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Abstract: Big Data became a buzz word nowadays due to the evolution of huge
volumes of data beyond peta bytes. This article focuses on matrix multiplication
with big sparse data. The proposed FASTsparseMUL algorithm outperforms the
state-of-the-art big matrix multiplication approaches in sparse data scenario.
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1. Introduction

Big Data analytics and its applications attracted researchers leading to many
inventions. While analysing the data, a small amount of data may be required for
drawing conclusions, taking decisions or achieving the solution. As sparse data
consists of large number of missing values or null values which are not useful in
data analysis, the key is to store only the non-null values of it. When the sparse data
becomes voluminous, so that we cannot apply any of the traditional database
techniques to reach the objective, then it is known as big sparse data. An efficient
sparse matrix representation and it’s usage to solve the big matrix multiplication
problem in sparse data scenario is our main theme. Operation with the pair of big
sparse matrices, used as input in sparse matrices multiplication, involves the
problems of data representation, storage, retrieval and processing. Researchers had
given many solutions to solve them. The data structures for the compact
representation of sparse matrices were invented by Di Felice, Agnifili and
Clementini [1]. Compact storage options for sparse columns were proposed by
Abadi [2]. The suitable sparse matrices representation techniques for GPU
architectures were proposed by Neelima and Prakash [3]. The main
advantages of the above three compact representation techniques are saving data
storage space, and reducing data retrieval time. A fast sparse matrices multiplication
technique was proposed by Yuster and Zwick [4]. This technique partitions
the matrices to be multiplied into a dense part and a sparse part. It uses a fast
algebraic algorithm to multiply the dense parts, and the naive algorithm to multiply
the sparse parts. It focussed on minimising the number of arithmetic operations
involved in sparse matrices multiplication. But it is having only theoretical value.
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Many Big Data processing techniques were brought into limelight by Dean and
Ghemawat [5] and White [6] which can also be used in big sparse data
applications. Parallelisation and indexing techniques for sparse matrices
multiplication were implemented by Buluc and Gilbert [7]. The
communication overhead problem of sparse matrices multiplication was solved by
Ballard et al. [8]. The parallelisation technique for sparse tensor matrix
multiplication was proposed by Smith et al. [9]. The above approaches [7-9] are
not suitable for Big Data applications. Proper care should be taken by the
programmer regarding the data distribution, replication, load balancing,
communication overhead etc. Several mapreduce based techniques applicable in
many big sparse data scenarios were innovated [10-15]. A Big Data solution for
matrix factorization was proposed by Sun, Li and Rishe [10]. It involves more
computation cost. Though the HAMA based iterative approaches [11-12] exhibit
good scalability over large data sets, they take multiple rounds for matrix
multiplication. An efficient solution for matrix chain multiplication was proposed
by Myung and Lee [13], giving more importance to inter-operation parallelism
than intra-operation parallelism during matrix multiplication. Here, matrix is
represented as a relation. But this representation has redundancy problem. More
memory space is needed to store each input sparse matrix which increases the data
retrieval time. This results in more time for multiplication. The Vector Linear
Combination scheme was proposed by Zheng et al. [14]. It splits matrix
multiplication in two steps, namely scalar multiplication and linear combination of
weighted vectors. It gives the result in a single mapreduce job. As any special input
format or layout for sparse matrices is not taken prior to multiplication process, it
leads to a little bit increase in multiplication time. Though multi-round matrix
multiplication [15] is suitable for long running mapreduce computations in cloud
systems, the management of input/output pairs in each round is a complex issue.
The subsequent rounds will spend much time to read temporary files generated by
the previous round. This results in extra overhead.

Some serious attempts were made (ScaLAPACK [16] and DAGUE [17]) to
make matrix computation easy and simple. But they failed to solve scalability issue.
ScaLAPACK is difficult to program and incurs severe synchronization overhead.
DAGUE does not implement any failure handling mechanism and its performance is
limited due to tile level parallelism. With the pioneer work of Qian et al. [18],
MadLINQ was emerged as a unified programming model for both matrix algorithm
and application developers. It is efficient in dense matrices’ computations. But it is
difficult to handle sparse matrices using MadLINQ. These flaws in the above
approaches motivated us to improve the matrix multiplication approach in the big
sparse data perspective. As mapreduce has immense impact in real time Big Data
applications, we selected mapreduce and improved the algorithm for big sparse data
processing. We used compact sparse representations to save the memory space
needed to store large sparse matrices. The results show that the proposed approach
gives significant reduction in execution time and improvement in scalability. It
overcomes the drawbacks of state-of-the-art approaches in operating with big sparse
matrices.
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2. Problem statement

The big sparse matrices multiplication involves a pair of sparse matrices to be
multiplied. Let us assume the first input sparse matrix Am«n and the second input
sparse matrix Bnx, i.e., matrix A consists of m number of rows and n number of
columns, whereas matrix B consists of n number of rows and k number of columns.
If we take the raw sparse matrix data, a larger amount of multiplication time is
wasted in retrieving and processing null values. So, an efficient combined sparse
data representation of the pair of sparse matrices, and its implementation in the
matrix multiplication from the point of view of Big Data are the major problems.

