
 126

BULGARIAN ACADEMY OF SCIENCES

CYBERNETICS AND INFORMATION TECHNOLOGIES Volume 17, No 1

Sofia 2017 Print ISSN: 1311-9702; Online ISSN: 1314-4081

DOI: 10.1515/cait-2017-0010

Data Receiving Method Based on Multimedia Timing in Real-

Time System

Zhigang Ma1, Wenyi Liu2
1College of Information Science and Engineering, Shanxi Agricultural University, Taigu 030801,

China
2Key Laboratory of Instrumentation Science & Dynamic Measurement, North University of China,

Taiyuan 030051, China

Emails: sxau_mzg@163.com liuwenyi@nuc.edu.cn

Abstract: Several methods, such as polling, multithread, timing, and so on, can be

used in data receiving course. Low-efficiency and high level of system resource

consumption may bring about data loss in polling and multithread methods when

the data transmission rate is very high. Software timing methods are discussed and

analyzed in Visual C++. Timing method would improve the system resource

availability and decrease the risk of data loss. According to the demand of a testing

system, a real-time monitoring system based on memory sharing and multimedia

timer is presented. After testing, the average timing error of the multimedia timer in

the given instance is not bigger than 0.05%, so the continuity and integrity of data

receiving can be assured under the conditions of high-speed data transmission.

Keywords: Real-time monitoring system, data receiving, timing, multimedia timer,

memory sharing.

1. Introduction

Real-time monitoring system has been widely used in critical systems for industrial

and agricultural production, environmental security, aerospace, medical,

communication, defense equipment, and other domains. A large number of real-

time monitoring applications include: fault diagnosis and maintenance of

mechanical equipments [1], construction quality monitoring [2], meteorological and

geological disaster prediction [3], oil, natural gas and other underground production

environment monitoring [4], environmental monitoring and protection [5], medical

care and monitoring [6], transportation [7], rocket launching parameter monitoring

[8], and so on.

In order to meet the “real-time” requirements in monitoring systems, the

execution efficiency of the application program must be guaranteed. The efficiency

involves many aspects in the monitoring system, and relates with a variety of

factors, such as: number of channels, sampling rate, data transmission rate, data

 127

receiving method, data processing algorithm, performance of embedded processor

or computer, development tool, and so on. Among of which, data receiving method

will affect the performance of the whole monitoring system. Inefficient receiving

algorithm may give rise to data loss, processing delay or other problems, and

thereby affect the monitoring of critical parameters. For the purpose of developing a

efficient and reasonable data receiving method, this paper is discussed on the basis

of Visual C ++ 2008 (VC 9.0).

2. Real-time system and real-time monitoring system

In a Real-Time System (RTS), its function must be accomplished in the specified

time, and give a response for external or internal, synchronous or asynchronous

time. Correctness of the real-time system depends not only on the running result of

the system, but also the time when the result is generated [9-12].

Real-time systems can be divided into “hard real-time” and “soft real-time”. In

hard real-time systems, time requirement must be met; otherwise it will cause

serious consequences, such as the application in certain key occasions of military,

aerospace, nuclear industry and so on. In soft real-time systems, although the time

requirement is proposed, occasionally violating the time demand will not cause

serious effects in systems operation, such as widespread monitoring and control

systems, information collection and processing systems. The Real-Time Monitoring

System (RTMS) discussed in this paper belongs to soft one. In the soft real-time

monitoring system, time demand is not very harsh, but because of plenty of

channels and large amount of data, there are many difficulties in the design process.

A typical real-time monitoring system usually consists of the front-end (distal

end), and one or more back-ends (proximal end), as shown on Fig. 1. Typically, the

testing data is transmitted from the front-end to every back-end after data

acquisition, framing and packaging. And data processing, analysis, solving and

monitoring task will be completed mostly in back-ends. Therefore, the front-end

and back-end are always called as acquisition module and monitoring module

respectively.

