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Abstract: A two-stage placement algorithm with multi-objective optimization and 

group decision making is proposed. The first stage aims to determine a set of design 

alternatives for objects placement by multi-objective combinatorial optimization. The 

second stage relies on business intelligence via group decision-making based on 

solution of optimization task to make a choice of the most suitable alternative. The 

design alternatives are determined by means of weighted sum and lexicographic 

methods. The group decision making is used to evaluate determined design 

alternatives toward the design parameters. The described algorithm is used for wind 

farm layout optimization problem. The results of numerical testing demonstrate the 

applicability of the proposed algorithm.  
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1. Introduction  

The ultimate measure of decision quality expresses the degree to which the decision 

has led to the best business outcome. An advanced direction is using of business 

intelligence to access and analyse information to improve and optimize decisions and 

performance [21]. The complexity of decision making process is approached by 

technologies and best practices to deliver the knowledge to make the right decisions 

quickly and with confidence [13, 2]. Business decisions are made on the base of the 

information for whole system incorporating financial and environmental aspects and 

rely on experts with capabilities to evaluate decision alternatives. The problem of 

determination of variety of alternatives for placement of objects and choosing the 

best one by group decision making arises in many practical problems. One such 

problem is designing of wind farm layout to maximize the energy output and 

considering wind conditions, technical requirements and other different restrictions 

[1]. The optimal placement of wind turbines that ensures maximum efficiency is 

essential in designing of wind farm project in both cases of onshore and offshore 

wind farm. Therefore, the proper optimization is imperative in designing renewable 
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energy system for maximizing its cost effectiveness. Designing of renewable energy 

system considers the problem of placement of turbines with known dimensions in the 

farm area to minimize the cost and maximize the system efficiency. Many research 

articles are subject of Wind Farm Layout Optimization Problem (WFLOP) and 

different approaches and various optimization algorithms are proposed as: genetic 

algorithms [4, 15, 24, 26, 40], pattern search algorithm [7], evolutionary algorithm 

[25, 35, 39]. An alternative approach to WFLOP is using of the mathematical 

programming optimization methods [3, 5, 6, 19, 27, 34]. Due to the complex and 

multi-disciplinary nature of WFLOP many conflicting objectives are to be involved 

during the design process. In this sense, multi-objective optimization modelling can 

more accurately reflect real life situations and are therefore more suitable tool to deal 

with WFLOP [4, 20, 38]. From the managerial point of view it is hard to take decision 

on the basis of single alternative. More substantiated decision would be reached if 

different design alternatives conforming to different design requirements are 

compared to get to the best design solution [19]. The design of wind farm is 

multidimensional process and involves different aspects – economic, technical, 

environmental, social, etc. This means that different design alternatives are to be 

defined and evaluated by a group of experts to make the most suitable business 

decision. Aggregating different experts’ evaluations over set of alternatives to select 

a single collective alternative can be done by Group Decision Making (GDM) [12]. 

The GDM is based on evaluations of multiple alternatives against multiple criteria by 

variety of experts to provide better decisions [2]. In many cases different points of 

view about the criteria and their importance leads to conflicting evaluations of 

alternatives which complicates the GDM. The further complication arises when 

importance of the opinions of experts themselves are to be considered according their 

positions in the project management. When the number of the criteria and alternatives 

is finite, and the alternatives are given explicitly are known as Multi-Attribute 

Decision Making (MADM). The problems MADM can be tackled by different 

models and methods [29-33]. An important part of modern decision science is Multi-

Attribute Group Decision Making (MAGDM) where the process of decision is made 

by multiple decision makers as assessment of alternatives over a range of attributes. 

Two main directions in the MADM methods can be distinguished – methods based 

on the Multi-Attribute Utility Theory (MAUT) and outranking methods [12, 16]. In 

this article MAUT principles are realized by combinatorial optimization formulation 

that takes into account the different experts’ opinions about the importance of criteria 

(wind farm parameters), DMs’ evaluations of alternatives and weights of DMs. 

The main contribution of the article proposes two-stage algorithm which 

combines multi-objective optimization as design simulation tool and GDM based on 

single-objective integer linear programming model, to get numerically reasoned 

optimal design alternative. The rest of the article is structured as follows: Section 2 

describes in details the proposed two-stage algorithm, Section 3 describes the 

algorithm application for WFLOP; Section 4 illustrates the applicability of proposed 

approach by numerical testing. In Section 5 analysis of the numerical testing results 

and discussions are presented, and conclusions are given in Section 6. 
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2. A two-stage placement algorithm with multi-objective optimization 

and group decision making  

This section focuses on description of the proposed two-stage algorithm for 

determination of design alternatives and choice of most suitable alternative (Fig. 1). 
 