3. Problem solving and innovative content

The following two sparse row representations can be used in representing a sparse
matrix as shown in Figs 1 and 2.

Raw data:
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Fig. 1. Positions represented using a list (Compact sparse row representation #1)
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Fig. 2. Positions represented using a bit string (Compact sparse row representation#2)

Though these compact sparse data representations we solve the storage and
retrieval problems to the maximum extent; the sparse matrices multiplication
problem is yet to be solved in the Big Data scenario.
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Any Big Data solution has to satisfy the following three requirements.

o All the data should be distributable.

e The global pattern (Final output) should be obtained from all the local
patterns (Local outputs).

e The problem should be mapreducible.

Mapreduce is a programming strategy (Fig. 3) well suited to solve Big Data
problems where less execution time and more scalability are essential. The big input
data set is first partitioned and sent to fixed number of map functions as input and
processed in parallel. The intermediate outputs (Local outputs) of map functions are
collected as one unit and sent to each reducer function as input. The total job
consists of split, sort, and merge operation sequence. Finally, the outputs from all
reducer functions are collected as one final output file. FAST sparse MUL uses this
strategy to solve the big sparse matrices multiplication problem.

input

HDFS
___________ sort output
{osplitd f-p = ‘ HDFS......H

HDFS
repllcailon

b' partD

i
'_i'fﬁl.}‘"""“
g replication

Fig. 3. The implementation of Mapreduce programming strategy

The problem is not mapreducible unless the compact sparse data
representations of the two matrices involved in multiplication are converted into a
mapreducible format. The sample mapreducible format of a sparse matrix row is
shown below in Fig. 4.

Row#1 of sparse matrix M:

[Null [ 7 [ Null | Null | 4 | Null | Null | Null [ 1 | Null | Null [ Null [ 11 [ 2 | Null | Null

M_ 2. _9_13 14 TALIL2 =~ line#l
- AY ) T Ay :
A \
g | ‘\\ \
74 \
N y
Matrix name  Row# Non-null positions Corresponding non-null values

Note: All rows of the matrix M can be represented in the same way.

Fig. 4. The mapreducible format of a row of the sparse matrix M shown as a line in the input file
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To simplify the problem further, instead of taking two input files for two
sparse matrices which are to be multiplied, only a single input file is created by
concatenating the mapreducible formats of respective matrices. This is implemented
in the sub-algorithm called Combined_Sparse_Compact( ). The steps in the main
Big Data algorithm FASTsparseMUL( ) are as shown below.

Pseudo code for the FASTsparseMUL approach

File FASTsparseMUL (File D) // Algorithm FASTsparseMUL

Input: The original sparse matrices A and B;

Output: The target data file F;

1: D=Combined_Sparse_Compact(Matrix A, Matrix B); /* Converts matrix A and matrix B into
mapreducible compact format */

2: F= FAST_MR_sparseMUL(D); // Initiates mapreduce job;

File Combined_Sparse_Compact (Matrix A, Matrix B) // Algorithm Combined_Sparse_Compact
Input: The original matrices A and B;

File A consists of the original sparse matrix A of size m*n.

File B consists of the original sparse matrix B of size n*k.

Output: The target data file D; /* File D consists of the mapreducible compact form of both the
original sparse matrices A and B.*/

:for i=0...mdo

2: strl=""; /[l create two empty strings.
3: str2="7;

4: strl+="A, 1"
5: forj=0...ndo
6.

7

8

.. =

if A[i] [j] = Null then // skips on reading null values of matrix A
continue;
o else
9: strl+="7";
10:  str2+=A[i] [J];
11: endif
12: end for
13: line=str1+"\t"+str2; /* Conversion of each row of matrix A in the mapreducible compact
form as shown in Fig. 4.*/
14: Write line to file f1;
15: end for
16: for i=0..ndo
17: strl=""; // create two empty strings.
18: str2="";
19: strl+="B, i”;
20: forj=0..kdo
21: if B[i][j] = Null then // skips on reading null values of matrix B
22: continue;
23:  else
24: str1+="j";
25:  str2+=BJ[i] [j];
26:  endif
27: end for
30: line=str1+"\t”+str2; /* Conversion of each row of matrix B in the mapreducible compact
form as shown in Fig. 4.*/
31: Write line to file f2;
32: end for
33: Concatenate f1 and f2 to get file D. // Collective compact representation of both matrices A and B
in a single file.
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File FAST_MAP_sparseMUL (File D) // Map task;

