
 72

BULGARIAN ACADEMY OF SCIENCES

CYBERNETICS AND INFORMATION TECHNOLOGIES  Volume 17, No 1

Sofia  2017 Print ISSN: 1311-9702; Online ISSN: 1314-4081

DOI: 10.1515/cait-2017-0006

Mutation: A New Operator in Gravitational Search Algorithm

Using Fuzzy Controller

Hossein Azadi Kherabadi, Sepehr Ebrahimi Mood, Mohammad

Masoud Javidi

Department of Computer Science, Shahid Bahonar University of Kerman, Kerman, Iran

Emails: h.azadi2015@math.uk.ac.ir sepehr_ebrahimi@math.uk.ac.ir javidi@uk.ac.ir

Abstract: Gravitational Search Algorithm (GSA) is a novel meta-heuristic algorithm.

Despite it has high exploring ability, this algorithm faces premature convergence and

gets trapped in some problems, therefore it has difficulty in finding the optimum

solution for problems, which is considered as one of the disadvantages of GSA. In

this paper, this problem has been solved through defining a mutation function which

uses fuzzy controller to control mutation parameter. The proposed method has been

evaluated on standard benchmark functions including unimodal and multimodal

functions; the obtained results have been compared with Standard Gravitational

Search Algorithm (SGSA), Gravitational Particle Swarm algorithm (GPS), Particle

Swarm Optimization algorithm (PSO), Clustered Gravitational Search Algorithm

(CGSA) and Real Genetic Algorithm (RGA). The observed experiments indicate that

the proposed approach yields better results than other algorithms compared with it.

Keywords: Gravitational search algorithm, heuristic search algorithm, mutation

function, exploration and exploitation, fuzzy controller.

1. Introduction

Based on the complexity of different problems, different algorithms will be offered.

The reason of using too many kinds of heuristic algorithms is that some problems can

be optimized to the desired response with the specific algorithms based on the

condition of the problems, while for some other problems the acceptable response is

found with the employment of other algorithms.

Because of the advancement of the optimized heuristic algorithms and high

demands of them in optimization, they become very important. These algorithms are

used in many optimization problems related to the human life, such as civil

engineering [1, 2], electricity and telecommunications [3, 4], image processing [5, 6],

industrial problems [7-10], filter modelling [11], medical problems [12-14],

networking [15], economics [16], robotics [17-19], modern physics [20], fashion

design [21], and etc.

 73

Different types of optimization algorithms have been recently introduced that

some of them use nature laws such as physics, insects, or any other laws [22]. PSO

(Particle Swarm Optimization) uses the movement of the gregarious birds and

animals [22]. GA (Genetic Algorithm) [23], and ACSA (Ant Colony Search

Algorithm) [24], as well as GSA (Gravity Search Algorithm) are other algorithms

which use nature laws [25].

GSA was introduced by R a s h e d i, N e z a m a b a d i-P o u r and S a r y a z d i

[25] in 2009. This optimizer algorithm is based on two famous Newton laws:

movement and gravity. According to several experiments done up to now, it can be

shown that for solving optimization problems, GSA has better results in compare with

GSA and PSO algorithms [25]. C-GSA (Clustered-GSA), which is originated from

calculating central mass of a system in nature, has been introduced to reduce

complexity and computation of standard GSA. C-GSA improves the ability of GSA

by reducing the number of objective function evaluations [26]. Q-GSA (Quantum

GSA) has a faster convergence speed [27]. Black Hole GSA (BH-GSA), inspired by

some of the characteristics of the black hole as an astronomy phenomenon, is a new

operator for GSA that improves the ability of GSA to further exploit and explores the

search space [28].

M o o d, R a s s h e d i and J a v i d i [29] improved the exploitation and

exploration power of the algorithm by definition of new appropriate functions for

mass calculation. To control the balance between the power of exploitation and

exploration, and get the better results with fewer iterations of the algorithm, the

parameters of the GSA were controlled by a fuzzy controller [30]. Some more

important researches on GSA have been presented in [31].

In spite of all the presented approaches for this algorithm, in some affairs, still

the problem of being trapped into local optima and premature convergence is seen.

So, premature convergence and trapped into local optima in some problems are the

drawbacks of GSA. In this paper, with the maximum exploitation, exploration, and

definition of a new function mutation that works with a fuzzy controller, this problem

has been solved.

The structure of this paper is as follows. In Section 2 we introduce the principles

of the GSA. In Section 3 the approaches of the paper are presented. Section 4 shows

the assess and review of the experimental results, and the comparison results of this

paper with some other algorithms. Finally, Section 5 contains a brief conclusion.

2. Gravitational search algorithm

GSA is a swarm-based heuristic optimization algorithm which is a novel method to

solve optimization problems. GSA is being resulted from the law of gravity and

movement. In GSA, the information exchange will occur among the agents by the

gravity force. In other words, each of these agents can recognize or understand their

surrounding environment as well as the location, situation and place of other ones

through the aforementioned force [25].