Fig. 1. Composition of real-time monitoring system

Quantification

Encoding

Framing

Packaging

Acquisition

system

Front-end

…

Sensing

system

 Back-end 1

Back-end 2

Back-end n

 128

3. Data receiving method

In the real-time monitoring system, there are a large number of testing data

transmitted from the front-end to the back-end. The obtained testing data must be

real-time processed (analyzing, solving, curves, graphics, and so on) in the back-

end, and polling, Multithreading, timing and other methods can be used for data

receiving.

3.1. Polling method

Polling method is a kind of data receiving method with the easiest algorithm and

program structure, which can be achieved by the loop control structure. There are

some problems using this method for data receiving, mainly reflected in: because of

the high occupancy rate of CPU, it is difficult to intervene in the program execution

flow and likely to generate an endless loop. When developing the window

application program, if the loop program segment cannot return promptly, it will

prevent the continual execution of window message processing, and then lead to the

operational difficulties or unresponsive in the software interface. In order to solving

the above problem, the message mechanism can be adopted, that is calling the

function similar with DoEvents in Visual Basic. Thus, control of CPU can be

temporarily returned to the operating system, and which will avoid the endless loop.

In fact, due to the characteristics of the cycle mechanism, the use of this method has

a significant risk of losing data.

Here, we set two industrial PCs, named IPC-A and IPC-B. IPC-A and IPC-B

were connected with a network cable. IPC-A transmitted data with the rate of

1Mbps~8 Mbps, and IPC-B was used to receive data.

Table 1 shows the relationship between data loss rate and data transmission

rate. There is a need to explain, the testing is based on the following hardware and

software environment: computer’s hardware platform is 3.3 GHz of CPU frequency

and 4 GB of memory; operating system is Windows XP SP3.

Table 1. Relationship between data loss rate and data transmission rate in polling method

Data transmission rate (bps) 1 M 2 M 4 M 5 M 8 M

Data loss rate (%) 0 0 0.05 0.26 4.18

It is thus clear that, the polling method is only suitable for the low-speed (no

more than 4 Mbps) systems; for high-speed systems, this method has some

limitations.

3.2. Multithreading method

Multithreading is a kind of concurrent execution technology for multiple threads

achieved based on the hardware or software. Due to the hardware support, a

computer with multi-threading capability is able to execute multiple threads at the

same time, which can improve the overall processing performance of the computer.

In essence, the use of multithreading can improve the availability factor of CPU.

When there are multiple threads running in the system, the operating system will

dict://key.20F22736C611DF408CBC4C2CBAC45A70/availability%20factor

 129

provide a CPU time slice for every thread by polling way. Every thread will run in

the corresponding time slice, because the time slice is very short, which looks the

same that the multiple threads running simultaneously. Therefore, multithreading

method can maximize the utilization of CPU resources.

In this paper, a real-time data receiving and processing procedure is designed

base on multithreading method. There are two threads in the procedure, one is for

data receiving and archiving, and the other one is used for data processing and

analysis, including: channel data extraction, curve plotting, and so on. In this case,

the relationship between data loss rate and data transmission rate is shown in

Table 2.

Table 2. Relationship between data loss rate and data transmission rate in multithread method

Data transmission rate (bps) 5 M 6 M 8 M 10 M 12 M 15 M

Data loss rate (%) 0 0 0.09 0.21 0.86 1.19

As can be seen from Table 2, compared with the polling mode, data loss rate

was reduced to a certain extent in multithreading method. However, when the data

transmission rate exceeds 8 Mbps, the system still loses data.

3.3. Timing method

Timer is a commonly used data receiving method in real-time monitoring systems.

Timing can be divided into hardware and software timing. Hardware timing has

higher accuracy, but because of the additional circuit, the achievement of hardware

timing is more complex. Timer in Windows operating system can be used for

software timing, and high-precision timer can be adopted in precise timing

applications. There are several ways of Implementing software timing in VC

[13, 14].

(1) SetTimer function timing method

In VC programming, timing operation in multi-task system can be achieved by

WM_TIMER message. When the timing task is completed, control is returned to

the system in order to perform other operations. When programming, the timer

number and interval are set by calling SetTimer function firstly, the former two

parameters of SetTimer are timer number (ID) and timing interval (ms)

respectively. For example, calling SetTimer (100, 500, NULL) will create a timer

with ID of 100 and interval of 0.5 s. Then a timing response function OnTimer is

programmed to complete the corresponding function.

