs. Recently, G a u t a m   et 

al. [9] presented a survey and analysis of various schedulers used in Hadoop. 

Furthermore, their work also carried out a survey and analysis of various customized 

MapReduce frameworks. A research article in [28] carried out a survey of systems in 

HPC, cloud, and Big Data environments with a focus on performance and energy 

efficiency. Their work surveyed characterization of workload for such systems. Their 

extensive review of various research works suggested that more than 50% papers 

focus on improvement of performance and energy efficiency. 

An empirical evaluation of any system can provide a performance comparison 

of a system with other related works. Furthermore, critical analysis of a system can 

suggest possible improvements in various entities of the system. In this direction, 

A l t h e b y a n  et al. [29] empirically evaluated MapReduce scheduling algorithms 

such as FIFO, Matchmaking, Delay, and MultiThreading Locality (MTL) using 

CloudExp simulator, which is an extension of CloudSim. Our work differs from their 

work in the way that we carry out an experimental evaluation on a real Hadoop 

cluster, rather than a simulation. 

3. Development of a testbed for evaluation of job scheduling 

algorithms 

We implement our own Hadoop cluster testbed consisting of four machines. This 

section discusses deployment of the testbed, presents challenges faced while 

deploying the testbed, and discusses the steps for configuring schedulers. 

3.1 Deployment of the testbed 

Hadoop is a framework written in Java for running applications on large clusters of 

commodity hardware, and it incorporates features similar to Google File System 

(GFS). Hadoop is designed to be deployed on low-cost hardware. It provides high 

throughput access to application data and is suitable for applications that have large 

data sets. Hadoop has master/slave architecture in which one machine is configured 

as master and other machines are configured as slaves. We have implemented our 

own testbed having four nodes. The architectural diagram of our testbed is shown in 

Fig. 1. The diagram also shows hardware and software configuration of used 

machines. 

Hadoop framework can be installed on windows OS, Mac OS, and on Linux 

OS. We have installed Hadoop on Cent OS. As a prerequisite, Hadoop installation 

requires Java on all the machines of the cluster. We also configure password-less 

SSH access to all the machines of the testbed, which is a requirement of Hadoop 

cluster. Hadoop master uses the password-less login for initiating process execution 

remotely. In addition to these requirements, there are a few files in Hadoop which we 

need to configure. We configure following files: core-site.xml, mapred-site.xml, 

hdfs-site.xml, masters, and slaves. All these files are present in conf. directory under 
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Hadoop base directory. All machines must be able to reach each other over the 

network; therefore, we put all four machines on the same network, for which we use 

a network switch. 

 

 

Fig. 1.  Architecture of our Hadoop cluster testbed 

3.2. Challenges we faced while installing Hadoop 

We faced a few problems while installing Hadoop. We briefly discuss these problems 

and their solutions. 

3.2.1. Problem with ssh configuration 

Error: connection refused to port 22:  

This is the most common error while installing Hadoop. To resolve this error, make 

sure that the machine on which you are trying to login should have ssh server 

installed. Make sure that the keys are configured properly and the public key is shared 

with the machine that you want to login to. If the problem persists then check for 

configuration of ssh on the machine; the configuration is kept in /etc/ssh/sshd_config 

file. 

3.2.2. NameNode is not reachable 

Error: Retrying to connect 192.x.x.x:  

Check whether daemon process is running or not. Check for core-site.xml file in conf 

directory of Hadoop. Check for value for property hadoop.tmp.dir. It should be set to 

a path where the user that is trying to run Hadoop has write permissions. We need to 

format the NameNode again and need to start Hadoop again. 

3.2.3. No DataNode to stop 

Error: java.io.IOException: Incompatible namespaceIDs.   

No datanode to stop error occurs while stopping the DataNode. In this situation, we 

need to stop the problematic DataNode(s). Then, we need to edit the value of 

NamespaceID in {dfs.data.dir}/current/VERSION to match the corresponding value 
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of the current NameNode in {dfs.name.dir}/current/VERSION. Finally, we need to 

restart the fixed DataNode(s). 

3.2.4. Connection error between DataNode and NameNode 

Error: DataNode cannot connect to NameNode: 

This error occurs when DataNode is not able to connect with NameNode. To solve 

this error, we need to stop the iptables, which is a firewall in Linux. Iptables is a rule 

based firewall system and is normally pre-installed on a Unix/Linux operating 

system. Iptables controls the incoming and outgoing packets. 