The agents in the searching space of GSA are trying to find an optimized

solution of a series of objects as the mass of each [of them] affects their performance

 74

as well; their separate mass regarding to the fitness function will be defined. The

object along with an appropriate fitness function will be close to the optimized

solution [25].

In the GSA, the mass for i-th agent in time t will be calculated as follows:

(1) 𝑀𝑖(𝑡) =
fit𝑖(𝑡)−worst(𝑡)

∑ fit𝑗(𝑡)−worst(𝑡)𝑁
𝑗=1

.

In this equation, fit𝑖(𝑡) shows the fitness of agent 𝑖 at time 𝑡, 𝑀𝑖(𝑡) is the mass

of agent 𝑖 at time 𝑡, 𝑁 is the population size and worst(𝑡) indicates the worst fitness

in the objects’ swarm at time t in which minimization problems are calculated as

follows:

(2) worst(𝑡) = max
𝑗∈{1,…,𝑁}

𝑓𝑖𝑡𝑗(𝑡).

The primary locating of all agents is randomly done, but in time, these

placements are updated. The position of i-th object is defined by:

(3) 𝑋𝑖 = (𝑥𝑖
1, … , 𝑥𝑖

𝑑 , … , 𝑥𝑖
𝑚), 𝑖 = 1, 2, … , 𝑁.

That 𝑥𝑖
𝑑 shows the position of agent i-th in d-th dimension.

𝐹𝑖𝑗
𝑑 is the force between o object i-th and object j-th which is calculated according to

(4) 𝐹𝑖𝑗
𝑑 = 𝐺(𝑡)

𝑀𝑎𝑗×𝑀𝑝𝑖

𝑅𝑖𝑗(𝑡)𝑟Power+𝜀
(𝑥𝑗

𝑑(𝑡) − 𝑥𝑖
𝑑(𝑡)),

where 𝑀𝑎𝑗 is the active gravitational mass of j-th object 𝑀𝑝𝑖 is the passive

gravitational mass of i-th object, and 𝑟Power is the power of distance which is

considered 1 in standard GSA. 𝑅𝑖𝑗(𝑡) and 𝐺(𝑡) are the Euclidean distance between

two objects and the gravitational constants in time 𝑡 which are computed as follows:

(5) 𝑅𝑖𝑗(𝑡) = ‖𝑋𝑖(𝑡), 𝑋𝑗(𝑡)‖
2

,

(6) 𝐺(𝑡) = 𝐺(𝐺0, 𝑡),
where 𝐺(𝑡) is a descending function which becomes small by the passing of time and

𝐺0 is the primary gravitational constant.

The employed force into object i-th in time 𝑡 in dimension 𝑑 is computed as

follows:

(7) 𝐹𝑖
𝑑 = ∑ rand𝑗𝐹𝑖𝑗

𝑑(𝑡)𝑗∈𝐾best,𝑗≠𝑖 .

In order to improve the ability of algorithm exploration, the sum of all forces

applied to the i-th object has not been computed in (7), and only 𝐾best set which

includes 𝐾 superior members of the population has been allowed to influence the

force on the i-th object; rand𝑗 is a random number with uniform distribution in the

range of [0, 1], which is used for property random search.

According to the second law of Newton, the acceleration for i-th object in time

𝑡 and dimension 𝑑 is calculated as follows:

(8) 𝑎𝑖
𝑑(𝑡) =

𝐹𝑖
𝑑(𝑡)

𝑀𝑖𝑖(𝑡)
,

𝑀𝑖𝑖 is the inertia mass of the i-th object. Relations have been established in

(9) 𝑀𝑎𝑖(𝑡) = 𝑀𝑝𝑖(𝑡) = 𝑀𝑖𝑖(𝑡) = 𝑀𝑖(𝑡) , 𝑖 = 1, … , 𝑁.

According to (10), the new velocity of the i-th object is calculated. rand𝑖 is a

random number with uniform distribution in the range of [0, 1], which is used for

property random search:

 75

(10) 𝑉𝑖
𝑑(𝑡 + 1) = rand𝑖 ∙ 𝑉𝑖

𝑑(𝑡) + 𝑎𝑖
𝑑(𝑡).

The new position of the i-th object is calculated from

(11) 𝑋𝑖
𝑑(𝑡 + 1) = 𝑋𝑖

𝑑(𝑡) + 𝑉𝑖
𝑑(𝑡 + 1).

The principle of GSA is shown in Fig. 1.

Fig. 1. General principle of GSA [25]

3. Proposed algorithm

GSA was stated in the second section of this paper. This algorithm faces premature

convergence in some problems and gets trapped in local optima, which is considered

as one of the critical disadvantages of this algorithm. As Fig. 2 illustrates, this

problem is found in some standard benchmark functions [25, 32] like F3 in [25, 32].

