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Abstract: Mining of imbalanced data is a challenging task due to its complex inherent 

characteristics. The conventional classifiers such as the nearest neighbor severely 

bias towards the majority class, as minority class data are under-represented and 

outnumbered. This paper focuses on building an improved Nearest Neighbor 

Classifier for a two class imbalanced data. Three oversampling techniques are 

presented, for generation of artificial instances for the minority class for balancing 

the distribution among the classes. Experimental results showed that the proposed 

methods outperformed the conventional classifier.  

Keywords: Imbalance data, nearest neighbor classifier, oversampling, synthetic 

data, Data Mining.  

1. Introduction 

A lot of effort is underway to learn from the real world data that are imbalanced in 

nature through various machine-learning techniques. Imbalanced data occur in many 

real world applications like fraud detection, medical diagnosis, text categorization 

and biomedicine. Data is imbalanced when classes are not well-represented by the 

respective samples equally. Most data mining algorithms assume balanced data. The 

standard classifiers do well for classes that are well- represented. However, the bias 

is towards majority class (well-represented classes) when classifiers are applied to 

imbalanced data. This work proposes to improve the classification of minority 

instances by modifying the distribution of imbalanced data. Balanced distributions 

among the classes are formed by generation of synthetic data or by employing 

algorithmic solutions.  

Imbalanced datasets occur due to various reasons. The reasons could be inherent 

to the domain such as in cases of rare cancer diagnosis, where the incidence of 

occurrence is very rare or in cases of fraud; the numbers of honest customers are 

relatively more than the fraud cases. In some cases, the problem of imbalanced data 

could be due to incomplete collection of data due to privacy or security concerns. A 

binary imbalanced data comprises of the majority class and the minority class. The 

minority samples are less represented in the imbalanced data. Consider the cases of 

rare blood diseases such as sickle cell disease. 95% of the test dataset will reveal 
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normal blood reports. However, the rest 5% falls over as rare cases of sickle cell 

diseases. In such scenarios, classifiers are required that will provide a balanced degree 

of predictive accuracy for the minority and majority set equally. As the minority set 

has less representation of data, classifiers tend to produce only 0-5% accuracy for 

minority class, i.e., confirming the presence of sickle cell anaemia. However, the 5% 

cases are of great interest as it indicates the presence of sickle cell anaemia. 

The performance measure for various classifiers is Classification Accuracy 

(CA). However, in the presence of imbalanced data, this evaluation metric is 

insensitive to the data distribution. This metric does not indicate the degree of right 

prediction of minority instances. The CA values are biased towards majority class 

and do not give an accurate measure of classification of minority tuples. The 

performance measure, therefore considered here is the Precision, Sensitivity,  

F-Measure and Geometric mean. All the mentioned measures use parameters that are 

formed by using a confusion matrix. As shown in the next equations, precision is 

sensitive to changes in data distribution while recall is not: 

(1)  Precision =
TP

(TP+FP)
, 

(2)    Recall =
TP

(TP+FN)
.  

Sensitivity same as Recall, for a 2-class classifier. 

F-Measure defines the goodness of the model by including equal weightage for 

both recall and precision. F-measure provides a high value when both recall and 

precision are high: 

(3)   F-Measure =
2×Recall×Precision

(Recall+Precision)
.    

Geometric mean is a measure that equally focuses on accuracy of both positive 

and negative instances: 

(4)    GE = √Sensitivity × Specificity. 
To assess the performance of various classifiers, AUC is used: 

(5)    AUC =
(1+TPrate−FPrate)

2
. 

The next section covers the related works in the field of mining of imbalanced 

data.  

2. Literature survey 

Various solutions are proposed for addressing the imbalance nature among the classes 

observed over real world data. Researchers have proposed approaches that include 

altering the distribution of imbalanced dataset to form balanced data, which affects 

the distribution of data (reduction of skewedness) but not the originality or the quality 

of data. Forming balanced distribution among imbalanced data is done through some 

of the below mentioned methods. 

Data Level Solutions: This method provides solution that involves altering the 

distribution of data, which are independent of the classifier. Sampling is one of the 

methods employed to generate artificial instances. Oversampling, Under sampling 

and hybrid (oversampling & undersampling) are the different sampling methods  

[8, 20, 25]. One of the novel works in the area of oversampling is the SMOTE 
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technique [4, 5]. Informed Under sampling has been used to achieve good sampling 

results [16, 23, 24]. 

Cost sensitive techniques: Cost Sensitive methods are being used as an 

alternative to imbalanced learning domains. Cost matrix is used to account the costs 

of misclassifying the tuple. Algorithmic changes include algorithms that adjust the 

costs of the various classes to counter the class imbalance, adjusting the probabilistic 

estimated and decision threshold at the leaf node of the classification tree [33]. If 

𝐶(mi,ma) indicates the cost of misclassifying the majority as minority tuple, then 

the costs of misclassification of 𝐶(ma,mi) is greater than 𝐶(mi,ma) [31, 29]. 

Several methods such as AdaC1, AdaC2 and AdaC3 have been proposed to overcome 

the imbalance distribution [22], which introduced Cost-Sensitive Data space 

weighting with adaptive Boosting [11] 

Algorithmic methods: The classifier models are tuned to learning from the 

minority class. Existing algorithms are modified or new models are created to adapt 

to the imbalance nature of the data. It is one of the internal approaches towards 

solving the imbalance problem [3, 6, 7, 10]. Ensemble approaches (multiple learning 

algorithms) are also adopted as one of the solutions for classifying imbalanced data 

[9, 32]. 

Besides these solutions, researchers have focused on certain characteristics of 

the imbalanced data [30]. Limited size of training dataset, also expressed as the lack 

of information available for training of classifier, can also be a factor for 

misclassification of instances as shown by V i s w a n a t h, M u r t y  and 

B h a t n a g a r  [26], and S e e t h a, S a r a v a n a n  and  M u r t y  [22]. The high 

dimensionality of the data in combination with minimal size of the data increases the 

error in classification by standard models.    