3.2.5. Login error while logging to Slave machine from Master machine 

Error: This is an SSH login error:  

This error occurs while logging into machines that are remotely accessible. For 

solving this problem, after generating and distributing keys for passwordless login, 

we need to place the public key on all slave machines in the home directory of the 

Hadoop cluster user. 

3.3. Scheduler configuration 

For running different schedulers in Hadoop, a few properties have to be configured 

in the configuration files. The schedulers that can be configured are Fair and Capacity 

schedulers. FIFO scheduler does not need to be configured. 

3.3.1. Steps for configuring Fair scheduler 

The Fair scheduler is available as a JAR file in the Hadoop under the 

contrib/fairscheduler directory. The name of the JAR file, version specific, would be 

of the form hadoop-*-fairscheduler.jar.   

To run the Fair scheduler in Hadoop cluster, we need to put its jar file on the 

CLASSPATH. The other way is to copy the hadoop-*-fairscheduler.jar file from 

Hadoop directory to HADOOP_HOME/lib.  

To allow Hadoop framework use the Fair scheduler, we need to set up the 

following property with indicated value in the site configuration:  

 Property: mapred.jobtracker.taskScheduler  

 Value: org.apache.hadoop.mapred.FairScheduler 

We need to define fair scheduler allocations file (location specified in maped-

site.xml) to use the queues and we need to assign resources to these queues. 

Two pools were created for processing of jobs. Pre-emption is enabled. For 

finishing short jobs faster, weight booster was enabled. The interval at which to 

update fair share calculations is kept 500 ms. 

3.3.2. Steps for configuring Capacity scheduler 

The Capacity scheduler is available as a JAR file in the Hadoop under the 

contrib/capacity-scheduler directory. The name of the JAR file, version specific, 

would be of the form hadoop-capacity-scheduler-*.jar. 
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To run the Capacity scheduler in Hadoop cluster, we need to put the JAR file on 

the CLASSPATH. The other way is to copy the hadoop-capacity-scheduler-*.jar 

from Hadoop directory to HADOOP_HOME/lib. 

To allow the Hadoop framework use the Capacity scheduler, we need to set up 

the following property with the indicate value in the site configuration:  

 Property: mapred.jobtracker.taskScheduler  

 Value: org.apache.hadoop.mapred.FairScheduler 

We define multiple queues to which users can submit jobs using the Capacity 

scheduler. To define multiple queues, we use the mapred.queue.names property in 

conf/mapted-site.xml. 

Several properties of the queue can be configured to control the behaviour of 

scheduler. This configuration is in the conf/capacity-scheduler.xml. 

Two queues are created for processing of the job. Queues with 50-50% capacity 

and also with 10-90% capacity. 

4. Experiment setup 

This section discusses the experimental setup used for evaluating FIFO, Fair, and 

Capacity schedulers. This section also discusses workload and performance measures 

used for evaluation. 

4.1 Experimental environment 

To allow the readers be able to replicate the experiments, we briefly discuss our 

experiment environment. As discussed earlier, the testing environment consists of 

four nodes (one master and four slaves). The master node was designated to run 

JobTracker and NameNode, while the slaves run TaskTrackers and DataNodes (slave 

daemon of HDFS). The master node is also configured to exhibit the functionality of 

a slave node. Each node has Intel core i3, 3.4 GHz processors, with a single hard disk 

capacity of 500 GB, 4 GB RAM, and 100 Mbps network connection. All the nodes 

were installed with CentOS 6.3 operating system with Java 1.6.0. 24 (Open JDK), 

executing Hadoop 1.2.1 (stable release). Table 1 shows the Hadoop configurable 

parameters. 
 

Table 1. Hadoop parameters 

Parameters Details (configured value) 

HDFS block size 64 MB 

Speculative execution Enabled 

Heartbeat interval 3 s 

Number of map tasks per node 2 

Number of reduce tasks per node 1 

Replication factor 2 

HDFS block size 64 MB 

Speculative execution Enabled 

Heartbeat interval 3 s 
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4.2. Workload and performance measures for experiments 

We choose two representative Hadoop applications: WordCount and Grep [30]. 