In multimodal functions there are many local optima and the possibility that F11

[25, 32] is getting trapped in local optima increases. Fig. 3 indicates multimodal

function which has been trapped in local optima. In this paper, premature

convergence and GSA local optimization problems have been solved through

defining a novel mutation function while preserving maximum exploration and

exploitation.

Although optimization problems have faced premature convergence and local

optima, the good solutions can be observed in local optima of these problems. These

good solutions should not be ignored, because the position of some other objects is

appropriate and do not need mutation. While the position of some others is

inappropriate, mutation should be applied; thus, in these types of problems, mutation

Evaluate the fitness for each object

Update the 𝐺 and worst of the

population.

No

Generate initial population

Calculate 𝑀 and 𝑎 for each object

Return best solution

Yes

Meeting end of
criterion?

Update velocity and position

 76

should not be applied to all the obtained solutions. The fuzzy controller has been used

to obtain some percentage of masses used in the direction of the method.

Fuzzy logic was first introduced in computations by Zadeh in attempt to regulate

fuzzy sets theory [33]. The approach of this paper for controlling the amount of

applying mutation is to use Fuzzy Logic Controller (FLC) which contains two inputs

and one output.

Fig. 2. F3 which has faced premature convergence and local optimization [25]

Fig. 3. F11 which has faced premature convergence and local optimization [25]

The first input indicates that if a single optimization problem has the same

solution in a number of consecutive iterations, that problem has faced premature

convergence and local optima, and has not made any progress in finding the optimum

answer. As a result, after the first iteration, the concerned problem has faced local

optima because the mass of some agents has increased compared to other agents, and

absorbs components with lower mass given the gravity force. Therefore the problem

is located in local optima and has not found optimum solution.

In other words, when the first input increases, the function faces local optima

and subsequently the powerful mutation should be applied. If the value of the first

 77

input is low, the mutation should be applied lightly. The values of the first input have

been defined in [0, 1] which has three membership functions with down, mid, and up

linguistic values. Down, mid and up are respectively trapmf, trimf and trimf

membership functions. Fig. 4 indicates membership functions of the first input.

Fig. 4. Membership functions of the first input

In multimodal functions and problems in which there are many local optima,

another criterion for dispersion amount of objects in the feasible space is required.

When an optimization problem faces premature convergence or local optima, then

objects become close to each other and attract each other given the gravity force;

consequently the objects are placed in a specified spot in the search space. In this

case, the location and position of objects can be changed to prevent local optima

problem; in other words, when the second input is low, it means that the objects are

close to each other and the mutation should be applied with a greater force. When the

second input is high, it means that the objects have greater distance from each other

and mutation should be applied with a lower force. Second input values have been

defined in [0, 5] interval, which has three membership functions with less, medium,

and much linguistic values. Less, medium and much are respectively trapmf, trimf

and trapmf membership functions. Fig. 5 indicates membership functions of the

second input.

In this fuzzy set, the output has been also defined in [0, 1] interval, in which this

interval is indicative of the amount of applying mutation, so that parameter 0 says

that mutation should not be applied and parameter 1 means that the mutation should

be applied with maximum force (100%). Output has four membership functions, i.e.,

very low, low, average, and high. Very low, low, average and high are trimf

membership functions. Fig. 6 indicates membership functions of the output.

 78

Fig. 5. Membership functions of the second input

Fig. 6. Membership functions of the output

Fuzzy rules have been defined with regard to the first input, second input, and

output. Nine rules presented in this fuzzy set, are as follows.

1. If (input1 is down) and (input2 is less) then (output is very low).

2. If (input1 is down) and (input2 is medium) then (output is very low).

3. If (input1 is down) and (input2 is much) then (output is very low).

4. If (input1 is mid) and (input2is less) then (output is very low).

5. If (input1 is mid) and (input2 is medium) then (output is very low).

6. If (input1 is mid) and (input2 is much) then (output is very low).

7. If (input1 is up) and (input2 is less) then (output is very low).

8. If (input1 is up) and (input2 is medium) then (output is low).

9. If (input1 is up) and (input2 is much) then (output is high).

Generally, the above-stated fuzzy rules can be stated as follows. If the first input

is down, it means that problem solutions have not been the same in consequent

iterations, thus optimization problem has not get trapped in local optimum. In this

case, the second input can have three inputs, i.e. less, medium, and much. When the

second input is less, it means that the standard deviation of objects is low. By

comparing the permeability of the first and second input, it is considered that the

mutation is not required. Therefore, output is very low. Also when the second input

is medium or much the mutation is not needed and again output is very low.
If the first input is mid, it means that optimized solutions of problems are the

same in few consequent iterations, but there are also many good solutions which

indicate that this optimization problem face local optimum in a few number of

 79

iterations and then has exited local optimum which seems natural. In this case, the

second input can have three states, i.e., less, medium, and much. When the second

input is less, it means that the standard deviation of objects is low. In this case given

the greater permeability of the first input compared to that of second input and based

on the carried out experiments, the output gets very low value. Again when the second

input is medium and much, the output is very low. The first input is up, so the

solutions of the optimization problem are the same in consequent iterations. In this

case, the second input can have three states, i.e., less, medium, and much. For the

situation that the second input is less or medium the output is low and very low,

respectively. And finally, when the second input is much, the output is high.