 
Fig. 1. Flowchart of the proposed two-stage algorithm  

 

The two-stage algorithm for placement consists of: 1) determination of a set of 

design alternatives conforming to different design scenarios; 2) choice of the best 

alternative by GDM. It is assumed that overall project management is done by a Supra 

Decision Maker (SDM). The SDM is authorized to organize the overall decision 

making process, to gather a group of different experts (DMs) relevant to the project 

design aspects and to collect experts’ evaluations of different alternatives. The SDM 

is usually a manager who is responsible to propose a final decision at a higher level 

of management or has the right to make the final decision by himself. 

The responsibilities for input data about the parameters, objectives and their 

importance are assigned to SDM on the Step 1.1 (Fig. 1). The goal of multi-objective 

optimization problem is to identify Pareto-optimal solution using additional 

information from DM about the objectives importance. On the Step 1.2 the experts 

in Operation REsearch (OREs) have to formulate and to solve multi-objective 

optimization tasks. They choose and implements proper multi-objective solution 

method and express objectives importance. A common approach for dealing with 

multi-objective optimization problems is to use scalarization techniques [8, 14, 23] 

due to their simplicity and effectiveness. As a result of multi-objective task solution, 

a Pareto-optimal design alternative is determined. Then, on Step 1.3, design 

alternatives are filtered to get a set of unique alternatives.  
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The input data for GDM is implemented in Step 2.1. SDM determines the 

evaluation criteria and group of experts (DMs) from different knowledge domains 

and defines some weight coefficients for each of DMs. Weights of DMs play a very 

important role in MAGDM because they reflect the expertise of each particular 

expert. The range of weights for experts could be limited within interval of 0 to 1, 

where 1 means the most experienced and trusted level of expertise [12]. 

The essence of Step 2.2 is determination of weighted decision matrix. A key 

point in decision making is determination of relevant evaluation criteria because they 

significantly influence on the selection process. Usually these criteria are given by 

high level management. Regardless of who sets the criteria and alternatives, these 

two parameters are mandatory elements in WDM.  

On Step 2.3 a single criterion optimization modelling is used to formulate an 

optimization task for selection of the best alternative. This solution is presented to 

SDM for a decision – to accept the determined alternative or to repeat stages of 

algorithm. 

3. Application of two-stage algorithm for design of WFLOP  

Accordingly to the first stage of the described algorithm, the set of alternatives that 

define various wind farm layouts are generated by using of multi-objective 

optimization as follows: 

Step 1.1. Collecting of the input data – set of different types of wind turbines 

and characteristics of wind site and wind conditions. SDM plays a crucial role in 

negotiating of the phrasing of the design objectives and in determination of their 

importance. 

Step 1.2. The multi-objective combinatorial optimization is used as an 

analytical simulation tool for different wind farm layout design alternatives. For the 

goal a combinatorial multi-objective optimization model is proposed. It allows 

simultaneously determination of turbines’ type and number, and their placement 

positions. The overall objective of a wind farm project accepted by many researchers 

is to increase the Annual Energy Production (AEP) while reducing the costs. These 

two objectives are used to simulate different wind farm layout design scenarios by 

multi-objective combinatorial optimization:  

(1) max AEP = hyNPwt 

min Costs = 𝑁 (
2

3
+

1

3
𝑒−0.00174𝑁2

) , 

subject to 

(2) N = NxNy, 

(3) Nx = (Lx/SDx) + 1, 

(4) Ny = (Ly/SDy) + 1, 

(5) SDx = kxDwt, 

(6) SDy = kyDwt, 

(7) min
yk ≤ ky ≤ max

yk , ky > 0, 

(8) min
xk ≤ kx ≤ max

xk , kx > 0, 
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(9) 𝑃wt = ∑ 𝑥𝑖𝑃wt
𝑖𝑚

𝑖 , 

(10) 𝐷wt = ∑ 𝑥𝑖
𝑚
𝑖 𝐷wt

𝑖 , 

(11) ∑ 𝑥𝑖
𝑚
𝑖 = 1, 𝑥 ∈ {0, 1}, 

where the AEP is represented by the number of hours over the year (hy), coefficient 

of the nominal wind power utilization (η) [27], number of turbines (N) and turbines’ 

rated power (Pwt). The second objective is non-dimensional costs per year  

𝑁(
2

3
+

1

3
𝑒−0.00174𝑁2

) [15, 24, 36] expressed as a function of total turbines number 

(N) while Nx is the number of turbines in rows and Ny is turbines number in columns. 

Rated power of i-th wind turbine is denoted by 𝑃wt
𝑖  with corresponding rotor diameter 

𝐷wt
𝑖 . The notations Lx and Ly are used for dimensions of wind farm area. The decision 

variables (unknowns) xi  {0, 1} are used in the model (1)-(11) to choose the type of 

turbines. Coefficients of turbines separation distances in rows and cols kx and ky are 

used to determine the turbines separation distances respectively SDx and SDy. The 

negative influence of the WE is taken into account by introduction of separation 

coefficients kx and ky as variables. These coefficients are used to define the separation 

distances (as number of turbine’s diameter) needed to avoid the influence of WE. The 

separation coefficients kx and ky are limited to some upper and lower boundaries 

accordingly the recommendations [5, 15, 24, 37] or can be calculated for particular 

wind farm site with given wind conditions.  

