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Abstract: Gravitational Search Algorithm (GSA) is a novel meta-heuristic algorithm. 

Despite it has high exploring ability, this algorithm faces premature convergence and 

gets trapped in some problems, therefore it has difficulty in finding the optimum 

solution for problems, which is considered as one of the disadvantages of GSA. In 

this paper, this problem has been solved through defining a mutation function which 

uses fuzzy controller to control mutation parameter. The proposed method has been 

evaluated on standard benchmark functions including unimodal and multimodal 

functions; the obtained results have been compared with Standard Gravitational 

Search Algorithm (SGSA), Gravitational Particle Swarm algorithm (GPS), Particle 

Swarm Optimization algorithm (PSO), Clustered Gravitational Search Algorithm 

(CGSA) and Real Genetic Algorithm (RGA). The observed experiments indicate that 

the proposed approach yields better results than other algorithms compared with it.  

Keywords: Gravitational search algorithm, heuristic search algorithm, mutation 

function, exploration and exploitation, fuzzy controller. 

1. Introduction 

Based on the complexity of different problems, different algorithms will be offered. 

The reason of using too many kinds of heuristic algorithms is that some problems can 

be optimized to the desired response with the specific algorithms based on the 

condition of the problems, while for some other problems the acceptable response is 

found with the employment of other algorithms. 

Because of the advancement of the optimized heuristic algorithms and high 

demands of them in optimization, they become very important. These algorithms are 

used in many optimization problems related to the human life, such as civil 

engineering [1, 2], electricity and telecommunications [3, 4], image processing [5, 6], 

industrial problems [7-10], filter modelling [11], medical problems [12-14], 

networking [15], economics [16], robotics [17-19], modern physics [20], fashion 

design [21], and etc. 
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Different types of optimization algorithms have been recently introduced that 

some of them use nature laws such as physics, insects, or any other laws [22]. PSO 

(Particle Swarm Optimization) uses the movement of the gregarious birds and 

animals [22]. GA (Genetic Algorithm) [23], and ACSA (Ant Colony Search 

Algorithm) [24], as well as GSA (Gravity Search Algorithm) are other algorithms 

which use nature laws [25]. 

GSA was introduced by R a s h e d i, N e z a m a b a d i-P o u r and S a r y a z d i 

[25] in 2009. This optimizer algorithm is based on two famous Newton laws: 

movement and gravity. According to several experiments done up to now, it can be 

shown that for solving optimization problems, GSA has better results in compare with 

GSA and PSO algorithms [25]. C-GSA (Clustered-GSA), which is originated from 

calculating central mass of a system in nature, has been introduced to reduce 

complexity and computation of standard GSA. C-GSA improves the ability of GSA 

by reducing the number of objective function evaluations [26]. Q-GSA (Quantum 

GSA) has a faster convergence speed [27]. Black Hole GSA (BH-GSA), inspired by 

some of the characteristics of the black hole as an astronomy phenomenon, is a new 

operator for GSA that improves the ability of GSA to further exploit and explores the 

search space [28]. 

M o o d, R a s s h e d i  and J a v i d i  [29] improved the exploitation and 

exploration power of the algorithm by definition of new appropriate functions for 

mass calculation. To control the balance between the power of exploitation and 

exploration, and get the better results with fewer iterations of the algorithm, the 

parameters of the GSA were controlled by a fuzzy controller [30]. Some more 

important researches on GSA have been presented in [31]. 

In spite of all the presented approaches for this algorithm, in some affairs, still 

the problem of being trapped into local optima and premature convergence is seen. 

So, premature convergence and trapped into local optima in some problems are the 

drawbacks of GSA. In this paper, with the maximum exploitation, exploration, and 

definition of a new function mutation that works with a fuzzy controller, this problem 

has been solved.  

The structure of this paper is as follows. In Section 2 we introduce the principles 

of the GSA. In Section 3 the approaches of the paper are presented. Section 4 shows 

the assess and review of the experimental results, and the comparison results of this 

paper with some other algorithms. Finally, Section 5 contains a brief conclusion. 