4. Experimental results

For sake of evaluation the proposed approach was tested on standard benchmark

functions [25, 32] and the results of the test were compared to some popular

optimization algorithms such as Standard Gravitational Search Algorithm (SGSA)

[25], Gravitational Particle Swarm algorithm (GPS) [34], Particle Swarm

Optimization algorithm (PSO) [22], Clustered Gravitational Search Algorithm

(CGSA) and Real Genetic Algorithm (RGA) [23].

Standard benchmark functions have been divided into three general categories:

the first category which includes the first seven functions 𝐹1 − 𝐹7 are unimodal

functions, in which the algorithm convergence rate is more important than the

optimization final results. The additional information about these functions can be

found in [25, 28]. 𝐹8 − 𝐹13 functions which are called multimodal high dimensional

functions, are classified under the second category. These functions have many local

minima, so that its final solution is more important. The optimization of these

functions is very difficult since the algorithm may get trapped in local optima. In

these functions, the algorithm should be capable of finding the optimum solution or

a solution close to the optima value. Additional information about these functions can

be found in [25, 28]. Multimodal low dimensional functions, which include

𝐹14 − 𝐹23 functions, belong to the last category. In these functions there are not many

local optima. For more details on the mentioned functions please refer to

[25, 28]. Benchmark functions have been indicated in Table 1. In this table, the

functions’ dimensions have been represented by 𝑛, while 𝑆 ⊆ 𝑅𝑛 is the search space.

The performance of the proposed approach which is the definition of a new

MUtation function by a Controller fuzzy (MUGSA), has been compared with a

number of popular optimization algorithms such as Particle Swarm Optimization,

Real Genetic Algorithm, Gravitational Particle Swarm Algorithm, and Gravitational

Search Algorithm, that the details of this comparison are as it is follows.

In all cases, population size and agents number is 50 (𝑁 = 50), the maximum

number of iterations for multimodal low dimensional functions is 500, while it is

considered 1000 for the rest of the functions and the dimension for functions

𝐹1 − 𝐹13 is 30 (𝑛 = 30). In RGA, the probability of the mutation is set to 0.1

(𝑃m = 0.1), the probability of the crossover is 0.3 (𝑃c = 0.3) and roulette wheel

selection has used in this algorithm. The positive constants value of 𝑐1and 𝑐2 is 2 and

 80

inertia factor (𝜔) has experienced a linear reduction from 0.9 to 0.2. GSP parameters

have been described in [30]. In GSA, GSA and MUGSA, 𝛼 value is 0.2 and 𝐺0 is

100. Furthermore, at first (𝑁 = 𝐾0) where 𝑁 is the number of agents which has

reduced from 𝑁 to 1 in a linear trend.

The results obtained from the average and the median of the best solution for 30

runs and the dimension functions 30 (𝑛 = 30) have been reported in Table 2. In this

table, the best results have been shown in bold face. It can be seen from Table 2 that

GSA and MUGSA have better solutions in three categories of benchmark functions

compared to optimization functions, except 𝐹1, 𝐹2, 𝐹7 − 𝐹9 , 𝐹13 − 𝐹15 and 𝐹21. In

𝐹1, 𝐹2, 𝐹7, 𝐹15 and 𝐹21, the best results are seen in GSP, while it has the best

solution for PSO 𝐹8, 𝐹13 and 𝐹14, and RGA has a better performance for

𝐹9 and 𝐹14. The performance of GSA and MUGSA in 𝐹6, 𝐹17 and 𝐹18 is the same,

but the performance of MUGSA in 𝐹3, 𝐹5, 𝐹10, 𝐹11, 𝐹12 and 𝐹19 is better.

Despite that the aim of MUGSA is the prevention of applying GSA in some

problems, it not only hasn’t got trapped in local optima using mutation operator,

which is the drawback of GSA algorithm, but also it has better result in some

functions that other algorithms getting trapped in local optima on these functions.

Table 1. Benchmark functions

Test function
S

Unimodal test functions

  2
1

1

n
i

i
F X x


  100,100

n


 2
1 1

nn
i i

i i
F X x x 

 
   10,10

n


2
3

1 1
() ()

n i
j

i j
F X x 

 
  100,100

n


   4 max ,1i
i

F X x i n    100,100
n



     
21 22

5 1
1

100 1
n

i i i
i

F X x x x





 
    

 

  30, 30
n



    
2

6
1

0 5
n

i
i

F X x .