It should be noted here that application of the proposed two-stage algorithm is 

not restricted to these two objectives and other formulations for the objectives can be 

used. 

Step 1.3. On this step the determined alternative is stored for later comparison 

and assessment by group of DMs. The SDM contributes in simulation of other design 

scenarios by repeating the Step 1.1 with changed preferences about the objectives 

importance or by requesting for another multi-objective solution method. When 

different design scenarios are simulated, the determined alternatives are filtered, i.e., 

identical alternatives are considered as one unique alternative and all unique 

alternatives are stored for later evaluation on Stage 2. 

Step 2.1. On this step the SDM determines the wind farm parameters as 

evaluation criteria and selects a group of experts that represent different design 

aspects of wind farm project – engineers, economists, ecologists, etc. SDM defines 

also DMs’ weighted coefficients according their expertise toward the project goals.  

Step 2.2. This step is based on MADM described by a Weighted Decision 

Matrix (WDM). This WDM indicates both the set of alternatives and the set of criteria 

being considered in a problem. The structure of WDM proposed in the article 

includes: DMs’ weights for the importance of the design parameters (criteria); DMs’ 

scores towards design alternatives’ parameters; and weighted coefficients for DMs. 

Each of the DMs estimates alternatives independently, without negotiations with 

other DMs and accordingly to his specific point of view. For example, a financial 

expert probably will put more weight on financial parameters of the design while 

engineers would be more interested in wind farm energy production. The SDM 

assigns weighting coefficients for each DM according to their hierarchy positions in 

the management of WFLOP.  



 92 

In general case, the different DMs’ points of view about alternatives can be 

conflicting because they reflect different preferences toward importance of design 

parameters. In WDM the higher values of evaluations mean a better performance and 

the final goal is to maximize the outcome of decision about the best alternative.  

Step 2.3. On this step, single criterion optimization modelling is used to 

formulate an optimization task as: 

(12) max ∑ ∑ 𝛼𝑘𝐾
𝑘=1

𝑀
𝑖=1 𝑤𝑖

𝑘𝐴𝑖
𝑘, 

subject to   

(13) ∀𝑖 = 1, 2, … , 𝑀: (∀𝑘 = 1,2, … , 𝐾: 𝐴𝑖
𝑘 = ∑ 𝑎𝑖,𝑗

𝑘𝐽
𝑗=1 𝑥𝑗), 

(14) ∑ 𝑥𝑗
𝐽
𝑗=1 = 1, 𝑥𝑗 ∈ {0, 1}, 

(15) 𝛼𝑘 ∈ (0, 1), 

where i = 1, 2, …, M are indexes of design parameters against which the design 

alternatives are to be evaluated; j = 1, 2, ..., J are indexes of design parameters to be 

evaluated; k = 1, 2, …, K are indexes of group of DMs involved into decision making 

process; 𝑤𝑖
𝑘 are weighting coefficients representing relative importance of design 

parameters as evaluated by different DMs; 𝑎𝑖𝑗
𝑘  is evaluation score of k-th DM for 

performance of alternative j against parameter pi; coefficients k represent the weight 

of opinion of the k-th DM and xj are binary integer decision variables used to perform 

choice of a single alternative. 

4. Numerical testing 

In order to show the applicability of the proposed two-stage algorithm for WFLOP a 

number of numerical examples are tested and analysed.  

4.1. Input data for WFLOP  

This section provides the input data for numerical testing of the proposed algorithm 

in Section 2. A set of 30 different wind turbines are used to select the most appropriate 

type of turbine (Table 1).  

Table 1. Wind turbines parameters 

# Wind turbine type 
Rated  

power, kW 

Rotor  

diameter, m 
# Wind turbine type 

Rated  

power, kW 

Rotor  

diameter, m 

1 Enercon E-33 330 33.4 16 SWT-2.3-113 2300 113.0 

2 Enercon E-48 800 48.0 17 SWT-2.3-108 2300 108.0 

3 Enercon E-53  800 52.9 18 SWT-2.3-93 2300 93.0 

4 Vestas V52  850 52.0 19 Enercon E-92  2350 92.0 

5 Vestas V60 850 60.0 20 C96 Clipper Windpower 2500 96.0 

6 Enercon E-44  900 44.0 21 Vestas V100 2600 100.0 

7 GAMESA AE-61-1320 1320 61.0 22 Enercon E-82 3000 82.0 

8 Vestas V82 1650 82.0 24 Vestas V90 3000 90.0 

9 M Torres 1650 77.0 25 Vestas V112 3000 112.0 

10 Vestas V100 1800 100.0 23 Enercon -101 3050 101.0 

11 Vestas V80 2000 80.0 26 SWT-3.6-120 3600 120.0 

12 Enercon E-82 2000 82.0 27 SWT-3.6-107 3600 107.0 

13 Enercon E-70 2300 71.0 28 SWT-6.0-154 6000 154.0 

14 SWT-2.3-82 VS 2300 82.4 29 Vestas V164-7.0 7000 164.0 

15 Enercon E2-82 2300 82.0 30 Enercon E-126 7580 127.0 
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The solution of the multi-objective problem formulated on Step 1.2 determines: 