2. Gravitational search algorithm 

GSA is a swarm-based heuristic optimization algorithm which is a novel method to 

solve optimization problems. GSA is being resulted from the law of gravity and 

movement. In GSA, the information exchange will occur among the agents by the 

gravity force. In other words, each of these agents can recognize or understand their 

surrounding environment as well as the location, situation and place of other ones 

through the aforementioned force [25]. 

The agents in the searching space of GSA are trying to find an optimized 

solution of a series of objects as the mass of each [of them] affects their performance 
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as well; their separate mass regarding to the fitness function will be defined. The 

object along with an appropriate fitness function will be close to the optimized 

solution [25].  

In the GSA, the mass for i-th agent in time t will be calculated as follows: 

(1)  𝑀𝑖(𝑡) =
fit𝑖(𝑡)−worst(𝑡)

∑ fit𝑗(𝑡)−worst(𝑡)𝑁
𝑗=1

. 

In this equation, fit𝑖(𝑡) shows the fitness of agent 𝑖 at time 𝑡, 𝑀𝑖(𝑡) is the mass 

of agent 𝑖  at time  𝑡, 𝑁 is the population size and worst(𝑡) indicates the worst fitness 

in the objects’ swarm at time t in which minimization problems are calculated as 

follows:  

(2)   worst(𝑡) = max
𝑗∈{1,…,𝑁}

𝑓𝑖𝑡𝑗(𝑡). 

The primary locating of all agents is randomly done, but in time, these 

placements are updated. The position of i-th object is defined by: 

(3)  𝑋𝑖 = (𝑥𝑖
1, … ,  𝑥𝑖

𝑑 , … , 𝑥𝑖
𝑚), 𝑖 = 1, 2, … , 𝑁. 

That 𝑥𝑖
𝑑 shows the position of agent i-th in d-th dimension. 

𝐹𝑖𝑗
𝑑 is the force between o object i-th and object j-th which is calculated according to  

(4)  𝐹𝑖𝑗
𝑑 = 𝐺(𝑡)

𝑀𝑎𝑗×𝑀𝑝𝑖

𝑅𝑖𝑗(𝑡)𝑟Power+𝜀
(𝑥𝑗

𝑑(𝑡) − 𝑥𝑖
𝑑(𝑡)), 

where  𝑀𝑎𝑗 is the active gravitational mass of j-th object  𝑀𝑝𝑖 is the passive 

gravitational mass of i-th object, and  𝑟Power is the power of distance which is 

considered 1 in standard GSA. 𝑅𝑖𝑗(𝑡) and 𝐺(𝑡) are the Euclidean distance between 

two objects and the gravitational constants in time 𝑡 which are computed as follows: 

(5)  𝑅𝑖𝑗(𝑡) = ‖𝑋𝑖(𝑡), 𝑋𝑗(𝑡)‖
2

, 

(6)  𝐺(𝑡) = 𝐺(𝐺0, 𝑡), 
where 𝐺(𝑡) is a descending function which becomes small by the passing of time and 

𝐺0  is the primary gravitational constant.  

The employed force into object i-th in time 𝑡 in dimension 𝑑 is computed as 

follows: 

(7)  𝐹𝑖
𝑑 = ∑ rand𝑗𝐹𝑖𝑗

𝑑(𝑡)𝑗∈𝐾best,𝑗≠𝑖 . 

In order to improve the ability of algorithm exploration, the sum of all forces 

applied to the i-th object has not been computed in (7), and only 𝐾best set which 

includes 𝐾 superior members of the population has been allowed to influence the 

force on the i-th object; rand𝑗 is a random number with uniform distribution in the 

range of [0, 1], which is used for property random search. 

According to the second law of Newton, the acceleration for i-th object in time 

𝑡 and dimension 𝑑 is calculated as follows: 

(8)  𝑎𝑖
𝑑(𝑡) =

𝐹𝑖
𝑑(𝑡)

𝑀𝑖𝑖(𝑡)
, 

𝑀𝑖𝑖 is the inertia mass of the i-th object. Relations have been established in  

(9)  𝑀𝑎𝑖(𝑡) = 𝑀𝑝𝑖(𝑡) = 𝑀𝑖𝑖(𝑡) = 𝑀𝑖(𝑡) ,   𝑖 = 1, … , 𝑁. 