   100,100

n


   4
7

1
random 0 1

n
i

i
F X ix ,


   1.28,1.28

n


Multimodal test functions with fix dimension

   8
1

sin
n

i i
i

F X x x


 

   cos
n

i i
i

F X x πx



   
  
2

9
1

10 2 10

   2
10

1 1

1 1
20exp 0.2 exp cos 2 20

n n
i i

i i
F X x x e

n n
 

 

   
            

 81

Table 1 (c o n t i n u e d)
2

11
1 1

1
() cos() 1

4000

nn i
i

i i

x
F X x

i
 

 
  

12 2 2
12 1 1

1

2

1

() {10sin () (1) [1 10sin ()]

 (1) } (,10,100, 4)

m
i i

i

m
n i

i

F x y y y
n

y u x


 










    

  

1
 1

4

() if

(, , ,) 0 if

() if

i
i

n
i i

i i

n
i i

x
y

k x a x a

u x a k n a x a

k x a x a


 

  


   


   

2 2 2
13 1

1

2 2

1

() 0.1{sin (3) (1) [1 sin (3 1)]

(1) [1 sin (2)]} (, 5,100, 4)

n
i i

i

n
n m i

i

F X x x x

x x u x

 











     

   

1

25
14 2 61

1

1 1
()

500
()j

i ij
i

F X

j x a











 
 
  
   
 

2
211 1 2

15 21 3 4

()
() i i

i
i i i

x b b x
F X a

b b x x




 
  

   

2 4 6 2 4

16 1 1 1 1 2 2 2

1
4 2 1 4 4

3
F (X) x . x x x x x x     

2 2
17 2 1 1 12

5.1 5 1
() (6) 10(1)cos 10

84
F X x x x x

 
      

2 2 2
18 1 2 1 1 2 1 2 2

2 2 2
1 2 1 1 2 1 2 2

() [1 (1) (19 14 3 14 6 3)]

[30 (2 3) (18 32 12 48 36 27)]

F X x x x x x x x x

x x x x x x x x

         

        

4 3 2
19

1 1
() exp ()i ij j ij

i j
F X c a x p 

 

 
     

 

4 6 2
20

1 1
() exp ()i ij j ij

i j
F X c a x p 

 

 
     

 

5 T 1
21

1
() [()()]i i i

i
F X X a X a c




    

7 T 1
22

1
() [()()]i i i

i
F X X a X a c




    

10 T 1
23

1
() [()()]i i i

i
F X X a X a c




    