The ratio of imbalance affects the performance of the classifier. The higher the 

imbalance ratio, the minority classes appear as smaller disjuncts [15]. Researchers 

face a challenge of identifying the disjuncts as positive or rare occurrences or treating 

those instances as noise [14]. 

Overlapping of instances among the classes is another factor for reduction in 

performance by classifiers in imbalanced dataset [19]. The data between the classes 

cannot be linearly separated. Focus in establishing the relation between overlap and 

imbalance was studied and inferred by P r a t i, B a t i s t a  and   M o n a r d  [19].  He 

suggested that the performances of learning algorithms are affected not because of 

the imbalance but by the degree of overlap between the classes.  

Data shift occurs frequently in imbalanced dataset [18]. This is because the 

training data can be entirely different from test data. As the instances of minority set 

are minimal, even a single misclassification can bring a drastic decrease in the 

performance of the classifier [12, 13].  

Various techniques have been proposed to reduce the effect of bias of nearest 

neighbor classifier due to imbalance among the classes. K-NN under sampling 

methods namely NearMiss-1, NearMiss-2, NearMiss-3 and the most distant method 

were implemented by Z h a n g  and  M a n i  [29]. NearMiss-1 and NearMiss-2 focus 

on eliminating samples from majority class based on the average distance to the three 

farthest samples of minority tuples and on the smallest average distance to the three 
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farthest minority class samples respectively. Selection of certain number of majority 

samples for each minority instance is the principle behind NearMiss-3. Several 

features of the imbalanced dataset such as the under representation of data and high 

dimensionality of the data [15] can affect the performance of the Nearest Neighbor 

classifier. Y u x u a n  and Z h a n g  [28] worked in identifying exemplar minority 

class training instances and generalizing them to Gaussian balls as concepts for the 

minority class. In Positive Biased Nearest neighbor classifier, the local neighborhood 

of query instances is dynamically formed. Classification decision is carefully 

adjusted based on class distribution in the local neighborhood. This has proved to be 

efficient for classification of imbalanced data.  

This paper studies the effect of nearest neighbor classifier, which is a popular 

and non-parametric algorithm, on imbalanced data. The focus is on minimizing the 

bias of nearest neighbor classifier towards majority class by using the oversampling 

technique. The oversampling method involves generation of synthetic dataset that 

have the same quality as the original data. V i s w a n a t h, M u r t y  and 

B h a t n a g a r  [26] proposed a novel pattern synthesis method that generated 

synthetic training instances. The present paper focuses on generating artificial 

patterns for minority class, using partition based pattern synthesis, which is a novel 

approach of oversampling the minority class data. The following section discusses 

the partition method necessary for generation of synthetic instances for the minority 

class data. Simple_Join, k-JOIN and the BestFit_Synthetic methods for producing 

synthetic instances are explained briefly. The experimental results are shown 

followed by conclusion. 

3. Pattern generation for minority samples 

This paper introduces three techniques of generating synthetic data for minority 

training instances. The minority synthetic samples are then augmented to the original 

training data to form a balanced training set. However, synthetic samples can be 

formed only by partitioning of the original minority dataset. The original minority 

training dataset is partitioned vertically into blocks. Each block is formed by sub 

grouping highly correlating features of the dataset into groups. The first section 

explains the notations and definitions followed in the paper. The feature partition 

method followed to form blocks is also briefly explained here. 

3.1. Notations and definition 

The notations used in this paper are defined as follows. Let the imbalanced dataset 

be DS. TR and TS indicate the training and test set instances respectively. The binary 

imbalanced dataset comprises of majority and minority tuples, DSma and 

DSmi  respectively. The training instances that belong to minority class are indicated 

by TRmi . Therefore,  DSma ∪ DSmi = DS. Let |TRmi| is denoted as m. Let 

 DF = {𝐹1, 𝐹2, … , 𝐹𝑝} be the set of features for the dataset where p indicates the total 

number of features of dataset DS. The set of classes CS = {𝐶ma, 𝐶mi} indicate the 

class for majority and minority data respectively. The classes can also be indicated 

by CS = {−1,+1} for majority and minority tuples respectively. Pattern is defined as 
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the data instance denoted by 𝑥 where 𝑥 = (𝑣1, 𝑣2, … , 𝑣𝑝), such that 𝑥[𝐹𝑖] = 𝑣𝑖 for the 

dataset DS. Let  denote the set of partitions or blocks for the minority dataset. Thus, 

 = {𝐵1, 𝐵2, … , 𝐵𝑛}, where 𝐵𝑖 indicates the i-th block and || = n . The number of 

partitions for the minority dataset is indicated by n where 1≤ n ≤ p. If  𝑛 == 𝑝, then 

the number of partitions for the minority class will be same as the degree of the 

dataset. Let feature set A be {𝐹𝑖, 𝐹𝑗, 𝐹𝑘}, for a block where 1 ≤ i, j, k ≤p and 𝐴  DF. 

Lastly, the sub pattern is indicated by 𝑋𝐴 and 𝑋𝐴 be the projection of data instance 

𝑥 on to the subset of features as defined in feature set A for a block where 𝑋𝐴 𝑥 and 

A  DF. 

3.2. Feature partition method 

The minority instances of the training set are vertically partitioned into n number of 

blocks by applying the feature partition method proposed by V i s w a n a t h, M u r t y  

and B h a t n a g a r  [26]. Each block will contain features that are a subset of the 

original feature set. The blocks generated will have highly correlating features within 

the block and the low average correlation between the blocks. This method is used 

only with numerical features as it is based on pair wise correlation between the 

features. Correlation coefficients between all features are examined. The features that 

have less correlation are put into separate blocks whereas features having high 

correlation are placed in one block. Domain knowledge can also be used to decide on 

the number of blocks and the cluster of features to represent the block. It was 

experimented and proved that the classification accuracy tends to fall as the number 

of blocks increases [26].  