WordCount has been used by many researchers as a benchmark MapReduce 

application for such experiments. WordCount is a CPU-intensive application, which 

reads text files and counts how often the words occur. Another application – Grep is 

frequently used in data mining algorithm; it extracts matching strings from text files. 

For these two MapReduce applications, we use input data files of sizes 818.5 MB, 

1.2 GB and 2.4 GB, which are text files that we manually generated by copying text 

content from various technical documents. Text files of varying sizes are used to 

observe the effect of data size on the performance of the schedulers. 

For measuring the performance of scheduler, following performance measures 

are used. 

CPU Time: It indicates the amount of time for which a CPU is used for 

processing instructions of a program. 

Data processed per second [30]: It is defined as the input data size divided by 

the application running time. 

Turnaround Time [8]: It is measured as the total time taken from the 

submission of a job until the end of the job execution. 

Data Locality [31]: It is defined as the number of tasks running on the same 

resources where their stored data are located. 

The CPU Time can be obtained from the terminal output, after the completion 

of a job or from the JobTracker web interface provided by Hadoop framework. The 

Turnaround Time is obtained by executing the command “Hadoop job – history” in 

the terminal as well as from the JobTracker web interface. The Data Locality rate can 

be obtained from the JobTracker web interface as well as from a terminal. 

5. Empirical evaluation: results and analysis 

This section provides the results of our experiments. In each experiment, we compare 

FIFO, Fair, and Capacity schedulers. The comparison is based on the earlier 

discussed performance metrics. 

5.1. Comparison based on CPU Time 

Comparison of CPU Time used by a job is done by varying the size of data given to 

the three schedulers. As shown in Fig. 2, the default FIFO scheduler takes more CPU 

Time as compared to Fair and Capacity schedulers. Among the three schedulers, Fair 

scheduler takes less CPU Time. Fair scheduler supports pre-emption of tasks while 

Capacity scheduler does not support pre-emption. If a pool has not received its fair 

share for a certain period, then the Fair scheduler will kill tasks in pools running 

beyond the capacity in order to give the slots to the pool running under capacity. This 

pre-emption was enabled may be because of which Fair performs well as compared 

to other two schedulers. Furthermore, there is a minor difference between the 

processing time of Fair and Capacity schedulers. Both the schedulers have the 

property of assigning some capacity or slots to the Map and Reduce tasks; while FIFO 

schedule does not have this property. The capacity or slots are considered as resources 
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(Map and Reduce slots) in the cluster, which are assigned to the queues. Queues are 

configured with guaranteed Map and Reduce slots. If more slots are available, then 

the execution time will decrease. More capacity means more Map and Reduce slots, 

thus it decreases Map execution time for a job in a queue. 

 
Fig. 2.  Effect of data size on CPU Time (s) of Wordcount job for FIFO, Fair, and Capacity 

schedulers 

 

 
Fig. 3. Comparison of CPU Time of Wordcount and Grep jobs for FIFO, Fair, and Capacity schedulers 

for processing of 2.4 GB of data 

The CPU Time also varies according to the type of application executed on the 

system. As shown in Fig. 3, Wordcount takes more CPU Time as compared to Grep. 

Wordcount takes more CPU Time because it is a CPU intensive job. There are minor 

differences in the processing times of all the three schedulers. As shown in Fig. 3, the 

processing time of Wordcount is 8.2 times higher than that of running Grep, when 

they both process 2.4 GB of dataset on FIFO scheduler, Fair scheduler, and Capacity 

scheduler. Therefore, running the same application with different schedulers may not 

produce large differences. 
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5.2. Comparison based on Turnaround Time 

Comparison of Turnaround Time of a job is done by varying the size of data given to 

the three schedulers. The Turnaround Time often shows an intuitive view of system 

performance. Among three schedulers, Fair scheduler reduces the job Turnaround 

Time. It is mainly because this scheduler can reduce the network cost. When data size 

is large, e.g., 2.4 GB, Fair and Capacity schedulers take less Turnaround time as 

shown in Fig. 4. 

 

 
Fig. 4. Effect of data size on Turnaround Time (sec) of grep job for FIFO, Fair, and Capacity 

scheduler 

Fair and Capacity schedulers can limit the number of concurrent jobs. This 

limitation can reduce the cost of scheduling between jobs in the task pool, and system 

performance gets improved. The Data locality is also an important property for 

reducing the Turnaround Time. If the data is nearer to the computation node, then 

waiting time of a job gets reduced and network cost will also get reduced. 