According to (10), the new velocity of the i-th object is calculated. rand𝑖 is a 

random number with uniform distribution in the range of [0, 1], which is used for 

property random search: 
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(10)  𝑉𝑖
𝑑(𝑡 + 1) = rand𝑖 ∙ 𝑉𝑖

𝑑(𝑡) + 𝑎𝑖
𝑑(𝑡). 

The new position of the i-th object is calculated from  

(11)  𝑋𝑖
𝑑(𝑡 + 1) = 𝑋𝑖

𝑑(𝑡) + 𝑉𝑖
𝑑(𝑡 + 1). 

The principle of GSA is shown in Fig. 1. 

 

 

Fig. 1. General principle of GSA [25] 

3. Proposed algorithm 

GSA was stated in the second section of this paper. This algorithm faces premature 

convergence in some problems and gets trapped in local optima, which is considered 

as one of the critical disadvantages of this algorithm. As Fig. 2 illustrates, this 

problem is found in some standard benchmark functions [25, 32] like F3 in [25, 32]. 

In multimodal functions there are many local optima and the possibility that F11 

[25, 32] is getting trapped in local optima increases. Fig. 3 indicates multimodal 

function which has been trapped in local optima. In this paper, premature 

convergence and GSA local optimization problems have been solved through 

defining a novel mutation function while preserving maximum exploration and 

exploitation. 

Although optimization problems have faced premature convergence and local 

optima, the good solutions can be observed in local optima of these problems. These 

good solutions should not be ignored, because the position of some other objects is 

appropriate and do not need mutation. While the position of some others is 

inappropriate, mutation should be applied; thus, in these types of problems, mutation 

Evaluate the fitness for each object 

Update the 𝐺 and  worst  of the 

population. 

No 

Generate initial population 

Calculate 𝑀 and 𝑎 for each object 

Return best solution 

Yes 

Meeting end of 
criterion? 

Update velocity and position 
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should not be applied to all the obtained solutions. The fuzzy controller has been used 

to obtain some percentage of masses used in the direction of the method. 

Fuzzy logic was first introduced in computations by Zadeh in attempt to regulate 

fuzzy sets theory [33]. The approach of this paper for controlling the amount of 

applying mutation is to use Fuzzy Logic Controller (FLC) which contains two inputs 

and one output. 

 
Fig. 2. F3 which has faced premature convergence and local optimization [25] 

 
Fig. 3. F11 which has faced premature convergence and local optimization [25] 

The first input indicates that if a single optimization problem has the same 

solution in a number of consecutive iterations, that problem has faced premature 

convergence and local optima, and has not made any progress in finding the optimum 

answer. As a result, after the first iteration, the concerned problem has faced local 

optima because the mass of some agents has increased compared to other agents, and 

absorbs components with lower mass given the gravity force. Therefore the problem 

is located in local optima and has not found optimum solution. 

In other words, when the first input increases, the function faces local optima 

and subsequently the powerful mutation should be applied. If the value of the first 
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input is low, the mutation should be applied lightly. The values of the first input have 

been defined in [0, 1] which has three membership functions with down, mid, and up 

linguistic values. Down, mid and up are respectively trapmf, trimf and trimf 

membership functions. Fig. 4 indicates membership functions of the first input. 

 

Fig. 4. Membership functions of the first input 

In multimodal functions and problems in which there are many local optima, 

another criterion for dispersion amount of objects in the feasible space is required. 

When an optimization problem faces premature convergence or local optima, then 

objects become close to each other and attract each other given the gravity force; 

consequently the objects are placed in a specified spot in the search space. In this 

case, the location and position of objects can be changed to prevent local optima 

problem; in other words, when the second input is low, it means that the objects are 

close to each other and the mutation should be applied with a greater force. When the 

second input is high, it means that the objects have greater distance from each other 

and mutation should be applied with a lower force. Second input values have been 

defined in [0, 5] interval, which has three membership functions with less, medium, 

and much linguistic values. Less, medium and much are respectively trapmf, trimf 

and trapmf membership functions. Fig. 5 indicates membership functions of the 

second input. 