 82

Table 2. The results of benchmark functions of Table 1

MUGSA GSA GPS PSO [24] RGA [24] Average/Median Functions

3.3032×10–17 2.26×10–17 5.43×10–19 1.8×10–3 23.13 Average best so far
F1

3.3858×10–17 2.09×10–17 5.65×10–19 1.2×10–3 21.87 Median best so far

2.3330×10–8 2.34×10–8 2.33×10–9 2.0 1.07 Average best so far
F2

2.2772×10–8 2.32×10–8 2.38×10–9 1.9×10-3 1.13 Median best so far

14.6302 240.33 1.83×103 4.1×10+3 5.6×10+3 Average best so far
F3

13.0726 240.50 1.62×103 2.2×10+3 5.6×10+3 Median best so far

4.1430×10–9 3.63×10–9 16.88 8.1 11.78 Average best so far
F4

4.2047×10–9 3.53×10–9 16.08 7.4 11.94 Median best so far

29.6085 32.75 40.70 3.6×10+4 1.1×10+3 Average best so far
F5

26.1217 26.14 26.70 1.7×10+3 1.0×10+3 Median best so far

0 0 357.93 1.0×10–3 24.01 Average best so far
F6

0 0 311 6.6×10–3 24.55 Median best so far

0.0178 0.06 0.0099 0.04 0.06 Average best so far
F7

0.0155 0.06 0.0086 0.04 0.06 Median best so far

–3.4920×103 –1.10×103 –5.78×10+3 –9.8×10+3 –1.2×10+4 Average best so far
F8

–3.5776×103 –1.10 ×103 –5.73×10+3 –9.8×10+3 –1.2×10+4 Median best so far

14.6259 15.69 17.01 55.1 5.90 Average best so far
F9

13.9294 14.92 15.42 56.6 5.71 Median best so far

3.6336×10–9 3.66×10–9 1.02 9.0×10–3 2.13 Average best so far
F10

3.4925×10–9 3.57 ×10–9 1.25 6.0×10–3 2.16 Median best so far

0.0087 4.25 31.24 0.01 1.16 Average best so far
F11

0.0086 3.92 29.92 0.0081 1.14 Median best so far

0.0051 0.0372 8.12 0.29 0.051 Average best so far
F12

1.6007×10–19 1.57×10–19 6.58 0.11 0.039 Median best so far

3.6625×10–4 7.32×10–4 27.14 3.1×10–18 0.081 Average best so far
F13

2.0831×10–18 2.02×10–18 27.82 2.2×10–23 0.032 Median best so far

1.1022 12.74 7.13 0.998 0.998 Average best so far
F14, n=2

1.0022 12.67 6.90 0.998 0.998 Median best so far

9.2500×10–4 2.93×10–3 6.80×10–4 2.8×10–3 4.0×10–3 Average best so far
F15, n=4

7.7164×10–4 2.15×10–3 6.27×10–4 7.1×10–4 1.7×10–3 Median best so far

–1.0305 –1.0316 –1.0316 –1.0316 –1.0313 Average best so far
F16, n=2

–1.0310 –1.0316 –1.0316 –1.0316 –1.0315 Median best so far

0.3979 0.3979 0.3979 0.3979 0.3996 Average best so far
F17, n=2

0.3979 0.3979 0.3979 0.3979 0.3980 Median best so far

3.0000 3.00 3.00 3.00 5.70 Average best so far
F18, n=2

3.0000 3.00 3.00 3.00 3.0 Median best so far

–3.8698 –3.8628 –3.8628 –3.8628 –3.8627 Average best so far
F19, n=3

–3.8698 –3.8628 –3.8628 –3.8628 –3.8628 Median best so far

–3.1298 –3.3220 –3.2621 –3.2369 –3.3099 Average best so far
F20, n=6

–3.1243 –3.3220 –3.2625 –3.2031 –3.3217 Median best so far

–4.3915 –5.9200 –6.8232 –6.6290 –5.6605 Average best so far
F21, n=4

–3.7784 –2.6829 –10.1532 –5.1008 –2.6824 Median best so far

–4.6502 –10.403 –9.3842 –9.1118 –7.3421 Average best so far
F22, n=4

–4.1366 –10.403 –10.4029 –10.402 –10.3932 Median best so far

–5.1276 –10.5364 –10.0575 –9.7634 –6.2541 Average best so far
F23, n=4

–4.7831 –10.5364 –10.5364 –10.536 –4.5054 Median best so far

The results obtained from the average of the best solution for 50 runs and

dimension functions 100 (𝑛 = 100) have been reported in Table 3. In this table, the

best results have been shown in bold face. As the results in this table illustrate, the

proposed method has the better performance on some function which other

algorithms getting trapped in local optima, especially multimodal functions which

have many local optima.

 83

Table 3. The results of benchmark functions of Table 1
MUGSA GSA CGSA PSO Average Functions

19.1856 79.9245 1.0431×10–14 8.8693×104 Average best so far F1

1.1350 1.2203 1.2403×10–7 2.3583×105 Average best so far F2

1.5243×103 5.1541×103 3.8449×10–13 8.9898×104 Average best so far F3

2.1105 10.5450 5.6762×10–8 8.9254×104 Average best so far F4

1.3311×103 1.5810×103 99.0000 1.5486×105 Average best so far F5

43.5600 397.1000 388.4000 8.7781×104 Average best so far F6

0.5588 0.5886 0.0507 2.8484×105 Average best so far F7

–6.3325×103 –4.9191×103 –854.0923 1.0477×106 Average best so far F8

78.5636 76.5166 2.8331×10–12 2.6236×105 Average best so far F9

1.1092 1.2009 3.5059×10–8 1.4548×105 Average best so far F10

49.5099 55.6382 2.6401×10–15 1.4742×106 Average best so far F11

0.3056 2.0259 1.3009 1.0421×105 Average best so far F12

4.0395 67.1896 10.0000 9.9089×104 Average best so far F13

1.0798 3.9391 10.3988 0.998 Average best so far F14, n=2

8.0009×10–4 0.0020 0.0038 2.8×10-3 Average best so far F15, n=4

–1.0100 –1.0316 –1.0316 –1.0316 Average best so far F16, n=2

0.3979 0.3979 0.3979 0.3979 Average best so far F17, n=2

3.0000 3.0000 3.0000 3.00 Average best so far F18, n=2

–3.8619 –3.7855 –3.8128 –3.8628 Average best so far F19, n=3

–3.3364 –3.2556 –3.0220 –3.2369 Average best so far F20, n=6

–4.3995 –6.8059 –6.4180 –6.6290 Average best so far F21, n=4

–4.2889 –10.1949 –10.4029 –9.1118 Average best so far F22, n=4

–4.9329 –10.3257 –10.5364 –9.7634 Average best so far F23, n=4

Fig. 6 illustrates MUGSA and GSA on F3 which is the part of Standard

benchmark functions.

Fig. 6. The comparison result of MUGSA and GSA on F3

F3, which is a unimodal function [25, 32], has faced premature convergence in

GSA and is trapped in local optima. As a result, the solutions of this function are

equivalent in consecutive iterations. F3 diagram becomes constant from the specific

iteration onwards, so it does not have any improvements in finding the optimum

solution. However MUGSA has managed to prevent premature convergence and

local optima problems of F3 with the help of using mutation that applies the fuzzy

controller to control the mutation values on functions.