5.3. Comparison based on Data processed per second 

Comparison of Data processed per second is done by varying the size of data given 

to the three schedulers. As shown in Fig. 5, for input data sizes 1.2 GB and 2.4 GB, 

Fair and Capacity schedulers process more bytes as compared to FIFO scheduler. The 

Capacity scheduler and the Fair scheduler can enhance the system utilization, which 

directly affects the processing of data. The Capacity scheduler provides capacity 

guarantees to queues, i.e., the maximum number of Map and Reduce slots. The 

unused capacities can be used by other queues. Consequently, as the cluster 

utilization increases, the execution time of a job decreases, and data processing 

capability increases. In Fair scheduler, jobs are submitted to the pools. Pools can also 

be considered as queues. Each pool is provided with a minimum number of 

Map/Reduce slots. When there are pending jobs in the pool, it gets at least minimum 

number of slots assigned to it. However, if the pool has no jobs, the slots can be used 

by other pools. As the unused Map and Reduce slots can be used by other jobs, the 

execution time will get reduced and Data processing capability is increased. 
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Fig. 5. Comparison of Data processed per second for Wordcount job for FIFO, Fair, and Capacity 

schedulers 

 

 
Fig. 6. Comparison of Data processed per second by Wordcount and Grep for FIFO, Fair, and 

Capacity schedulers for processing of 2.4 GB of data set 

Processing of Data processed per second is also dependent on the type of 

application. Wordcount processes very fewer data per second as compared to Grep. 

From Fig. 6, we can conclude that the data processed per second of Grep is 8 times 

higher than that of running Wordcount when they both process 2.4 GB of data set on 

FIFO scheduler, Fair scheduler, and Capacity scheduler. This shows that schedulers’ 

performance is also dependent upon the type of a job. Wordcount is CPU intensive 

job, so it takes more time in processing which directly affects data processing per 

second, whereas Grep takes less time for processing which directly increases the data 

processing per second. 

5.4. Comparison based on the number of nodes 

The number of nodes in a cluster plays a very important role in the performance of 

scheduler. Fig. 7 shows the effect of the number of nodes on CPU Time for processing 
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of 818.5 MB of data set by Wordcount job. From Fig. 7, it can be seen that as the 

number of nodes increases, the performance of Capacity scheduler increases. The 

capacity scheduler takes less processing time as the number of nodes increases. This 

is because Capacity scheduler utilizes cluster resources efficiently. It is basically 

designed for multiuser and multiple organizations sharing a cluster with guaranteed 

capacities. 

 

 
Fig. 7. Effect of the number of nodes on CPU Time for processing of 818.5 MB of data set by 

Wordcount job 

In this experiment, the capacity provided to the queue is 100%. Therefore, the 

queue uses the entire capacity of the cluster. The job utilizes all the Map slots of the 

entire cluster, which improves the execution time of the job as well as improves the 

performance of the cluster. Another property Data locality rate helps to decrease the 

processing time of a job. The data locality rate of Capacity scheduler on 1, 2, 3, and 

4 number of nodes is 100%. The data locality rate is the number of data local map 

tasks launched divided by the total number of map tasks launched. This means the 

data local Map tasks are almost same to the launched Map tasks. For example, when 

a job is executed on 3 nodes, the data local Map task were 14 and launched Map tasks 

were also 14. Thus, Data locality rate is 100%. The FIFO scheduler’s processing time 

increases as the number of nodes increases because FIFO does not consider Data 

locality rate. If the data is not nearer to the computation node, the job has to wait for 

execution because of which the processing time increases. 

As shown in Fig. 7, the performance of the Fair scheduler decreases when the 

number of nodes is 3. The reasons behind the degradation of performance can be the 

network cost, the data locality, and the time taken by a task to get launched on a node. 