Pareto-optimal wind turbines type and rotor diameter Dwt; values of separation 

coefficients kx and ky; number of turbines consistent with separation distances; 

placement of turbines within wind farm site in rows and columns taking into account 

wind direction. This solution defines wind farm Pareto-optimal layout. Three wind 

direction cases are tested: a) for uniform wind direction (Fig. 2a) with boundaries for 

separation coefficients 𝑘𝑥
min =  𝑘𝑦

min = 4.5, 𝑘𝑥
max =  𝑘𝑦

max = 5.5; b) for prevailing 

wind direction as in Fig. 2b with 𝑘𝑥
min = 1.5, 𝑘𝑥

max = 3, 𝑘𝑦
min = 8, 𝑘𝑦

max = 12;  

for prevailing wind direction as in Fig. 2c with 𝑘𝑥
min = 8, 𝑘𝑥

max = 12, 𝑘𝑦
min = 1.5,

𝑘𝑦
max = 3. The wind farm annual energy production can be represented as  

AEP = 2628NPwt using hy = 8760 hours over year and wind power utilization 

coefficient η = 0.3. A rectangular wind farm with area of 4 km2 (Lx = 4 km and  

Ly = 1 km) is considered with three different cases for wind directions as shown in 

Fig. 2.  

 
Fig. 2. Orientations of wind toward the shape of wind farm 

4.2. Generation of alternatives  

The formulated multi-objective optimization problem on Step 1.2 is solved by 

Weighted Sum (WS) and Lexicographic Method (LM). They are based on priori 

articulation of the DM preferences but the solution information by both methods can 

be used also with posterior preferences handling to generate different alternatives. 

These two methods are chosen due to their easy establishment of DM preferences 

toward the formulated objectives. 

The weighted sum method is one of the most common multi-objective 

optimization methods based on scalarization techniques [9, 14]. It aggregates the 

different objectives as a weighted linear sum of their normalization. The DM 

preferences are expressed by imposing weight coefficients wj about the importance 

of different objectives. These weight coefficients are assigned to normalized form of 

objectives. The normalization scheme used here yields to non-dimensional objective 

function with values between 0 and 1 regardless of their original range [22]. The 

maximized objective for AEP and the minimized objective for costs are normalized 

by expressions: 

(16) 𝑓1
∗ = (𝑓AEP − 𝑓AEP

min)(𝑓AEP
max − 𝑓AEP

min)−1, 

(17) 𝑓2
∗ = (𝑓costs

max − 𝑓costs)(𝑓costs
max − 𝑓costs

min )−1, 

where 𝑓AEP
min,  𝑓AEP

max, 𝑓costs
min ,  𝑓costs

max  are the lowest and the greatest values of maximized 
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objective for AEP and minimized objective for costs defined via solutions of the four 

single objective tasks:  

 min AEP = hyNPwt   s.t. (2)-(11), 

 max AEP = hyNPwt
 
 s.t. (2)-(11), 

 min Costs = 𝑁 (
2

3
+

1

3
𝑒−0.00174𝑁2

) ,  s.t., (2)-(11), 

 max Costs = 𝑁(
2

3
+

1

3
𝑒−0.00174𝑁2

),  s.t., (1)-(11), 

The implementation of the WS method transforms the initial multi-objective 

problem (1)-(11) into single objective problem as  

(18) max ∑ 𝑤𝑗
2
𝑗=1 𝑓𝑗

∗, 

subject to constraints (2)-(11) plus additional constraints for the weighting 

coefficients: 

(19) ∑ 𝑤𝑗
2
𝑗=1 = 1, 

(20) 𝑤𝑗 > 0,   𝑗 = 1, 2. 

The different wind farm design scenarios are simulated by using of 2 different 

sets of weighting coefficients and three different wind direction cases. The solution 

results are shown in Table 2. 

Table 2. Design alternatives by weighted sum method solutions  

Task  

Input data Solution results 

Wind  

direction 

Weight  

coefficients  

Turbine 

type 

Turbines 

number 

Separation  

coefficients  

AEP,  

MW.h per 1 year 
Costs Alternative 

WS-1 

Uniform 

wp = 0.9 
wc = 0.1 

#13 52 kx = 4.69; ky = 4.69 314,309 34.824 A-1 (WS) 

WS-2 
wp = 0.1 

wc = 0.9 
#27 27 kx = 4.67; ky = 4.67 255,442 20.531 A-2 (WS) 

WS-3 Predominant 

on Y axis  
(Pre-1) 

wp = 0.9 

wc = 0.1 
#27 50 kx = 1.56; ky = 9.35 473,040 33.548 A-3 (WS) 

WS-4 
wp = 0.1 

wc = 0.9 
#26 46 kx = 1.52; ky = 8.33 435,197 31.053 A-4 (WS) 

WS-5 Predominant 

on X axis  

(Pre-2) 

wp = 0.9 

wc = 0.1 
#22 63 kx = 1.52; ky = 8.13 496,692 42.021 A-5 (WS) 

WS-6 
wp = 0.1 

wc = 0.9 
#30 24 kx = 1.57; ky = 10.50 478,086 18.936 A-6 (WS) 

 

The WS method allows easy and intuitive definition of different preferences for 

the objectives. Simulation of different design scenarios can be done by posterior 

articulation of preference information, i.e., by altering the objectives’ weights to yield 

different Pareto-optimal points. 