Input: A source data file D;

Output: The intermediate file DparT ;

MZ1: for each line in D do

M2: str = line.split (“\t);

M3: strl=str [0].split (<,”);

M4: str2=str [1].split (,”);

M5: if strl [0] = ‘A’ then

M6: forj=0...kdo

M7:  forr=0... (str2.length) do

M8: Key = strl [1] +”,7+j; // Representing matrix A in the (Key, Value) format.
MO: Value = A+”,”+strl[r+2] +7,7+str2[r];

M10:  context.write (Key, Value); // Writing line to Deart
M11: end for

M12: end for

M13: end if

M14: if strl [0] = ‘B’ then

M15: fori=0...mdo

M16: fors=0... (str2.length) do

MI17:  Key = i+", +strl[s+2]; // Representing matrix B in the (Key, Value) format.
M18: Value = B+”,"+strl1[1]+”,”+str2[s];

M19:  context.write (Key, Value); // Writing line to Deart
M20:  end for

M21: end for

M22: end if

M23: end for

File FAST_RED_sparseMUL (File Dunion) // Reduce task ;
Input: Dunion = Collection of all Dearr files.
HashMap<Integer, Float> hashA = new HashMap<Integer, Float> ();
HashMap<Integer, Float> hashB = new HashMap<Integer, Float> ();
Float result = 0.0;
Float a_ij, b_jk;
Output: RDearT = The output of a reduce task;
R1: for each line in Dunion do
// grouped by Key;
R2:  strl= Value.toString ( ).split(*,”);
/I Implementing Hash Maps to store intermediate (Key, Value) pairs.
R3:  if strl [0].equals (“A”) then
R4: hashA.put (Integer.parselnt (str1[1]), Float.parseFloat (str1[2]));

R5:  else

R6: hashB.put (Integer.parselnt (strl [1]), Float.parseFloat (strl [2]));
R7: endif

R8: end for

[* Getting the intermediate (Key, Value) pairs from corresponding HashMaps and using them to obtain
the product matrix. */

R9: for j=0...n do

R10: a_ij = hashA.containsKey (j)?hashA.get (j) : 0.0f;

R11: b_jk=hashB.containsKey (j)? hashB.get (j): 0.0f;

R12: result+=a_ij *b_jk;

R13: end for

[/ writing product matrix into the output file RDparT.

R14: if result! = 0.0 then

R15: context.write (null, new Text (Key.toString () +\t”+ Float.toString (result)));
R16: end if
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The Cloudera Quick Start VM 5.5.0 virtual machine environment with pseudo
-distributed mode Hadoop 2.6.0, and other eco system tools like HBase, Pig, Hive
etc., is used for experiments. The results in the following section prove that the
proposed approach shows better execution time and scalability compared to the
sparse matrices multiplication approaches using HAMA_ Hadoop, HAMA_HPMR
[11, 12] and VLCA [14].

4. Results and comparison

Table 1. Analytical comparison of FASTsparseMUL with various matrix multiplication approaches
in the big sparse data scenario
Approach/Algo
rithm

Advantages Limitations

o Difficult to program
High expressiveness e Problem size bounded by total memory size
e Synchronization overhead

ScaLAPACK
(HPC Solution)

o Programmer must annotate data dependencies

DAGUE explicitly
(Tiles & DAG) High expressiveness o Problem size bounded by total memory size
o Performance bound by parallelism at tile level
o No failure handling
HAMA based
iterative . . . . S
approach No constraint on problem size o Takes multiple rounds for matrix multiplication
(MapReduce)
o Performance bounded by tile level parallelism,
MadLINQ o High expressiveness improved with block-level pipelining
o No constraint on problem size o Handling sparse matrices is very difficult and
creates severe load imbalance
o No pre-processing to remove null values in the
input sparse matrices
VLCA o No constraint on problem size o Nouse of any special format for input sparse
(MapReduce) | * Reduction in execution time matrices
o Takes single mapreduce job o No focus on null values in second input matrix

o Unnecessary computation overhead which
includes null values of second input matrix

o No constraint on problem size
e Maximum reduction in
FASTsparseM | execution time

UL e Takes single mapreduce job
(MapReduce) | o Shows maximum scalability
o Makes best use of a special
format for input sparse matrices

e Pre-processing overhead

e Mainly intended for sparse matrices multiplication
o Application of the algorithm to dense matrices is
yet to be studied