 84

Fig. 7 shows the comparison of MUGSA and GSA on F11 function which is the

part of Standard benchmark function. F11 is a multimodal function in which too many

local optima exist [25, 28]. F11 has faced premature convergence and has got trapped

in local optima, therefore the solutions of this function are the same in consecutive

iterations and F11 diagram is constant from certain iteration onwards, but MUGSA

prevents premature convergence and local optima of F11, by a mutation which uses

fuzzy controller to apply mutation percentage on functions.

Fig. 7. The comparison result of MUGSA and GSA on F11

5. Conclusion

The importance and necessity of meta-heuristic algorithms have caused the

increasing improvement of these algorithms which are employed in many

optimization problems in different fields. GSA is also a relatively novel meta-

heuristic algorithm and different approaches have been proposed for this algorithm

to ameliorate its performance. But despite the proposed approaches, this algorithm

still faces premature convergence in some optimization problems and gets trapped in

local optima, and this is considered as one of the problems of GSA which reduces

GSA performance. This problem has been solved in our paper through defining a

novel mutation function, named MUGSA, for GSA which is controlled by fuzzy

controller MUGSA improving the performance of the algorithm. This approach is

tested on benchmark functions, which includes unimodal and multimodal functions,

and has been evaluated; the obtained results have been compared with other popular

optimization algorithms. The experiments’ results show that the proposed approach

is a remarkable method for improving the results compare with other methods. This

approach can be used to solve various optimization problems in future.

R e f e r e n c e s

1. A k i n, A. A., M. P. S a k a. Design Optimization of Real World Steel Space Frames Using Artificial

Bee Colony with Levy Flight Distribution. – Advance in Engineering Software, Vol. 92, 2016,

pp. 1-14.

 85

2. C h e n g, M. Y., D. P r a y o g o, Y. W. W u, M. M. L u k i t o. A Hybrid Harmony Search Algorithm

for Discrete Sizing Optimization of Truss Structure. – Automation in Construction, Vol. 69,

2016, pp. 21-33.

3. H o o s h m a n d, S. R., A. K h o d a b a k h s h i a n. A New Fuzzy Optimal Reconfiguration of

Distribution Systems for Loss Reduction and Load Balancing Using Ant Colony Search-Based

Algorithm. – Applied Soft Computing, Vol. 11, 2011, pp. 4021-4028.

4. H a n, X., X. C h a n g. Chaotic Secure Communication Based on a Gravitational Search Algorithm

Filter. – Engineering Applications of Artificial Intelligence, Vol. 24, 2012, pp.766-774.

5. Z h a o, W. Adaptive Image Enhancement Based on Gravitational Search Algorithm. – Procedia

Engineering, Vol. 15, 2011, pp. 3288-3292.

6. S h a m s, M., E. R a s h e d i, A. H a k i m i. Clustered Gravitational Search Algorithm and Its

Application in Parameter Optimization of a Low Noise Amplifier. – Applied Mathematics and

Computation, Vol. 258, 2015, pp. 436-453.

7. G u o, C., Z. J i a n g, H. Z h a n g, N. L i. Decomposition-Based Classified Ant Colony Optimization

Algorithm Forscheduling Semiconductor Wafer Fabrication System. – Computers & Industrial

Engineering, Vol. 62, 2012, pp. 141-151.

8. M o n d a l, S., A. B h a t t a c h a r y a, S. H. N. D e y. Multi-Objective Economic Emission Load

Dispatch Solutionusing Gravitational Search Algorithm and Consideringwind Power

Penetration. – Electrical Power and Energy Systems, Vol. 44, 2013, pp. 282-292.

9. H u, D., A. S a r o s h, Y. F. D o n g. An Improved Particleswarm Optimizer for Parametric

Optimization of Flexible Satellite Controller. – Applied Mathematics and Computation,

Vol. 217, 2011, pp. 8512-8521.

10. G a n e s a n, T., I. E l a m v a z u t h i, K. Z i l a t i, K. S h a a r i, P. V a s a n t. Swarm Intelligence

and Gravitational Search Algorithm for Multi-Objective Optimization of Synthesisgas

Production. – Applied Energy, Vol. 103, 2013, pp. 368-374.

11. R a s h e d i, E., H. N e z a m a b a d i-P o u r, S. S a r y a z d i. Filter Modeling Using Gravitational

Search Algorithm. – Engineering Application of Artificial Intelligence, Vol. 24, 2011, No 1,

pp. 117-122.

12. C h a n g, P. C., J. J. L i n, C. H. L i u. An Attribute Weight Assignment and Particle Swarm

Optimization Algorithm for Medical Database Classifications. – Computer Methods and

Programs in Biomedicine, Vol. 107, 2012, pp. 382-392.

13. S a h u, B., D. M i s h r a. A Novel Feature Selection Algorithm Using Particle Swarm Optimization

for CancerMicroarray Data. – Procedia Engineering, Vol. 38, 2012, pp. 27-31.