4. Synthetic pattern generation from partitioned feature set  

of minority data 

This section aims to describe synthetic pattern generation for minority instances of 

the training data on which the NN classifier model is built. The balanced training 

dataset is formed by augmentation of synthetic instances to the original training data. 

The basic classifier which is tested and experimented against the balanced data is the 

nearest neighbor algorithm. It is as follows. 

Algorithm 1 
Nearest_Neigbhor_Classifier: 

Input: 

a) Training set  TR = TRmi ∪ TRma 
Output: 

a) Predicted class,  CS ∈ {Cma, Cmi} 
Step 1. Using  TRmi, generate synthetic_minority dataset, DS𝑆mi. 

Step 2. Find k greedy neighbors for the test pattern T from DS𝑆mi. Let it be 

denoted by £mi. 

Step 3. Find k greedy neighbors of the test pattern T from the majority set TRma. 
Let it be denoted by £ma. 
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Step 4. Then find k global greedy neighbors of the test instance T from the union 

of £mi  £ma. 

Step 5. Classify T to the class based on the majority vote among the k global 

neighbours. 

To generate Synthetic minority dataset, DS𝑆mi, three methods have been adopted 

and implemented in this paper. All three methods are categorized as over sampling 

method. The first algorithm employs the Simple_Join method. This method generates 

minority tuples by performing Cartesian product of sub pattern between the minority 

blocks. Deciding the number of partitions or blocks is as explained as above in 3.2. 

The second algorithm is the k-JOIN. Here, the Cartesian products between the nearest 

neighbor sub instances from partitions of minority class blocks are computed to 

produce synthetic samples for a test sample T. The third algorithm, BestFit_Synthetic 

applies the greedy technique to generate new instances, thereby avoiding the join of 

the sub instances.  

4.1. Formal description of the Simple_Join Method  

Let (𝑥1, 𝑥2 , … , 𝑥𝑚) are m minority instances from the training data, i.e.,  
|TRmi | = 𝑚. Let  = {𝐵1, 𝐵2, … , 𝐵𝑛} be the vertical (Feature split) partition of 

training samples of the minority class. The majority training instances are denoted by 

 TRma. Then 𝑋𝑖𝐵1 , 𝑋𝑖𝐵2 , … , X𝑖𝐵𝑛, are sub-instances of sample 𝑥𝑖 belonging to each 

block of the minority class of block 𝐵𝑗where 1 ≤ 𝑖 ≤ 𝑚  and  1 ≤ 𝑗 ≤ 𝑛. Cartesian 

product of the minority sub tuples between all the blocks are performed, thereby 

producing 𝑚𝑛 synthetic tuples where 𝑚 is the number of minority instances and 𝑛 is 

the total number of blocks. These synthetic samples are added to the original training 

data to reduce the ratio of imbalance between the majority and minority classes. 

However, in certain datasets, the synthetic minority instances generated after the join 

exceed the number of existing majority samples. To form a balanced representation 

of samples within both the classes, clustering is then performed on the synthetic 

minority instances generated. The number of clusters formed will be almost less than 

or equal to the number of majority tuples present in the training set. The centroid of 

each cluster is accepted as the synthetic minority tuple. 

Algorithm 2 

Simple_Join: 

Input:  

a) Partitioned Minority Data Blocks  = {𝐵1, 𝐵2, … , 𝐵𝑛} from DSmi  containing 

m sub instance in each block 

Output: 

a) synthetic_minority dataset, DS𝑆mi 

For all blocks: from 1 to n do 

Find Cartesian product of all tuples between blocks to generate  

𝑆mi, where 𝑆mi= 𝐵1  × 𝐵2  × … × 𝐵𝑛, where n indicates the number of blocks 

Endfor 

If |𝑆mi| > |DSma|, then 

Begin 

Choose k= |DSma| 
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Perform k-means clustering on 𝑆mi 
Select centroid of each cluster. Let it be denoted as 𝐶𝑖 

synthetic_minority Dataset, DS𝑆mi = ∪ 𝐶𝑖 

         End 

         Else  

synthetic_minority Dataset, DS𝑆mi = 𝑆mi 

Endif 

4.1.1. Space and time requirement for Simple_Join: 

Space requirement is O(𝑚𝑛), where m is the size of the original minority training set 

size, and n is the number of blocks. Time requirement of the method for the method 

is O(𝑚𝑛). An example to indicate Simple_Join is shown in Fig 1. The illustration is 

done assuming two block partition.  
 

Set,  DF =   {𝐹1, 𝐹2, 𝐹3, 𝐹4} 
DSmi  = [𝑡1(𝑎, 𝑏, 𝑐, 𝑑), 𝑡2(𝑝, 𝑞, 𝑟, 𝑠), 𝑡3(𝑙, 𝑚, 𝑛, 𝑜), 𝑡4(𝑤, 𝑥, 𝑦, 𝑧)] 
 = {𝐵1 , 𝐵2}, where 𝐵1={ 𝐹1, 𝐹3}  and 𝐵2={ 𝐹2, 𝐹4}   
All original minority tuples are considered and split into 2 blocks. 