In this fuzzy set, the output has been also defined in [0, 1] interval, in which this 

interval is indicative of the amount of applying mutation, so that parameter 0 says 

that mutation should not be applied and parameter 1 means that the mutation should 

be applied with maximum force (100%). Output has four membership functions, i.e., 

very low, low, average, and high. Very low, low, average and high are trimf 

membership functions. Fig. 6 indicates membership functions of the output. 
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Fig. 5. Membership functions of the second input 

 

Fig. 6. Membership functions of the output 

Fuzzy rules have been defined with regard to the first input, second input, and 

output. Nine rules presented in this fuzzy set, are as follows. 

1. If (input1 is down) and (input2 is less) then (output is very low). 

2. If (input1 is down) and (input2 is medium) then (output is very low). 

3. If (input1 is down) and (input2 is much) then (output is very low). 

4. If (input1 is mid) and (input2is less) then (output is very low). 

5. If (input1 is mid) and (input2 is medium) then (output is very low). 

6. If (input1 is mid) and (input2 is much) then (output is very low). 

7. If (input1 is up) and (input2 is less) then (output is very low). 

8. If (input1 is up) and (input2 is medium) then (output is low). 

9. If (input1 is up) and (input2 is much) then (output is high). 

Generally, the above-stated fuzzy rules can be stated as follows. If the first input 

is down, it means that problem solutions have not been the same in consequent 

iterations, thus optimization problem has not get trapped in local optimum. In this 

case, the second input can have three inputs, i.e. less, medium, and much. When the 

second input is less, it means that the standard deviation of objects is low. By 

comparing the permeability of the first and second input, it is considered that the 

mutation is not required. Therefore, output is very low. Also when the second input 

is medium or much the mutation is not needed and again output is very low. 
If the first input is mid, it means that optimized solutions of problems are the 

same in few consequent iterations, but there are also many good solutions which 

indicate that this optimization problem face local optimum in a few number of 



 79 

iterations and then has exited local optimum which seems natural. In this case, the 

second input can have three states, i.e., less, medium, and much. When the second 

input is less, it means that the standard deviation of objects is low. In this case given 

the greater permeability of the first input compared to that of second input and based 

on the carried out experiments, the output gets very low value. Again when the second 

input is medium and much, the output is very low. The first input is up, so the 

solutions of the optimization problem are the same in consequent iterations. In this 

case, the second input can have three states, i.e., less, medium, and much. For the 

situation that the second input is less or medium the output is low and very low, 

respectively. And finally, when the second input is much, the output is high. 

4. Experimental results 

For sake of evaluation the proposed approach was tested on standard benchmark 

functions [25, 32] and the results of the test were compared to some popular 

optimization algorithms such as Standard Gravitational Search Algorithm (SGSA) 

[25], Gravitational Particle Swarm algorithm (GPS) [34], Particle Swarm 

Optimization algorithm (PSO) [22], Clustered Gravitational Search Algorithm 

(CGSA) and Real Genetic Algorithm (RGA) [23]. 

Standard benchmark functions have been divided into three general categories: 

the first category which includes the first seven functions 𝐹1 − 𝐹7 are unimodal 

functions, in which the algorithm convergence rate is more important than the 

optimization final results. The additional information about these functions can be 

found in [25, 28]. 𝐹8 − 𝐹13 functions which are called multimodal high dimensional 

functions, are classified under the second category. These functions have many local 

minima, so that its final solution is more important. The optimization of these 

functions is very difficult since the algorithm may get trapped in local optima. In 

these functions, the algorithm should be capable of finding the optimum solution or 

a solution close to the optima value. Additional information about these functions can 

be found in [25, 28]. Multimodal low dimensional functions, which include  

𝐹14 − 𝐹23 functions, belong to the last category. In these functions there are not many 

local optima. For more details on the mentioned functions please refer to  

[25, 28]. Benchmark functions have been indicated in Table 1. In this table, the 

functions’ dimensions have been represented by 𝑛, while  𝑆 ⊆ 𝑅𝑛 is the search space. 