14. M i s h r a, D. Discovery of Overlapping Pattern Biclustersfrom Gene Expression Data Using Hash

Based PSO. – Procedia Technology, Vol. 4, 2012, pp. 390-394.

15. D i n g, H., L. B e n y o u c e f, X. X i e. A Simulation-Based Multi-Objective Genetic Algorithm

Approach for Networked Enterprises Optimization. – Engineering Application of Artificial

Intelligence, Vol. 19, 2006, pp. 609-623.

16. G u v e n c a, U., Y. S o n m e z b, S. D u m a n k, N. Y o r u k e r e n d. Combined Economic and

Emission Dispatch Solution Using Gravitational Search Algorithm. – Scientia Iranica, Vol. 19,

2012, pp. 1754-1762.

17. M u s h a r a v a t i, F., A. M. S. H a m o u d a. Simulated Annealing with Auxiliary Knowledge for

Process Planning Optimization in Reconfigurable Manufacturing. – Robotics and Computer-

Integrated Manufacturing, Vol. 28, 2012, pp. 113-131.

18. Z h u a, Q., J. H u, L. H e n s c h e n. A New Moving Target Interception Algorithm for Mobile

Robots Based on Subgoal Forecasting and an Improved Scout and Algorithm. – Applied Soft

Computing, Vol. 13, 2013, pp. 539-549.

19. I o a n n i d i s, K., G. C. S i r a k o u l i s, I. A n r e a d i s. Cellular Ants: A Method to Create

Collision Free Trajectories for a Cooperative Robot Team. – Robotics and Autonomous

System, Vol. 59, 2011, pp. 113-127.

20. S e r a f i n o, D. D., S. G o m e z, L. M i l a n o, F. R i c c i o, G. T o r a l d o. A Genetic Algorithm

for a Global Optimization Problem Arising in the Detection of Gravitational Waves. – Springer

Science and Business Media, Vol. 48, 2010, pp. 41-55.

21. T s a i, H. C., Y. Y. T y a n, Y. W. W u, Y. H. L i n. Gravitational Particle Swarm. – Applid

Mathematics and Computation, Vol. 219, 2013, pp. 9106-9117.

 86

22. K e n n e d y, J., R. C. E b e r h a r t. Particle Swarm Optimization. – In: Proc. of IEEE International

Conference on Neural Networks, Vol. 4, 1995, pp.1942-1948.

23. H a u p t, R. L., E. H a u p t. Practical Genetic Algorithms. Second Ed. John Wiley & Sons, 2004.

24. D o r i g o, M., V. M a n i e z z o, A. C o l o r n i. The Ant System: Optimization by a Colony of

Cooperating Agents. – IEEE Transactions on Systems, Man, and Cybernetics – Part B,

Vol. 26, 1996, No 1, pp. 29-41.

25. R a s h e d i, E., H. N e z a m a b a d i-P o u r, S. S a r y a z d i. GSA: A Gravitational Search

Algorithm. – Information Sciences, Vol. 179, 2009, No 13, pp. 2232-2248.

26. S h a m s, M., E. R a s h e d i, A. H a k i m i. Clustered Gravitational Search Algorithm and Its

Application in Parameter Optimization of a Low Noise Amplifier. – Applied Mathematics and

Computation, Vol. 258, 2015, pp. 436-453.

27. M o g h a d a m, M. S., H. N e z a m a b a d i-P o u r, M. F a r s a n g i. A Quantom Behaved

Gravitational Search Algorithm. – Intelligent Information Management, 2012, pp. 390-395.

28. D o r a g h i n e j a d, M., H. N e z a m a b a d i-P o u r. Black Hole: A New Operator for Gravitational

Search Algorithm. – International Journal of Computational Intelligence Systems, 2014,

pp. 1-18.

29. M o o d, S. E., E. R a s s h e d i, M. M. J a v i d i. New Functions for Mass Caculation in Gravitational

Search Algorithm. – Journal of Computing and Security, Vol. 2, 2016.

30. S a e i d i-K h a b i s i, F., E. R a s h e d i. Fuzzy Gravitational Search Algorithm. – In: 2nd

International eConference on Computer and Knowledge Engineering (ICCKE), 2012.

31. S a b r i, N. M., M. P u t e h, M. R. M a h m o o d. A Review of Gravitational Search Algorithm. –

International Journal of Advances in Soft Computing and Its Applications, Vol. 5, 2013, No 3.

32. R a s s h e d i, E., H. N e z a m a b a d i-P o u r, S. S a r y a z d i. BGSA: Binary Gravitational Search

Algorithm. – Natural Computing, Vol. 9, 2010, No 3, pp. 727-745.

33. Z a d e h, L. A. Fuzzy Sets. – Information and Cotorol, Vol. 8, 1965, pp. 338-353.

34. K i m, H. S., S. B. C h o. Application of Interactive Genetic Algorithm to Fashion Design. –

Engineering Applications of Artificial Intelligence, Vol. 13, 2000, pp. 635-644.