The Data locality rate of the Fair scheduler on 1, 2, 3, and 4 number of nodes is 100%, 

100%, 71%, and 81%, respectively. The data locality rate of the Capacity scheduler 

is 100%, 100%, 90 %, and 90 %, which is better than the Fair scheduler data locality 

rate. This observation shows that the Capacity scheduler performs better than the Fair 

scheduler. 
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Fig. 8.  Effect of the number of nodes on CPU Time for processing of 1.2 GB of data set by 

Wordcount job 

The performance of the Capacity scheduler increases as the number of nodes 

increases. The overall performance of Capacity scheduler is good as compared to 

FIFO and Fair scheduler as shown in Fig. 8. The capacity scheduler takes less 

processing time as the number of nodes increases. The data locality rate of the 

Capacity scheduler is 100%, 100%, 97%, and 97% on 1, 2, 3, and 4 number of nodes, 

respectively. For the number of nodes 2 and 3, Fair scheduler takes more CPU time 

as compared to FIFO and Capacity schedulers. The reason behind this is network cost 

or most of the Map tasks may not be scheduled on the nodes where the data to be 

processed by them is located. 

 

 
Fig. 9.  Effect of the number of nodes on CPU Time for processing of 2.4 GB of data set by 

Wordcount job 

Based on the CPU time, the performance of Capacity and Fair scheduler is better 

than FIFO scheduler for processing of 2.4 GB of data size and for a different number 

of nodes as shown in Fig. 9. As the number of nodes is increased the processing time 

of a job gets decreased. The parallelism is increased. Among the three schedulers, 

Fair scheduler takes less time to process a job. The minimum number of Maps 
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provided to Fair scheduler is 170 and the limit for a maximum number of jobs is 25. 

The number of Maps which a pool can use is more, so the processing time becomes 

less. The data locality rate of Fair scheduler is 100%, 81%, 97%, and 100% on 1, 2, 

3, and 4 number of nodes, respectively. FIFO scheduler takes more CPU time as 

compared to Fair and Capacity schedulers. FIFO scheduler does not consider the data 

locality. 

5. Conclusion and future work 

In this article, we evaluated three schedulers available in Hadoop based on various 

parameters of the study. To carry out an experiment evaluation, we implemented our 

own Hadoop cluster having one master and four slaves. The article highlighted 

crucial information related to installation and troubleshooting, which might become 

useful to others who want to prepare their own Hadoop cluster. This article analysed 

the performance of Grep and Wordcount applications by varying data size  

(818.5 MB, 1.2 GB, and 2.4 GB) based on the performance metrics such as CPU 

time, Turnaround time, and Data processed per second. 

From the experimental analysis, we can conclude that the performance of 

schedulers is dependent on data size, the number of nodes in the cluster, configurable 

parameters of schedulers, the number of jobs running in the cluster, and the type of 

applications. Different task schedulers have a different influence on the performance 

in different situations. The FIFO scheduler takes more time for processing a job as 

compared to the Fair and the Capacity scheduler while the Fair and the Capacity 

schedulers take almost same processing time. The Capacity scheduler takes more 

Turnaround time as compared to the Fair scheduler while the Fair scheduler takes 

less Turnaround time as compared to FIFO scheduler. As the Capacity scheduler uses 

the concept of queue capacity, it may happen that queues having less capacity take 

more time to process the job. Also, the time taken by a job to get launched for 

execution is higher. The Fair scheduler processes more data per second as compared 

to Capacity and FIFO scheduler. Among three schedulers, FIFO processes fewer data 

per second. We can also conclude that the data processing capability of Grep is more 

than that of running WordCount, when they both processes 2.4 GB of data set on the 

FIFO, the Fair scheduler, and the Capacity scheduler. Wordcount is a CPU intensive 

application while Grep is not CPU intensive application. So, Grep takes less time to 

process as compared to Wordcount. 

The performance of a job in a cluster depends on Job configuration settings, 

cluster configuration, and input data. Increasing the number of nodes in the cluster 

increases the parallelism, which directly affects the performance. For further analysis 

of the performance of schedulers, more complex workload can be used and effect of 

HDFS block size can be observed. For improving the performance of Fair scheduler, 

additional configurable parameters such as the weight of pools and jobs can be used. 

For improving the performance of Capacity scheduler, the administrator can limit the 

number of concurrent jobs per queue and per user. Such analysis and experimental 

evaluation can be used to realize autonomic computing in which job scheduling 

policy at the master node can be adapted to the type of workload and changing cluster 
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environment. The job policy files or configuration files with adapted parameters can 

be generated dynamically using scripting languages such as python, perl, and 

Unix/Linux shell scripts, which are widely used for automation in Cloud Computing.  
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