The performance of the proposed approach which is the definition of a new 

MUtation function by a Controller fuzzy (MUGSA), has been compared with a 

number of popular optimization algorithms such as Particle Swarm Optimization, 

Real Genetic Algorithm, Gravitational Particle Swarm Algorithm, and Gravitational 

Search Algorithm, that the details of this comparison are as it is follows. 

In all cases, population size and agents number is 50 (𝑁 = 50), the maximum 

number of iterations for multimodal low dimensional functions is 500, while it is 

considered 1000 for the rest of the functions and the dimension for functions  

𝐹1 − 𝐹13 is 30 (𝑛 = 30). In RGA, the probability of the mutation is set to 0.1  

(𝑃m = 0.1), the probability of the crossover is 0.3 (𝑃c = 0.3) and roulette wheel 

selection has used in this algorithm. The positive constants value of 𝑐1and 𝑐2 is 2 and 
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inertia factor (𝜔) has experienced a linear reduction from 0.9 to 0.2. GSP parameters 

have been described in [30]. In GSA, GSA and MUGSA, 𝛼 value is 0.2 and 𝐺0 is 

100. Furthermore, at first (𝑁 = 𝐾0) where 𝑁 is the number of agents which has 

reduced from 𝑁 to 1 in a linear trend. 

The results obtained from the average and the median of the best solution for 30 

runs and the dimension functions 30 (𝑛 = 30) have been reported in Table 2. In this 

table, the best results have been shown in bold face. It can be seen from Table 2 that 

GSA and MUGSA have better solutions in three categories of benchmark functions 

compared to optimization functions, except  𝐹1,  𝐹2,  𝐹7 − 𝐹9 , 𝐹13 − 𝐹15  and  𝐹21. In 

𝐹1,  𝐹2,  𝐹7,  𝐹15  and  𝐹21, the best results are seen in GSP, while it has the best 

solution for PSO 𝐹8, 𝐹13  and  𝐹14, and RGA has a better performance for 

𝐹9  and  𝐹14. The performance of GSA and MUGSA in 𝐹6,  𝐹17  and  𝐹18 is the same, 

but the performance of MUGSA in 𝐹3,  𝐹5,  𝐹10, 𝐹11,  𝐹12 and  𝐹19  is better. 

Despite that the aim of MUGSA is the prevention of applying GSA in some 

problems, it not only hasn’t got trapped in local optima using mutation operator, 

which is the drawback of GSA algorithm, but also it has better result in some 

functions that other algorithms getting trapped in local optima on these functions. 

Table 1. Benchmark functions 
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S 
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Table 1 (c o n t i n u e d) 
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Table 2. The results of benchmark functions of Table 1 