Another way to handle multi-objective optimization problems by apriori 

articulation of the DM preferences is the lexicographic method. Using of this method 

requires ranking of objectives by the DM and optimization them in order one at a 

time. The general description of this method can be summarized as solution of 

sequence of single-objective optimization problems: 

(21) min Fj(x),   x  X,   j = 1, 2, ..., k, 

subject to  

(22) Fj(xj) ≤ j Fj(xj*),   j = 1, 2, ..., i–1, i >1, 

where j represents the objective function position in the sequence, Fj(xj*) is the 

optimum of the j-th objective function found on the j-th iteration, and j is tolerance 
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determined by the DM to expand the feasible region [23]. The solution of each single 

objective problem gives a limiting measure for that objective which is used to define 

a proper restriction on the next step when the next objective is optimized and so on. 

The Pareto-optimal solution is defined on the last step of the described optimization 

procedure. Two cases of lexicographic ordering are numerically tested. 

C a s e  1. Wind farm AEP as the foremost objective and the optimization 

procedure for that case is as follow: 

Step 1.1. Solving of the optimization task  

(23)  max AEP = hyNPwt, 

subject to (2)-(11).  

Step 1.2. Solving of the optimization task  

(24)  min Costs = 𝑁 (
2

3
+

1

3
𝑒−0.00174𝑁2

), 

subject to (2)-(11) and additional restriction regarding the energy output 

(25) AEP = hyNPwt   ≥ AEPmax. 

The coefficient  represents the degree of proximity to the optimal value of  

AEP = (hyNPwt)max calculated on the first step. Two values  = 0.7 and  = 0.9 are 

used to define two different design alternatives.  

C a s e  2. Costs are considered as more important than AEP. The corresponding 

optimization procedure is as follow:  

Step 2.1. Solving of the optimization task  

(26)   min Costs = 𝑁 (
2

3
+

1

3
𝑒−0.00174𝑁2

),  

subject to (2)-(11).  

Step 2.2. Solving of the optimization task  

(27) max AEP = hyNPwt, 

subject to (2)-(11) and additional restriction regarding the Costs 

(28) Costs = 𝑁 (
2

3
+

1

3
𝑒−0.00174𝑁2

) ≤ 𝜀Costsmin, 

where the coefficient  represents the degree of proximity of the costs to the optimal 

value  𝑁 (
2

3
+

1

3
𝑒−0.00174𝑁2

)
min

 calculated on the first step. The values of  used for 

simulation of different design scenarios are   = 1.3 and  = 1.1.  

The results of the lexicographic method implementation are shown in Table 3. 

Table 3. Design alternatives by lexicographic method solutions 

Task 
Input data Solution results 

Wind Direction  
Turbine 

type 
Turbines 
number 

Separation 
coefficients  

AEP, MW.h per 1 year Costs Alternative 

a) lexicographic ordering → AEP, Costs 
Lp-1 

Uniform  
0.7 # 27 27 kx = 4.67; ky = 4.67 255,442 20.531 A-1  

Lp-2 0.9 # 13 52 kx = 4.69; ky = 4.69 314,309 34.823 A-2  
Lp-3 Predominant 

on Y axis (Pre-1)  
0.7 # 26 36 kx = 1.96; ky = 8.33  340,589 25.253  A-3  

Lp-4 0.9 # 26 46 kx = 1.52; ky = 8.33  435,197  31.053  A-4  
Lp-5 Predominant 

on X axis (Pre-2) 
0.7 # 30 20 kx = 1.97; ky =10.50 398,405 16.657 A-5  

Lp-6 0.9 # 30 24 kx = 1.58; ky =10.45 478,086 18.936 A-6  
b) lexicographic ordering → Costs, AEP 

Lc-1 
Uniform  

1.3 # 27 27 kx = 4.67; ky = 4.67 255,442 20.531 A-1  
Lc-2 1.1 # 27 27 kx = 4.67; ky = 4.67 255,442 20.531 A-2  
Lc-3 Predominant 

on Y axis (Pre-1) 
1.3 # 27 36 kx = 2.20; ky = 9.35 340,589 25.258 A-3  

Lc-4 1.1 # 27 28 kx = 2.87; ky = 9.35 264,902 21.052 A-4  
Lc-5 Predominant 

on X axis (Pre-2) 
1.3 # 30 24 kx =10.50; ky = 1.57 478,086 18.936 A-5  

Lc-6 1.1 # 30 16 kx =10.50; ky = 2.62 318,724 14.083 A-6  
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4.3. Filtering of identical alternatives  

Comparison of design alternatives from Table 2 and Table 3 shows that there are 

identical alternatives. For example, in case of uniform wind the identical alternatives 

are A-1(WS) and A-2(Lp), A-2(WS), A-1(Lp), A-1(Lc) and A-2(Lc). For 

predominant wind (case Pre-1) the identical alternatives are A-3(Lp) and A-3(Lc),  

A-4(WS) and A-4(Lp) and for opposite direction (case Pre-2) the identical 

alternatives are A-6(WS), A-6(Lp) and A-5(Lc). The identical design alternatives are 

considered as one unique alternative as shown in Table 4. 