Therefore DSmi of 𝐵1= [(𝑎,∗, 𝑐,∗), (𝑝,∗, 𝑟,∗), (𝑙,∗, 𝑛,∗), (𝑤,∗, 𝑦,∗)] 
DSmi of 𝐵2= [(∗, 𝑏,∗, 𝑑), (∗, 𝑞,∗, 𝑠), (∗,𝑚,∗, 𝑜), (∗, 𝑥,∗, 𝑧)] 
Simple_Join 

Fig 1. Illustration of Simple_Join 

4.2. Formal description of the k-JOIN Method 

The minority data is vertically partitioned into blocks,  = {𝐵1, 𝐵2, . . . , 𝐵𝑛}. For a 

given test tuple T, the k-nearest neighbor sub instances from blocks 𝐵1 to 𝐵𝑛 are 

found. The nearest neighbors for a test sample T are found by splitting the test sample 

with respect to the block features. The distance measure is applied to find the  

k-nearest neighbors for the sample T with block 𝐵𝑖. The Cartesian products of the  

k-nearest neighbors sub instances are found from the n blocks, and are augmented 

to DSmi to form DS𝑆mi. 

Therefore,|DS𝑆mi| = 𝑘
𝑛, where k is the number of nearest neighbors and n is the 

number of blocks or partition for the minority class. Algorithm 3 describes the 

synthetic dataset generated by k-JOIN.   

Synthetic instances created during training phase 

DS𝑆mi = 𝐵1 × 𝐵2 =  

{
 
 

 
 
(𝑎, 𝑏, 𝑐, 𝑑)
(𝑎, 𝑞, 𝑐, 𝑠)

𝑎,𝑚, 𝑐, 𝑜),

(𝑎, 𝑥, 𝑐, 𝑧),
(𝑝, 𝑏, 𝑟, 𝑑), …
(𝑤, 𝑥, 𝑦, 𝑧) }

 
 

 
 

, 

|DS𝑆mi| = |DSmi|
2 as  || = 2= 42= 16; synthetic instances are produced. 
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Algorithm 3 

k-JOIN: 

Input:  

 a) Partitioned Minority Training data,  DSmi,  into Blocks   = {𝐵1, 𝐵2, … , 𝐵𝑛}  
 b) Test Set, TS 

Output: 

a) Synthetic_Minority Dataset, DS𝑆mi 

For each test sample T do 

For j: 1 to n do 

For each block Bj ε  do 

Let the nearest k neighbors of 𝑇𝐵𝑗 in DS𝐵𝑗with respect to subset of features 

in 𝐵𝑗   be  𝑁𝑗,  

where 𝑁𝑗 = {𝑋𝐵𝑗 
𝑗1
,  𝑋𝐵𝑗 

𝑗2
 , … ,  𝑋𝐵𝑗 

𝑗𝑘
} 

Endfor 

Endfor 

Find the Cartesian product  𝑁 =  𝑁1 × 𝑁2 × … × 𝑁𝑛, where |𝑁| =  𝑘𝑛 

Endfor 

synthetic_Minority Dataset, (DS𝑆mi) = 𝑁 ∪ DSmi 

Space and time requirement for k-JOIN. Space requirement is O(𝑘𝑛), where k 

indicates the number of nearest neighbors and n is the number of blocks. Time 

requirement of the method is O(𝑘𝑛). The working example of k-JOIN is shown in 

Fig. 2. 

Set,  DF =   {𝐹1,  𝐹2,  𝐹3,  𝐹4} 
DSmi=[𝑡1(𝑎, 𝑏, 𝑐, 𝑑),  𝑡2(𝑒, 𝑓, 𝑔, ℎ), 𝑡3(𝑝, 𝑞, 𝑟, 𝑠), 𝑡4(𝑙,𝑚, 𝑛, 𝑜),
𝑡5(𝑤, 𝑥, 𝑦, 𝑧)] 
 = {𝐵1, 𝐵2}, where 𝐵1= { 𝐹1, 𝐹3}  and 𝐵2= {𝐹2, 𝐹4}   
Therefore, 
Let the 3-nearest neighbor (wrt features of 𝐵1) for test sample T be  
𝑁1= [𝑡3(𝑝,∗, 𝑟,∗), 𝑡4(𝑙,∗, 𝑛,∗),  𝑡5(𝑤,∗, 𝑦,∗)] 
And from 
𝑁2=[𝑡1(∗, 𝑏,∗, 𝑑), 𝑡3(∗, 𝑞,∗, 𝑠),  𝑡4(∗,𝑚,∗, 𝑜)]  from Block 𝐵1 and 𝐵2 
respectively.  
k-JOIN  
Synthetic instances created during run phase 

DS𝑆mi  = 𝑁1 × 𝑁2  = 

{
  
 

  
 
(𝑝, 𝑏, 𝑟, 𝑑)

(𝑝, 𝑞, 𝑟, 𝑠)

(𝑝,𝑚, 𝑟, 𝑜),
(𝑙, 𝑏, 𝑛, 𝑑),
(𝑙, 𝑞, 𝑛, 𝑠),…
(𝑤,𝑚, 𝑦, 𝑜) }

  
 

  
 

 

|DS𝑆mi| =  |3|
2 as the || = 2 and k=3 

              = 3*3= 9; synthetic instances are produced 
BestFit_Synthetic: 
Synthetic tuples created during run phase  

DS𝑆mi  =  𝑁1 +𝑁2   ={

(𝑝, 𝑏, 𝑟, 𝑑),
(𝑙, 𝑞, 𝑛, 𝑠)

𝑤,𝑚, 𝑦, 𝑜)
} 

|DS𝑆mi| = 𝑘 = 3; Synthetic instances are produced 

Fig. 2. Illustration of k-JOIN and BestFit_Synthetic 
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4.3. Formal description of the BestFit_Synthetic  

A greedy technique is performed here to generate the synthetic instances. The 

synthetic instances are generated by combining the i-th sub pattern of k nearest 

samples of all blocks for a given test sample. Initially, the k nearest neighbors for the 

test sample T, with respect to sub features from each block is found. The union with 

respect to each row of the k nearest neighbor of all blocks forms the synthetic set. 