Application of SetTimer timer is relatively simple, but its timing accuracy is

low, only tens of ms. As a result, it is often used in applications with lower

precision timing demand.

(2) GetTickCount function timing method

GetTickCount function can also achieve the timing operation. There is no

parameter in GetTickCount, and its type of return value is DWORD, that is 32-bit

unsigned integer. The execution result of GetTickCount is the elapsed time (in ms)

from system startup to the time of calling this function. The timing accuracy of

http://dict.cnki.net/dict_result.aspx?searchword=%e5%88%a9%e7%94%a8%e7%8e%87&tjType=sentence&style=&t=utilization
javascript:showjdsw('jd_t','j_')

 130

GetTickCount is higher than SetTimer, about a dozen ms. Therefore, this method is

also not suitable for the applications with high precision requirement.

(3) Multimedia timer

To meet the need of multimedia, Microsoft provides an application program

interface (API) function for multimedia precise timing, which is timeSetEvent

function. The prototype of timeSetEvent is:

MMRESULT timeSetEvent (UINT uDelay, UINT uResolution,

LPTIMECALLBACK lpTimeProc, WORD dwUser, UINT fuEvent)

Where: uDelay specifies the timing cycle (ms); uResolution specifies the

timing precision (ms), the smaller the value, the higher the timing resolution;

LpTimeProc points to a callback function, which contains the program code need

timing executed.

The timing precision of multimedia timer is about 1 ms, which is very reliable.

However, the consumption of system resources is very large, so it must be released

promptly after used.

(4) High-precision timer

The above-mentioned timing methods are commonly used in systems with

timing precision over 1 ms. For more demanding timing or interrupt system, more

precise functions QueryPerformanceFrequency and QueryPerformanceCounter are

provided in VC. Among them, calling QueryPerformanceFrequency can get the

frequency of high-precision timer supported by hardware, and

QueryPerformanceCounter provides the current value of the high-resolution

performance counter, if one exists.

When using, the computer’s internal clock frequency (TimerFrequency) can be

obtained by calling QueryPerformanceFrequency firstly; then calling

QueryPerformanceCounter function before and after the timing event respectively,

the two counts will be obtained; using the difference (CounterDiff) of the two

counts and clock frequency (TimerFrequency), the event time can be calculated

with CounterDiff / TimerFrequency.

Theoretically, the timing precision of high-precision timer can be achieved the

magnitude of ns (10-9 s). in practical use, considering of the system hardware

configuration, the influence of various factors, thread priority in operating system,

timing randomness, the actual minimum resolution of high-precision timer is about

1 μs, timing precision can reach about 2 μs [14].

(5) Comparison of software timing methods

Table 3. shows the timing precision of the above-mentioned methods in

Windows XP. The minimum resolution of timer created by SetTimer or

GetTickCount method is from a dozen to dozens of ms, and the priority is lower in

the multi-tasking operating system, so these two methods are only suitable for lower

timing precision and real-time demand occasions. By contrast, the timing resolution

and precision of multimedia timer is higher, which can be about 1 ms, and this

method can reduce the impact to timer’s running from the constraints of system

 131

resource. The timing interval of high-precision timer can be set as any time above

2 μs, which is suitable for the systems with higher precision requirements.

Table 3. Comparisons of software timing methods

Timing method Timing precision System priority Application

SetTimer dozens of ms lower lower real-time demand

GetTickCount a dozen ms lower lower real-time demand

Multimedia 1 ms higher higher real-time demand

High-precision 2 μs higher higher real-time demand

4. Application instance and analysis

For the requirement of a testing application, a real-time monitoring system based on

memory sharing is developed, and the multimedia timing is applied to data

receiving. In the testing system, a PCM demodulation card is inserted in the IPC,

which is used for demodulating the received testing data from the front-end to PCM

data, and then saving the PCM data to the prepared memory sharing region. In the

design of real-time data processing software, the effective data in the sharing

memory should be read out firstly, and then it will be separated, analyzed, resolved

or displayed in curves according to the frame structure of PCM data.