Table 4. Unique design alternatives as result of execution of Stage 1 

Unique alternatives  Turbine type (from Table 1) Turbines number SDx, m SDy, m 
AEP,  

MW.h per 1 year 
Costs 

Uniform wind direction 

A-1 (uni)  # 13 52 333.4 333.4 314,309 34.824 

A-2 (uni)  # 27 27 500.0 500.0 255442 20.531 

Predominant wind direction (Pre-1) 

A-1 (Pre-1) # 27 50 166.7 1000.0 473,040 33.55 

A-2 (Pre-1) # 26 46 181.8 1000.0 435,197 31.05 

A-3 (Pre-1) # 26 36 235.3 1000.0 340,589 25.25 

A-4 (Pre-1) # 27 28 307.7 1000.0 264,902 21.05 

Predominant wind direction (Pre-2) 

A-1 (Pre-2) # 22 63 666.7  125.0 496,692 42.02 

A-2 (Pre-2) # 30 24 1333.4  200.0 478,086 18.94 

A-3 (Pre-2) # 30 20 1333.4  250.0   398,405 16.66 

A-4 (Pre-2) # 30 16 1333.4  333.4  318,724 14.08 

 

The identical alternatives for different wind directions are visualized as 

overlapping circles (Fig. 3).  

 

 
Fig. 3. AEP-Costs diagram for different design alternatives: for uniform wind direction (a); for two 

cases (Pre-1 and Pre-2) of predominant wind direction (b) and (c) 

 

After filtering not identical alternatives of Table 4 are stored for use on the  

Step 2.3 of the algorithm. 

4.4. Determination of optimal alternative by group decision making 

Three wind farm design parameters shown in Table 5 are used and evaluated by group 

of three DMs. The WDM representing WFLOP via GDM considers the case Pre-2 

data which is characterised by four unique design alternatives (Table 5). Three 

different experts – engineer (DM-1), a financial expert (DM-2) and ecologist (DM-

3) are involved in the process of alternatives evaluation toward three wind farm 
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design parameters (energy output, costs and number of turbines). For each of these 

experts a corresponding weighting coefficient is assigned to represent its opinion 

importance. 

Table 5. Input WDM data for testing of GDM  

Design 
parameters 

Parameters’ 

weights 

Alternative A-1 

evaluations 

Alternative A-2 

evaluations 

Alternative A-3 

evaluations 

Alternative A-4 

evaluations 

DM-1 DM-2 DM-3 DM-1 DM-2 DM-3 DM-1 DM-2 DM-3 DM-1 DM-2 DM-3 DM-1 DM-2 DM-3 

AEP MW.h per 1 year 10 4 3 10 8 4 8 6 7 6 5 6 4 3 5 

Costs 4 10 3 5 2 4 6 7 5 7 6 6 8 5 7 

Turbines number 5 8 10 3 2 2 4 6 5 5 7 7 6 6 8 

 

The solutions results based on solution of single-objective integer optimization 

task (12)-(15) for 4 sets of values of DMs’ weights α are shown in Table 6.  

Table 6. GDM results for different weights of DMs 

Tasks 
Weighting coefficients of DMs 

Best alternative 
α1 α2 α3 

GDM-1 0.5 0.5 0.5 A-3 

GDM-2 0.9 0.2 0.2 A-2 

GDM-3 0.2 0.9 0.2 A-2 

GDM-4 0.2 0.2 0.9 A-4 

 

The graphical illustration of the optimal layout design alternatives obtained as 

result of execution of Stage 2 are shown in Fig.4. 
 

 
Fig. 4. Graphical representation of: Alternative-3 (a); Alternative-2 (b); Alternative-4 (c) 

5. Results analysis and discussions 

The formulated optimizations tasks are solved by Lingo V. 12 system 

(http://www.lindo.com). The solution algorithm is branch-and-bound and solution 

times for the described numerical examples are about 1 s. Lingo’ status windows for 

some examples of the formulated discrete combinatorial optimization tasks are shown 

in Fig. 5.  

The nonlinearity of the defined optimization tasks leads to local optimums. This 

nonlinearity is caused from using of widely accepted by many researches nonlinear 

formulation of costs [15, 25, 36]. If linear discrete formulation of costs is used the 

solutions of the formulated in the article tasks will define global optimums.  