The union execution is by joining each row tuple of the nearest neighbor of each 

block respectively.  

The number of synthetic instances produced is equal to k for each test instance. 

Algorithm 4 

BestFit_Synthetic: 

Input:  

Partitioned Minority Training Data TRmi, into Blocks  = {𝐵1, 𝐵2, … , 𝐵𝑛} of 

the minority tuples synthetic_minority dataset, DS𝑆mi = {TRmi} 

Test Set, TS 

Output: synthetic_minority Dataset, DS𝑆mi 

For each test pattern 𝑇do 

For each block j: from 1 to n do 

For feature set of 𝐵𝑗 

Find 𝑘 nearest neighbors of  𝑇, with respect to features in TR𝐵𝑗 

Let the k nearest neighbors be  𝑁𝑗 = {𝑋𝐵𝑗
𝑗1
, 𝑋𝐵𝑗

𝑗2
, … , 𝑋𝐵𝑗

𝑗𝑘
}, where 𝑋𝐵𝑗

𝑗𝑖
 is the i-th 

nearest tuple in j-th block 

EndFor 

EndFor 

EndFor 

The Synthetic set generated will be as follows:  
 

DS𝑆mi = {(𝑋𝐵1
11, 𝑋𝐵2

21, … , 𝑋𝐵𝑛
𝑛1), (𝑋𝐵1

12, 𝑋𝐵2
22, … , 𝑋𝐵𝑛

𝑛2), … , (𝑋𝐵1
1𝑘 , 𝑋𝐵2

2𝑘 , … , 𝑋𝐵𝑛
𝑛𝑘)} ∪ TRmi 

Space and time requirement for BestFit_Synthetic. Space and time requirements 

of the method are O(k) as the space taken by the synthetic samples generated is equal 

to the number of nearest neighbor, i.e k.  

5. Experimental results 

Experimental studies are described here.  

5.1. Datasets description  

Imbalanced datasets from the UCI machine learning [8] repository and Keel 

repository [1, 2] were chosen. The chosen datasets are indicated in Table 1. The 

attributes and the number of instances of majority and minority classes are 
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mentioned. In both the repositories, the datasets were chosen and subjected to 10 

cross validations. For experimentation purpose, each set is used as test set. However, 

in real time, real times test samples can be used to generate the synthetic instances. 

All the datasets have only numeric valued features and continuous value 

attributes. These datasets are classified mainly into two classes- majority class and 

minority class. The majority class has good data representation whereas minority 

dataset are outnumbered and less represented. The majority class is the negative class 

(–1) whereas the minority class is the positive class (+1). 

The experimentation has been done with a split of two blocks. Experimentation 

results by V i s w a n a t h,  M u r t y  and B h a t n a g a r  [26], shows that when the 

datasets are divided into more than two or three blocks, classification does not make 

much improvement. This is because even though the generation of synthetic tuples 

increases, the synthetic distribution for larger values of n will greatly vary when 

compared to the original data. 

5.2. Results 

Table 1 describes the benchmarked imbalanced datasets trained by the k-NN 

classifier. For each dataset, we have presented values for various training samples 

achieved under k-NN classifier. The training samples include original samples and 

synthetic samples generated by Oversampling, Simple_Join, k-JOIN and 

BestFit_Synthetic. As shown from Tables 2-8, each dataset with their performance 

measures have been indicated. The k parameters for the nearest neighbor classifier 

are experimented for 1, 3, 5 and 7.  Different imbalance ratios have been taken into 

consideration. 10-fold cross validation was performed to validate the results [25]. For 

different datasets, values attained for Sensitivity, F-Measure, Geometric Mean and 

AUC are mentioned in their respective table. Tables 2-8 describes the results obtained 

under various measures for samples generated using different techniques. 

Table 1. Description of Data Sets 

Name Number of classes Examples (+, –) Number of attributes 

Vehicle 2 212:634 18 

Haberman 2 81:225 3 

LiverPatient 2 268:500 10 

Vertabre 2 100:210 6 

Prima_Indian_Diabetes 2 268:500 8 

Blood Transfusion 2 178:570 4 

Spectrometer 2 45:486 93 

 

 

 

 



 55 

Table 2.  Comparison between measures for vehicle 
Measure Sampling Technique (Vehicle) k = 1 k = 3 k = 5 k = 7 

Precision 

Original Data 43.13 48.78 54.21 52.89 
Oversampling 83.39 85.71 89.26 89.46 
Simple_Join 85.75 81.93 80.91 80.5 

k-JOIN 94.73 92.11 90.5 89.52 
BestFit_Synthetic 94.97 92.67 91.05 89.69 

Sensitivity 

Original Data 37.25 37.27 33.51 25.93 
Oversampling 79.95 80.26 79.47 77.42 
Simple_Join 96.06 92.27 90.69 87.54 

k-JOIN 100 99.91 99.91 99.87 
BestFit_Synthetic 99.27 99.53 99.7 99.74 

F-Measure 

Original Data 39.97 42.26 41.42 34.8 
Oversampling 81.63 82.90 84.08 83.00 
Simple_Join 90.61 86.79 85.52 83.88 

k-JOIN 97.29 95.86 94.97 94.41 
BestFit_Synthetic 97.07 95.98 95.18 94.45 

Geometric Mean 

Original Data 56.44 58.81 52.84 48.73 
Oversampling 81.92 83.32 79.67 73.80 
Simple_Join 89.63 82.65 78.25 75.35 

k-JOIN 89.14 83.97 79.70 75.71 
BestFit_Synthetic 89.42 85.61 84.37 82.93 

AUC 

Original Data 60.13 61.67 60.86 59.68 
Oversampling 82.01 83.43 80.93 78.14 
Simple_Join 89.26 84.69 81.92 79.01 

k-JOIN 90.21 84.33 81.12 78.60 
BestFit_Synthetic 90.27 84.69 83.74 82.56 

 