MUGSA GSA GPS PSO [24] RGA [24] Average/Median Functions 

3.3032×10–17 2.26×10–17 5.43×10–19 1.8×10–3 23.13 Average best so far 
F1 

3.3858×10–17 2.09×10–17 5.65×10–19 1.2×10–3 21.87 Median best so far 

2.3330×10–8 2.34×10–8 2.33×10–9 2.0 1.07 Average best so far 
F2 

2.2772×10–8 2.32×10–8 2.38×10–9 1.9×10-3 1.13 Median best so far 

14.6302 240.33 1.83×103 4.1×10+3 5.6×10+3 Average best so far 
F3 

13.0726 240.50 1.62×103 2.2×10+3 5.6×10+3 Median best so far 

4.1430×10–9 3.63×10–9 16.88 8.1 11.78 Average best so far 
F4 

4.2047×10–9 3.53×10–9 16.08 7.4 11.94 Median best so far 

29.6085 32.75 40.70 3.6×10+4 1.1×10+3 Average best so far 
F5 

26.1217 26.14 26.70 1.7×10+3 1.0×10+3 Median best so far 

0 0 357.93 1.0×10–3 24.01 Average best so far 
F6 

0 0 311 6.6×10–3 24.55 Median best so far 

0.0178 0.06 0.0099 0.04 0.06 Average best so far 
F7 

0.0155 0.06 0.0086 0.04 0.06 Median best so far 

–3.4920×103 –1.10×103 –5.78×10+3 –9.8×10+3 –1.2×10+4 Average best so far 
F8 

–3.5776×103 –1.10 ×103 –5.73×10+3 –9.8×10+3 –1.2×10+4 Median best so far 

14.6259 15.69 17.01 55.1 5.90 Average best so far 
F9 

13.9294 14.92 15.42 56.6 5.71 Median best so far 

3.6336×10–9 3.66×10–9 1.02 9.0×10–3 2.13 Average best so far 
F10 

3.4925×10–9 3.57 ×10–9 1.25 6.0×10–3 2.16 Median best so far 

0.0087 4.25 31.24 0.01 1.16 Average best so far 
F11 

0.0086 3.92 29.92 0.0081 1.14 Median best so far 

0.0051 0.0372 8.12 0.29 0.051 Average best so far 
F12 

1.6007×10–19 1.57×10–19 6.58 0.11 0.039 Median best so far 

3.6625×10–4 7.32×10–4 27.14 3.1×10–18 0.081 Average best so far 
F13 

2.0831×10–18 2.02×10–18 27.82 2.2×10–23 0.032 Median best so far 

1.1022 12.74 7.13 0.998 0.998 Average best so far 
F14, n=2 

1.0022 12.67 6.90 0.998 0.998 Median best so far 

9.2500×10–4 2.93×10–3 6.80×10–4 2.8×10–3 4.0×10–3 Average best so far 
F15, n=4 

7.7164×10–4 2.15×10–3 6.27×10–4 7.1×10–4 1.7×10–3 Median best so far 

–1.0305 –1.0316 –1.0316 –1.0316 –1.0313 Average best so far 
F16, n=2 

–1.0310 –1.0316 –1.0316 –1.0316 –1.0315 Median best so far 

0.3979 0.3979 0.3979 0.3979 0.3996 Average best so far 
F17, n=2 

0.3979 0.3979 0.3979 0.3979 0.3980 Median best so far 

3.0000 3.00 3.00 3.00 5.70 Average best so far 
F18, n=2 

3.0000 3.00 3.00 3.00 3.0 Median best so far 

–3.8698 –3.8628 –3.8628 –3.8628 –3.8627 Average best so far 
F19, n=3 

–3.8698 –3.8628 –3.8628 –3.8628 –3.8628 Median best so far 

–3.1298 –3.3220 –3.2621 –3.2369 –3.3099 Average best so far 
F20, n=6 

–3.1243 –3.3220 –3.2625 –3.2031 –3.3217 Median best so far 

–4.3915 –5.9200 –6.8232 –6.6290 –5.6605 Average best so far 
F21, n=4 

–3.7784 –2.6829 –10.1532 –5.1008 –2.6824 Median best so far 

–4.6502 –10.403 –9.3842 –9.1118 –7.3421 Average best so far 
F22, n=4 

–4.1366 –10.403 –10.4029 –10.402 –10.3932 Median best so far 

–5.1276 –10.5364 –10.0575 –9.7634 –6.2541 Average best so far 
F23, n=4 

–4.7831 –10.5364 –10.5364 –10.536 –4.5054 Median best so far 

The results obtained from the average of the best solution for 50 runs and 

dimension functions 100 (𝑛 = 100) have been reported in Table 3. In this table, the 

best results have been shown in bold face. As the results in this table illustrate, the 

proposed method has the better performance on some function which other 

algorithms getting trapped in local optima, especially multimodal functions which 

have many local optima. 
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Table 3. The results of benchmark functions of Table 1 
MUGSA GSA CGSA PSO Average Functions 