The used two solution methods – weighted sum and lexicographic method show the 

benefits of using multi-objective combinatorial optimization of as an analytical 

simulation tool for determination of different design alternatives.  
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(a)                                                      (b)                                                  (c)  

Fig. 5. Lingo status window for: task WS-5 (a); two stages of task Lp-6 (b) and (c) 
 

The results of solution by weighted sum method show that stronger preference 

on AEP leads to the choice of turbines with a smaller rotor diameter. As the rotor 

diameter is decisive for considering of WE by proper separation distances, the smaller 

rotor diameter leads to increasing of turbines number and as a consequence – to 

increasing of the energy yield. The opposite preference (Costs over AEP) results in 

choice of more powerful turbines with a bigger rotor diameter. This leads to reducing 

of the turbines number that in turn decreases the costs compared to the first case. The 

site orientation towards the prevailing wind direction also affects the Pareto-optimal 

design alternatives.  

The lexicographic ordering of the objectives is another easy implementation 

method to simulate different scenarios for WFLOP. Variety of Pareto-optimal 

solutions (design alternatives) can be determined by different lexicographic ordering 

of the objectives and by different values of coefficient . For lexicographic ordering 

AEP, Costs, when  changes from 0.7 up to 0.9, the turbines’ number increases and 

the AEP is approaching closer to its maximum. In lexicographic ordering Costs 

before AEP and value of  decreases from 1.3 to 1.1, the result leads to decreasing of 

the turbines’ number and Costs are getting closer to their minimum. Changing the 

value of  coefficient allows flexible adjustment of DM preferences in terms of trade-

offs between objectives, i.e., provides various design alternatives.  

Numerical testing demonstrates that both methods are adequate for the 

generating of wind farm layout design alternatives. The weighted sum method has 

limitations in regard to representation of compromises that DM is willing to make 

among objectives and also requires normalization of the objectives. The 

lexicographic method allows a more precise tuning of these trade-offs by considering 

the desirable degree of proximity to the “best” values of objectives. The discrete 

nature of the turbines’ type choice defines in some cases overlapping Pareto-optimal 

alternatives. This overlapping reduces the number of design alternatives to be 

evaluated that helps for facilitating the selection of the final alternative.  

In contrast to other methods for GDM, the proposed GDM approach considers 

simultaneously not only different DMs weights about design parameters (criteria) and 

alternatives evaluations but also group members’ opinions weights. Apparently, the 

assignment of weights to the group members’ opinions influences on decision process 
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and selection of collective alternative. That is why Alternative-2 (A-2) (Table 4, case  

Pre-2) appears to be the best for engineers and economists while Alternative-3  

(A-3) is accepted as best alternative if the weights of experts are equal. Unlike other 

GDM approaches the described approach provides globally optimal alternative as a 

solution of the formulated single-objective integer linear optimization task.  

From engineering point of view, it is important to get to the problems solution 

by the most direct and effective way. This requires interdisciplinary approach to 

modelling of the decision-making processes and using of quantitative optimization 

methods. The proposed in the article algorithm combines two approaches – 

generating of multiple alternative design solutions for WFLOP and choice of the best 

alternative by group decision making. This idea expresses the complexity and 

multidimensionality of the WFLOP. In contrast to mass used genetic and other 

heuristic algorithms, the described algorithm is based on combinatorial optimization 

modelling. This approach allows using of the proven over the years computational 

efficiency of the algorithms for linear, nonlinear and integer optimization. The used 

modelling approach on Stage 1 of the algorithm defines wind turbines of the same 

type. This is preferred case for commercial wind farms because it reduces installation 

costs, maintenance cost, etc., [4]. Like many other published results for WFLOP  

[10, 19, 26, 38], the testing of the proposed algorithm is done for a rectangular wind 

farm site. The rectangular shape could be quite practical for offshore wind farms and 

for onshore wind farms located on flat terrain. The placement of turbines in rows and 

columns has the advantage that small deviations of prevailing wind direction lead to 

increasing of the separation distances between turbines, i.e., to decreasing the 

influence of WE (Fig. 6).  
 

 
Fig. 6. Separation distances between turbines: predominant wind direction (SDx) (a); 

small deviations of predominant wind direction (SD𝑥
∗ ) (b) 

 

To justify the effectiveness and applicability of the proposed algorithm it is 

compared with other WFLOP algorithms. The main idea of the proposed algorithm 

– combining the determination of multiple design alternatives for WFLOP and using 

of GDM for choice of the best alternative, cannot be compared because it has no 

analogue in other publications on WFLOP. The other feature of the algorithm, namely 

using of discrete combinatorial optimization modelling, can be compared with other 

modelling approaches. Widely used for WFLOP are GA and other metaheuristic 

algorithms. Usually that kind of algorithms are used for problems that cannot be 

easily solved and they give nearly the right answer or provide a solution not for all 

instances of the problem [18]. The widely used GA have some known drawbacks: A 

solution is “better” only in comparison to other, presently known solutions; in reality 
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they have no concept of “optimal solution” or way to test whether a solution is 

optimal; stop criterion is not always clear in every problem, aside from the runtime 

length, or the number of iterations or candidate solutions to explore 

(http://www.solver.com/genetic-evolutionary-introduction). Sometimes it is 

possible GA to converge not only to local optima but even to arbitrary points. The 

GA repeated fitness function evaluation requires essential computation power and is 

time consuming.  