In this testing system, the transmission rate of PCM data is in the scope of

1-15 Mbps, the size of sharing memory is set as (1 K + 5 M) bytes. Among of

which, the former 1 K byte is the data attribution description block of the sharing

memory, and the definition of it is shown in Table 4. Following the description

block, 5 M byte space is used for storing testing data, and the data is written

circularly in the entire space. The writing pointer in the description block is used to

specify the position of the latest data; if the data space is filled, the pointer will be

returned to zero.

Table 4. Data attribution description block of the sharing memory

Address Bytes Definition Description

0~1 2 USHORT HeadLen Length of property header

2~5 4 ULONG BufLen Length of data

6~9 4 ULONG WrPt Data writing pointer

10~1023 1014 UCHAR Reserved[1014] Reserved bytes

4.1. Data receiving algorithm

Assuming the data transmission rate of PCM data is 5 Mbps, the sharing space will

be filled in 8s approximately. When using multimedia timing method for receiving

data, the timing interval can be set as 500 ms or 1000 ms; thus, the size of received

data is 320 KB or 640 KB at a time. The algorithm process of reading and analyzing

data based on multimedia timing method is shown on Fig. 2.

 132

Fig. 2. Algorithm flow of timing data receiving and processing

Obtaining the latest data from the sharing memory must make use of the data

writing pointer. Assume: [0 ~ MaxLen–1] is the entire range of data storage

memory space; WrPt1 and WrPt2 represent the last and current position of writing

pointer (position of the latest data) respectively. Because the timing interval is much

less than the time filled the entire data space, for the wring pointer, it is certain that

the “rings” situation never occur. According to the comparison of WrPt1 and

WrPt2, there are following different cases, which are shown in Fig. 3.

Fig. 3. Position of effective data

Begin

Opening a file
mapping object

Getting the address
of sharing memory

Timing trig?

Y

N

Get effective data

Data processing

Stop?

Y

N

Release resources

End

Effective

data part 2

Effective

data

WrPt1

WrPt2

WrPt2

WrPt1
WrPt2
WrPt1

(1) WrPt1 < WrPt2 (2) WrPt1 > WrPt2 (3) WrPt1 = WrPt2

MaxLen-1

0

Effective

data part 1

Effective

data part 2

Effective

data part 1

 133

(1) If WrPt1 is less than WrPt2, the effective data is located in

(WrPt1+1 ~ WrPt2).

(2) If WrPt1 is no less than WrPt2, the effective data consists of two parts: one

is located in (WrPt1 ~ MaxLen–1), and the other one is in (0 ~ WrPt2). These two

parts must be joined together to form an entirety before the following processing.

(3) In particular, if WrPt1 is equal to WrPt2, the entire space is the effective

data, but the order needs to be adjusted from the position of WrPt1. However, the

probability of this extreme situation is very low, almost negligible.

4.2. Timing error analysis

Because the above mentioned instance is a soft real-time system, its real-time

demand is not very strict, so the multimedia timer can meet the requirement. By

testing, this method can guarantee the data integrity in the case of 15 Mbps

transmission rate. Moreover, timing error of multimedia timer has been tested, and

the error curve is given in Fig. 4. In several timing testing experiments (sum: 1000),

timing error occurred 18 times, the maximum error was 15 ms, and the average

timing error was 0.048%.

-150

-100

-50

0

50

100

150

0 100 200 300 400 500 600 700 800 900 1000

Ti
m

in
g

e
rr

o
r

(m
s)

Number of timing

Fig. 4. Timing error curve of multimedia timer

There are two reasons for the timing error. Firstly, the timing processing

procedure may be complex, so it fails to end before the next scheduled arrival.

Additionally, the timer in the multi-task operating system sometimes cannot get a

timely response. In general, when CPU is once occupied by some process or when

system resource is limited, the message sent to the message queue will be

temporarily suspended, which will lead to the timing errors sequentially.

5. Conclusion

Real-time monitoring is widely used in many fields. In order to achieve the real-

time demand, the continuity and integrity of data receiving must be guaranteed.