19.1856 79.9245 1.0431×10–14 8.8693×104 Average best so far F1 

1.1350 1.2203 1.2403×10–7 2.3583×105 Average best so far F2 

1.5243×103 5.1541×103 3.8449×10–13 8.9898×104 Average best so far F3 

2.1105 10.5450 5.6762×10–8 8.9254×104 Average best so far F4 

1.3311×103 1.5810×103 99.0000 1.5486×105 Average best so far F5 

43.5600 397.1000 388.4000 8.7781×104 Average best so far F6 

0.5588 0.5886 0.0507 2.8484×105 Average best so far F7 

–6.3325×103 –4.9191×103 –854.0923 1.0477×106 Average best so far F8 

78.5636 76.5166 2.8331×10–12 2.6236×105 Average best so far F9 

1.1092 1.2009 3.5059×10–8 1.4548×105 Average best so far F10 

49.5099 55.6382 2.6401×10–15 1.4742×106 Average best so far F11 

0.3056 2.0259 1.3009 1.0421×105 Average best so far F12 

4.0395 67.1896 10.0000 9.9089×104 Average best so far F13 

1.0798 3.9391 10.3988 0.998 Average best so far F14, n=2 

8.0009×10–4 0.0020 0.0038 2.8×10-3 Average best so far F15, n=4 

–1.0100 –1.0316 –1.0316 –1.0316 Average best so far F16, n=2 

0.3979 0.3979 0.3979 0.3979 Average best so far F17, n=2 

3.0000 3.0000 3.0000 3.00 Average best so far F18, n=2 

–3.8619 –3.7855 –3.8128 –3.8628 Average best so far F19, n=3 

–3.3364 –3.2556 –3.0220 –3.2369 Average best so far F20, n=6 

–4.3995 –6.8059 –6.4180 –6.6290 Average best so far F21, n=4 

–4.2889 –10.1949 –10.4029 –9.1118 Average best so far F22, n=4 

–4.9329 –10.3257 –10.5364 –9.7634 Average best so far F23, n=4 

 

Fig. 6 illustrates MUGSA and GSA on F3 which is the part of Standard 

benchmark functions.  

 
Fig. 6. The comparison result of MUGSA and GSA on F3 

F3, which is a unimodal function [25, 32], has faced premature convergence in 

GSA and is trapped in local optima. As a result, the solutions of this function are 

equivalent in consecutive iterations. F3 diagram becomes constant from the specific 

iteration onwards, so it does not have any improvements in finding the optimum 

solution. However MUGSA has managed to prevent premature convergence and 

local optima problems of F3 with the help of using mutation that applies the fuzzy 

controller to control the mutation values on functions. 
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Fig. 7 shows the comparison of MUGSA and GSA on F11 function which is the 

part of Standard benchmark function. F11 is a multimodal function in which too many 

local optima exist [25, 28]. F11 has faced premature convergence and has got trapped 

in local optima, therefore the solutions of this function are the same in consecutive 

iterations and F11 diagram is constant from certain iteration onwards, but MUGSA 

prevents premature convergence and local optima of F11, by a mutation which uses 

fuzzy controller to apply mutation percentage on functions. 

 
Fig. 7. The comparison result of MUGSA and GSA on F11 

5. Conclusion 

The importance and necessity of meta-heuristic algorithms have caused the 

increasing improvement of these algorithms which are employed in many 

optimization problems in different fields. GSA is also a relatively novel meta-

heuristic algorithm and different approaches have been proposed for this algorithm 

to ameliorate its performance. But despite the proposed approaches, this algorithm 

still faces premature convergence in some optimization problems and gets trapped in 

local optima, and this is considered as one of the problems of GSA which reduces 

GSA performance. This problem has been solved in our paper through defining a 

novel mutation function, named MUGSA, for GSA which is controlled by fuzzy 

controller MUGSA improving the performance of the algorithm. This approach is 

tested on benchmark functions, which includes unimodal and multimodal functions, 

and has been evaluated; the obtained results have been compared with other popular 

optimization algorithms. The experiments’ results show that the proposed approach 

is a remarkable method for improving the results compare with other methods. This 

approach can be used to solve various optimization problems in future. 
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