5.1. Comparison of computing performance of proposed algorithm and other 

algorithms for WFLOP 

To compare the computing performance of the proposed two-stage algorithm with 

other algorithms for WFLOP the task WS-6 is modified and solved for different wind 

farm areas as shown in Table 7. 

Table 7. Comparison of the proposed algorithm with other algorithms    

Algorithm Turbines number Area Runtime Authors 

Random search 80 (fixed) 4×5 km 
3170.21-3498.25 s 

(per run) 
[11] 

Genetic 15 2×2 km 
16 000 s  

(on CRAY XMP14) 
[26] 

MIP model limited to < 10  < 1 h [5] 

Evolutionary NSGA-II, 

SPEA2, IBEA 
30, 50, 70 (fixed) 3×3 km < 15 min [39] 

Stochastic evolutionary 

algorithm (NSGA-II) 
5, 10, 15 (fixed) 3×3 km 

19.75 h; 70.87 h;  

149.75 h 
[38] 

Evolutionary algorithm 4, 5, 20 (fixed) limited to < 50 20×20 grid 90 min [25] 

MIP 10 – 100 (fixed) 1.7×2 km limited to 1800 s [6] 

MIP 40, 50, 60, 70 (fixed) 4×4 km 
within wall-clock 

time of 200 s 
[19] 

MINLP (Task WS-6) defined as 63 of Enercon E-82 1×4 km about 1 s present work 

MINLP (Task WS-6) defined as 18 of SWT-3.6-120 1.7×2 km about 1 s present work 

MINLP (Task WS-6) defined as 21 of SWT-3.6-120 2×2 km about 1 s present work 

MINLP (Task WS-6) defined as 48 of Enercon E-126 3×3 km about 1 s present work 

MINLP (Task WS-6) defined as 84 of Enercon E-126 4×4 km about 1 s present work 

MINLP (Task WS-6) defined as 108 of Enercon E-126 4×5 km about 1 s present work 

MINLP (Task WS-6) defined as 540 of Enercon E-126 20×5 km about 1 s present work 

MINLP (Task LP-6) defined as 24 Enercon E-126 1×4 km 
about 2 s  

(2 runs of 1 s) 
present work 

A testing experiment is done with increased wind farm area to 100 km2 to show 

the computational time of the task and as it is seen from Fig. 7, the time remain in the 

range of one second.  

Some remarks can be stated in regard to the application of two-stage algorithm 

for WFLOP and usage of mathematical model (1)-(11): 

 Most of the WFLOP results are related with preliminary fixed number of 

turbines [5, 10, 11, 19, 28, 36, 39]. It is not clear how this number is determined and 

if it is optimal for the considered wind site area. In contrast, the proposed algorithm 

allows determination of Pareto-optimal number and type of turbines for the given 

wind farm area while considering the wind direction and recommendations for 

separations distances to avoid the negative influence of the WE.  
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 An advantage of the described combinatorial modelling approach is that the 

number of variables of the defined optimization problems depends mainly on the 

number of turbines, from which selection is made. The area of the wind farm does 

not affect the dimension of the tasks (Fig. 5 and Fig. 7). 

 Both stages of the proposed algorithm can be used separately. The generated 

on Stage 1 set of design alternatives could be evaluated by other GDM approaches. 

On the other hand, if variety alternatives are known or given in advance the described 

in the Stage 2 approach for GDM would be quite effective for choice of best 

alternative.  
 

 
Fig. 7. Lingo status windows of task WS-6 for site dimensions 20×5 km 

6. Conclusion 

In this article a two-stage placement algorithm with multi-objective optimization and 

group decision making is proposed. The main idea is to generate multiple Pareto-

optimal placement alternatives and to select one of them via group of experts to get 

the most suitable business decision. Using of multi-objective discrete combinatorial 

optimization, on the first stage of the algorithm provides different Pareto-optimal 

alternatives and can be consider as a flexible analytical tool to simulate different 

design scenarios. The different DMs preferences toward importance of used criteria 

simulate different design alternatives. All of these alternatives are used on the second 

stage of the proposed algorithm to select the most suitable alternative by group 

decision making.  
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The described two-stage algorithm is numerical tested for design of wind farm 

layout to show its practical applicability. The runtimes for tested examples are in the 

range of a few seconds versus hundreds or thousands of seconds needed for the 

execution of other published algorithms. This demonstrates the effectiveness of the 

use of combinatorial optimization modelling for wind farm layout optimization 

problems.  

The proposed two-stage algorithm can be applied for design of other types of 

engineering systems provided that their specificity is taken into account in modelling 

and formulation of corresponding optimization tasks.  
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