Table 3.  Comparison between measures for Haberman 

Measure Sampling Technique (Haberman) k = 1 k = 3 k = 5 k = 7 

Precision 

Original Data 39.40 43.96 46.96 52.33 

Oversampling 75.89 77.86 80.59 81.82 

Simple_Join 51.63 65.39 68.60 71.27 

k-JOIN 88.24 87.05 85.60 85.47 

BestFit_Synthetic 91.43 92.22 91.28 90.80 

Sensitivity 

Original Data 39.30 34.58 29.72 23.47 

Oversampling 80.81 77.25 75.42 76.28 

Simple_Join 44.05 56.44 60.05 64.94 

k-JOIN 85.63 90.01 92.36 94.49 

BestFit_Synthetic 87.76 94.95 96.07 96.18 

F-Measure 

Original Data 39.35 38.71 36.40 32.40 

Oversampling 78.27 77.55 77.92 78.95 

Simple_Join 47.54 60.59 64.04 65.44 

k-JOIN 86.92 88.51 88.85. 89.76 

BestFit_Synthetic 89.55 93.56 93.61 93.41 

Geometric Mean 

Original Data 54.37 49.91 47.38 44.02 

Oversampling 67.32 63.32 68.36 67.18 

Simple_Join 50.54 62.41 65.76 67.42 

k-JOIN 68.04 64.28 68.88 67.33 

BestFit_Synthetic 76.49 80.04 77.88 76.62 

AUC 

Original Data 58.79 58.74 57.82 56.64 

Oversampling 64.59 66.66 67.36 64.26 

Simple_Join 51.51 59.62 64.68 64.73 

k-JOIN 72.20 69.14 66.61 64.76 

BestFit_Synthetic 77.49 81.03 79.29 78.61 
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Table 4. Comparison between measures for Liver Patient data 

Measure Sampling Technique (LiverPatient) k = 1 k = 3 k = 5 k = 7 

Precision 

Original Data 37.15 36.64 37.65 36.49 

Oversampling 73.30 77.87 79.23 79.52 

Simple_Join 78.08 71.59 67.41 65.33 

k-JOIN 93.73 91.66 90.09 88.77 

BestFit_Synthetic 94.18 92.05 90.36 89.07 

Sensitivity 

Original Data 39.81 34.26 32.42 30.00 

Oversampling 77.57 74.94 74.94 73.74 

Simple_Join 95.21 84.63 82.96 81.04 

k-JOIN 99.89 99.78 99.29 98.63 

BestFit_Synthetic 99.29 99.51 99.40 99.13 

F-Measure 

Original Data 38.44 35.41 34.84 32.93 

Oversampling 75.37 76.38 77.02 76.52 

Simple_Join 85.80 77.57 74.38 72.34 

k-JOIN 96.71 95.54 94.46 93.44 

BestFit_Synthetic 96.67 95.63 94.66 93.83 

Geometric Mean 

Original Data 52.72 50.22 48.99 45.72 

Oversampling 74.38 76.43 70.98 67.00 

Simple_Join 82.75 74.23 69.90 67.40 

k-JOIN 83.81 77.21 71.50 66.03 

BestFit_Synthetic 84.95 78.5 72.53 67.39 

AUC 

Original Data 57.11 56.25 54.86 54.85 

Oversampling 74.59 76.66 74.36 70.26 

Simple_Join 82.08 75.48 70.79 71.29 

k-JOIN 86.33 79.67 75.63 72.15 

BestFit_Synthetic 85.77 80.42 76.63 71.21 

 

Table 5.  Comparison between measures for Vertabre 

Measure Sampling Technique (Vertabre) k = 1 k = 3 k = 5 k = 7 

Precision 

Original Data 72.37 71.45 76.44 79.23 
Oversampling 88.17 87.57 86.36 87.51 
Simple_Join 80.06 78.65 79.29 79.37 

k-JOIN 95.41 94.04 94.17 93.92 
BestFit_Synthetic 96.17 94.53 93.89 93.41 

Sensitivity 

Original Data 77.00 76.00 72.00 76.00 
Oversampling 89.45 87.57 89.45 89.45 
Simple_Join 81.9 85.71 88.1 90 

k-JOIN 99.73 99.73 99.27 99.27 
BestFit_Synthetic 99.82 100 99.73 99.82 

F-Measure 

Original Data 74.62 73.66 74.15 77.58 
Oversampling 88.81 87.40 87.88 88.47 
Simple_Join 80.97 82.03 83.46 84.35 

k-JOIN 97.52 96.8 96.65 96.52 
BestFit_Synthetic 97.96 97.19 96.72 96.51 

Geometric Mean 

Original Data 81.14 80.26 79.33 82.56 
Oversampling 82.40 80.93 78.48 77.90 
Simple_Join 80.43 80.49 81.71 82.25 

k-JOIN 86.23 81.26 81.68 80.81 
BestFit_Synthetic 88.68 83.18 80.55 78.79 

AUC 

Original Data 81.33 79.59 81.29 83.05 
Oversampling 82.54 80.12 80.58 78.06 
Simple_Join 80.71 81.90 80.95 82.38 

k-JOIN 86.20 83.05 82.78 82.97 
BestFit_Synthetic 89.39 84.29 82.86 81.67 
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Table 6.  Comparison between measures for Prima_Indian_Diabetes 