Because changes of some parameters occur frequently for an instant, data loss

appeared during changing will lead to some serious consequences. In consideration

of the drawback of low efficiency and excessive system resources occupation in

 134

polling or multithreading method, multimedia timing method for data receiving is

researched in this paper. Because the priority of multimedia timer is higher in the

operating system, resource limitation has less impact on its timing function, and its

timing precision is extremely high. In this paper, a real-time monitoring instance is

introduced and the application of timing method for data receiving process is

discussed. After testing, the timing error of multimedia is less than 0.05%, which

can ensure no data loss under the circumstance of high data transmission rate.

Acknowledgements: This work is supported by the National Natural Science Foundation (NNSF) of

People’s Republic of China (Grant No. 5127549).

R e f e r e n c e s

1. U y s a l, R. B. Real-Time Condition Monitoring and Fault Diagnosis in Switched Reluctance

Motors with Kohonen Neural Network. – Journal of Zhejiang University-SCIENCE C

(Computers & Electronics), Vol. 14, 2013, No 12, pp. 941-952.

2. D a i, Y., P. L i, Y. L i u, A. A s u n d i, J. L e n g. Integrated Real-Time Monitoring System for

Strain/Temperature Distribution Based on Simultaneous Wavelength and Time Division

Multiplexing Technique. – Optics and Lasers in Engineering, Vol. 59, 2014, No 8, pp. 19-24.

3. S u n, Y., D. Z h a n g, H. T o n g. Research of Distributed Fiber Optic Sensing Technology in

Monitoring of Majiagou Landside of Three Gorges. – The Chinese Journal of Geological

Hazard and Control, Vol. 24, 2013, No 4, pp. 97-102.

4. Y a n g, W., D. Z h a n g. Multi-Parameters Monitoring Underground Coal Mine Environment

Using Mesh-Structured Wireless Sensor Networks. – Journal of Huazhong University of

Science Technology (Natural Science Edition), Vol. 38, 2010, No 10, pp. 70-74.

5. L e n g, X., J. C h e n, Y. Y e. A Distributed Environment Sound and Vibration Monitoring

System. – Measurement & Control Technology, Vol. 32, 2013, No 6, pp. 24-27.

6. Z h a n g, N., Y. Z h a n g. Development for a Remote Medical Real-Time Monitoring and

Analysis Fronted Device. – Automation & Instrumentation, Vol. 25, 2010, No 2, pp. 5-8.

7. F e n g, Y., J. H o u r d o s, G. A. D a v i s. Probe Vehicle Based Real-Time Traffic Monitoring on

Urban Roadways. – Transportation Research Part C, Vol. 40, 2014, No 3, pp. 160-178.

8. S h e n, S., S. Di, L. Q i n. Design of Real-Time Monitoring System Base on FPGA for Rocket

Parameters. – Fire Control & Command Control, Vol. 36, 2011, No 5, pp. 160-163.

9. W a n, Y., Z. X u, M. M e i. A Symbolic Execution Method for Conformance Test Generation of

Real-Time System. – Acta Electronica Sinica, Vol. 41, 2013, No 11, pp. 2275-2283.

10. A b d e s l a m, E., D. R a c h i d a, K. F e r h a t. Timed Wp-Method: Testing Real-Time Systems. –

IEEE Transactions on Software Engineering, Vol. 28, 2002, No 11, pp. 1023-1038.

11. K o p e t z, H. Real-Time Systems: Design Principles for Distributed Embedded Applications.

New York, Springer, 2011.

12. B a i, X., M. W a n g, H. L u, W. T s a i. Verifying Timing Constraints in Real-Time Systems. –

Journal of Tsinghua University (Science & Technology Edition), Vol. 52, 2012, No 9,

pp. 1286-1292.

13. G u o, Z., Y. M e n g, C. S u, H. W u. Windows Based Precise Timing Technology and its

Engineering Applications. – Journal of Harbin Institute of Technology, Vol. 37, 2005, No 12,

pp. 1717-1720.

14. Y u, X., Y. W e i, M. H u a n g, X. Z h o u, C. Y a n g. Precise Timing of HLA-Based Hardware-

in-Loop Simulation for Vehicles. – Journal of Zhejiang University (Engineering Science),

Vol. 46, 2012, No 7, pp. 1195-1200.