Measure 
Sampling Technique  

(Prima_Indian_Diabetes) 
k = 1 k = 3 k = 5 k = 7 

Precision 

Original Data 55.36 57.32 61 61.84 
Oversampling 75.29 77.15 79.28 80.87 
Simple_Join 65.99 68.54 69.43 69.41 

k-JOIN 92.49 90.58 89.87 89.78 
BestFit_Synthetic 94.09 91.97 90.95 90.32 

Sensitivity 

Original Data 53.32 53.68 53.3 54.06 
Oversampling 74.54 74.75 74.94 73.34 
Simple_Join 63.6 73.4 74.8 75.6 

k-JOIN 97.52 98.71 98.91 98.91 
BestFit_Synthetic 98.78 99.08 99.12 99.25 

F-Measure 

Original Data 54.32 55.44 56.89 57.69 
Oversampling 74.91 75.93 72.05 72.47 
Simple_Join 64.77 70.89 72.01 72.37 

k-JOIN 94.94 94.47 94.17 94.13 
BestFit_Synthetic 96.38 95.4 94.86 94.58 

Geometric Mean 

Original Data 63.49 64.55 65.5 66.22 
Oversampling 64.90  65.96 67.18 66.75 
Simple_Join 64.89 69.26 64.18 65.66 

k-JOIN 71.9 62.23 68.06 67.54 
BestFit_Synthetic 79.07 69.61 70.42 70.44 

AUC 

Original Data 63.28 65.07 67.05 68.42 
Oversampling 65.07 66.18 61.47 63.17 
Simple_Join 63.80 71.00 70.00 66.38 

k-JOIN 76.23 69.35 67.72 66.99 
BestFit_Synthetic 80.39 73.87 70.14 70.80 

 
Table 7.  Comparison between measures for Blood_Transfusion 

Measure Sampling Technique (Blood_Transfusion) k = 1 k = 3 k = 5 k = 7 

Precision 

Original Data 36.08 39.03 37.66 34.47 
Oversampling 68.71 76.53 79.91 80.04 
Simple_Join 77.32 81.72 80.97 78.88 

k-JOIN 89.67 89.09 88.47 87.56 
BestFit_Synthetic 92.52 94.31 93.38 91.93 

Sensitivity 

Original Data 36.54 33.73 29.22 26.34 
Oversampling 73.54 73.66 70.15 70.33 
Simple_Join 73.33 74.74 74.04 74.04 

k-JOIN 78.3 82.74 85.04 86.26 
BestFit_Synthetic 82.48 84.68 86.21 87.39 

F-Measure 

Original Data 36.08 39.03 37.66 34.47 
Oversampling 75.81 78.94 77.03 74.18 
Simple_Join 75.27 78.07 77.35 76.38 

k-JOIN 83.6 85.8 86.72 86.91 
BestFit_Synthetic 87.21 89.23 89.65 89.6 

Geometric Mean 

Original Data 52.99 53.63 50.19 47.92 
Oversampling 71.81 74.75 71.81 69.84 
Simple_Join 73.68 73.64 72.87 70.81 

k-JOIN 75.4 78.28 77.29 76.36 
BestFit_Synthetic 79.61 83.39 82.28 80.03 

AUC 

Original Data 57.99 60.90 59.69 58.60 
Oversampling 72.88 78.94 70.03 70.18 
Simple_Join 73.88 73.51 72.60 71.37 

k-JOIN 75.21 78.11 78.62 77.16 
BestFit_Synthetic 80.82 83.69 82.57 80.54 

 

 



 58 

Table 8.  Comparison between measures for Spectrometer 

Measure Sampling Technique (Spectrometer) k = 1 k = 3 k = 5 k = 7 

Precision 

Original Data 91.67 92.67 93.5 93.5 
Oversampling 98.58 98.17 98.17 98.07 
Simple_Join 99.4 98.61 98.81 98.79 

k-JOIN 99.6 98.6 98.07 97.86 
BestFit_Synthetic 99 98.61 98.42 98.19 

Sensitivity 

Original Data 77 72.5 70.5 68 
Oversampling 97.94 97.93 97.53 97.32 
Simple_Join 100 98.79 97.57 97.37 

k-JOIN 100 98.99 97.58 97.17 
BestFit_Synthetic 98.78 98.98 99.19 98.38 

F-Measure 

Original Data 83.7 81.35 80.39 78.74 
Oversampling 98.54 98.45 98.24 98.34 
Simple_Join 99.29 98.58 98.68 98.05 

k-JOIN 99.6 98.39 97.68 97.78 
BestFit_Synthetic 98.89 98.8 98.8 98.28 

Geometric Mean 

Original Data 86.72 84.19 83.12 81.05 
Oversampling 97.55 97.45 97.24 97.35 
Simple_Join 99.28 98.55 98.65 98.02 

k-JOIN 99.59 98.56 98.06 97.86 
BestFit_Synthetic 99.87 98.77 98.77 98.25 

AUC 

Original Data 87.09 86.19 85.19 84.09 
Oversampling 98.56 98.46 98.25 98.35 
Simple_Join 99.39 99.18 98.46 97.33 

k-JOIN 99.38 98.47 97.97 98.07 
BestFit_Synthetic 99.88 98.67 98.36 98.46 

5.3. Discussion 

Observation 1. As seen, the standard nearest neighbor shows the poorest 

performance when trained on original imbalanced training set for all datasets. 

Sensitivity values indicate the high misclassifications of minority instances. As the 

value of k increases, the recognition rate of positive samples decreases. This effect is 

caused due to the fact that as the value of k increases, more majority samples will be 

inducted during decision making process at the testing phase. 

Observation 2. For all datasets, the k-NN (for all values of k) has shown 

commendable performance when trained on samples formed by BestFit_Synthetic 

than Oversampling, Simple_Join or k-JOIN. This method in terms of space and time 

utility, also occupies the least when compared to the other methods introduced. The 

number of synthetic samples generated by BestFit_Synthetic is equal to the value of 

k chosen. The k value chosen however chosen must be sufficient enough to balance 

the training set. The F-Measure, Geometric Mean and sensitivity also indicates the 

goodness of the algorithm.  

Observation 3. Certain datasets like Haberman and Vertabre, Oversampling 

showed better performance than artificial samples generated by Simple_Join. This 

performance is seen due to the presence of redundant samples in the data itself. 

Hence, Random Oversampling enhanced the occurrence of coincident samples. This 

can further lead to overfitting. In contrast, it has to be noted that synthetic samples 

generated by Oversampling did not prove to be as efficient as samples generated from 

our three techniques for Data such as in LiverPatient, Vehicle, etc.  

 



 59 

Observation 4. In vertebra and vehicle, the performance of k-NN classifier from 

samples generated by BestFit_Synthetic shows only a slight difference in terms of 

sensitivity when compared with other sampling methods. Nevertheless, its best to 

employ BestFit_Synthetic, for it requires less execution time and space. G-Mean 

measure is to maximize the accuracy on both the classes while these accuracies are 

still balanced. G-mean of BestFit_Synthetic has shown competitive performance 

when compared to all other implemented methods. F- Measure, which focuses on the 

goodness of the algorithm, clearly indicates high measure performance by our 

algorithms compared to Nearest Neighbor algorithm.  

Observation 5. BestFit_Synthetic forms k greedy-neighbors synthetic 

representatives for the minority class. The implementation advantage with this 

method when compared to k-JOIN is that the BestFit_Synthetic avoids Cartesian 

product. It forms synthetic samples by concatenating i-th nearest neighbor between 

the blocks. The AUC measures also indicate that the greedy technique 

(BestFit_Synthetic) is better than the all other methods for all datasets. Classification 

of both positive and negative tuples also improves in BestFit_Synthetic.  

Observation 6. The visible better performance by the BestFit_Synthetic is the 

fact that the synthetic samples generated minimizes over fitting. Limited synthetic 

instances are produced due to the greedy method involved in generating the instances. 

As a result, classification of minority instances increases; the misclassification of 

majority samples also reduces. It is seen that as more synthetic samples are generated, 

the samples tend to over generalize the minority class, without keeping in view that 

these synthetic samples could be seen as noise by the majority instances. This is also 

highly viewed as a disadvantage of oversampling. Overfitting is considered as one of 

the prominent disadvantage of oversampling. 

To understand it, we see that the number of synthetic samples generated under 

Simple_Join is 𝑚𝑛. However, in k-JOIN, the number of produced samples is kn for 

each sample. Here, the number of synthetic samples is reduced drastically. This 

creates more separation between the minority and majority class as the synthetic 

samples produced are from join of minority training instances that are closer to the 

test instance T. The distance of the decision region between the majority and minority 

classes increases. A likely minority or majority test instance will pick sub instances 

from the blocks that are closer to the test sub pattern.  

In BestFit_Synthetic, k synthetic samples only are generated using the greedy 

method for a test sample. Hence, the samples are relatively very much similar to the 

test instances. The distribution of the synthetic samples is also more similar to the 

original training instances. The misclassification of majority instances will be the 

least as the decision region between the majority samples and minority samples will 

be maximum and distinct. 

For concluding the discussion section, we have shown three techniques that 

provide quality performances to improve the bias of the classifier towards minority 

data. It is shown a considerable improvement of the performance of the k-NN 

classifier by providing k samples for each test instance through BestFit_Synthetic. 
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5.4. Limitations and future work 

1. All methods depend on correlation coefficient. Therefore, data that have 

numerical attributes only can employ these algorithms. Domain knowledge can be an 

alternative to split attributes into blocks. Suitable methods for data sets having 

categorical attributes would be further explored as future work. 

2. The other limitation is that this method is applied only if the features can be 

correlated or grouped into blocks.  

3. As for big data with hundreds of attributes, these methods are feasible as 

originally the methods involved were to address the curse of dimensionality problem. 

However, improvising space and time constraints can be a possible future work.  

Description of the pros and cons of each technique is as mentioned in Table 9. 

Table 9.  Pros and Cons of methods used to generate Synthetic samples  

Method adopted Pros Cons 

Simple_Join Synthetic Instances are formed before 
the test phase 
Run time for classifying the test 
instance is minimal 

The number of instances formed 
are very huge in number leading 
to wastage of space 

k-JOIN Synthetic Instances are formed during 
the test phase as per the test instance.  
Space requirement is minimal 
Instances formed are less than 
Simple_Join 

Test time phase increases as the 
synthetic instances formed during 
run time 

BestFit_Synthetic: Run time formation of instances 
The number of synthetic instances 
formed is the least in this method. 
Hence, the space required is the least 
even when compared with 
oversampling 

Test time phase increases as the 
synthetic instances formed during 
run time but comparatively less 
time compared to k-JOIN  

6. Conclusions  

Three techniques for producing synthetic samples for imbalanced data are proposed 

and implemented in this paper. The proposed oversampling algorithms work towards 

forming an equal distribution of minority and majority data. This is implemented by 

the production of artificial samples for minority class. All three methods are based 

on splitting the minority instances into two or more blocks. The blocks are formed by 

studying the problem domain or by feature set partition method. The features 

presented in each block are highly correlated to each other whereas inter block 

correlations between features are minimal.  

Performances of k-NN indicates comparison with original samples and synthetic 

samples generated by oversampling, Simple_Join, k-JOIN and BestFit_Synthetic. All 

the four methods outperformed the standard nearest neighbor algorithm proven by 

using the standard measures of Geometric mean, precision, F-Measure, AUC and 

Sensitivity. The BestFit_Synthetic produces visibly competitive results when 

compared k-JOIN, Simple_Join and standard Nearest Neighbor algorithm. The 

accuracy has been improved for both minority and majority class, when compared to 

nearest neighbor algorithm. This method is also applicable to all data having more 

than one minority class by generating samples for all minority classes.  
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