Table 1 shows comparative analysis of FASTsparseMUL with state-of-the-art
matrix computation approaches in the big sparse data scenario. It compares with
non-mapreduce based approaches as well as mapreduce based approaches. The non-
mapreduce based approaches like ScaLAPACK and DAGUE do not solve
scalability issue of matrix computation. Though MadLINQ shows a little bit
improvement in scalability, it has difficulties in handling sparse matrices. In
particular, MadLINQ creates severe load imbalance problem while processing big
sparse matrices. Our main focus is on improving scalability and reducing execution
time of big sparse matrices multiplication. For the moment, we are skipping the
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discussion of the above three approaches as they show deviation from the focused
objectives. HAMA uses both iterative and block based approaches for matrix
multiplication. As our focus is on sparse data case only and iterative approach of
HAMA is better than its block based approach in sparse data applications, we
compared the proposed algorithm with iterative HAMA approaches only. HAMA
based iterative approaches take less execution time leading to further improvement
in scalability. But they take multiple rounds to give the result. The iterative
approach of HAMA requires N rounds for multiplying a matrix of size NxN [15].
Compared to HAMA based iterative approaches, FASTsparseMUL takes single
round only. VLCA approach shows improvement in scalability and reduction in
multiplication time. As it does not use any special format for input sparse matrices,
there exists some multiplication time overhead. No pre-processing is performed in
VLCA to remove null values and there is no focus on null values in second input
matrix. In addition, it creates m number of copies of each null value present in each
row vector of second input matrix. As a result, a significant number of additional
multiplication operations are performed without considering the presence of null
values in second input matrix. This incurs computation overhead and increase in
multiplication time of sparse matrices. The proposed FASTsparseMUL makes best
use of a special input format or layout for sparse matrices. It removes null values
while pre-processing and avoids multiplication operations with null values to the
maximum extent. It results in more reduction of execution time and improvement of
scalability compared to HAMA based iterative approaches as well as VLCA
approach.

Table 2. Execution times of various matrix multiplication approaches for sparse data

Matrix Execution time (sec)
dimension HAMA_ Hadoop | HAMA_HPMR VLCA FASTsparseMUL
32 16 16 12 41
64 85 71 48 37
128 102 101 69 35
192 131 115 79 42
256 181 172 103 47
320 228 202 125 52
250
Tzoo //- S
2 1s0
[ ——HAMA_Hadoop
2 /-/
T 100 e / HAMA_HPMR
4‘% J;/ VLCA
E 50 . ¢ > = Hs———=—FASTsparseMUL
0 : : : : :
32 64 128 192 256 320
Matrix dimension ——=>

Fig. 5. Execution time comparison of FASTsparseMUL with sparse matrices multiplication
approaches of HAMA_Hadoop, HAMA_HPMR and VLCA
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FASTsparseMUL is executed on single node Hadoop-pseudo distributed
cluster environment with 1% sparse matrices having dimensions varying from 32 up
to 320. Similarly sparse matrices multiplications with HAMA_Hadoop,
HAMA_HPMR and VLCA are implemented in the same environment. On average,
FASTsparseMUL shows approximately 2.8 times, 2.6 times and 1.7 times reduction
in time complexity compared to sparse matrices multiplication approaches of
HAMA_Hadoop, HAMA_HPMR and VLCA respectively.

The execution times of different sparse matrices multiplication approaches are
tabulated in Table 2 and compared in Fig. 5. Though FASTsparseMUL’s initial
execution time for matrix dimension 32 is more, it takes less execution time for the
next remaining matrix dimensions. The sample input file and overviews of the
FASTsparseMUL’s mapreduce job execution are as shown below from Fig. 6 to
Fig. 11b.

| FAaASTsparseMUL.jawva Sgl
P Swe, LL, LLL, =1L e, = e, e
L,EO92 . F1L,181 . 236
LBle . a2 29433, 306
L S5=Z,167,259
LO5, 198, 299
L5817 .=11
»112 ., 214,315
L EO,LEAa, 256
LES . 116, 320
L3149, 231
19,119, 1D
L 35,235, 31S
T S = |
P 3%, 239
11T, 2, L
L2123, 1L
221 230,312
22,129, 295
A, 1ZTaA, 23
122, =12, 3149
12,112,312
112, 189, 293
LA1AAS 254,31 S
L9298, 199,295 9.
A8 ,119,F20 2.
Fl99, 239, 31O

L1222 223,311

S se=oa e

Ww
HH
NKE

P NHEHHHRH
NOOQSOWRW

ONNOUAUNHWWWWUWWW
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NEUNHO + »
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00 000000000
H OHHWHURUAW

00 000000000
WHOULHNEHNNENHENHHUWWOUO L LKL

ol oLl Lol B S 3 DR S 3 3
U

Fig. 6. Snapshot of part of the sample input file for the matrix dimension 320

Browsing HDFS - Mozilla Firefox

aboutsessionrestore x| Cloudera Live: Welc... x | Browsing HDFS x | SecondaryNamenod... x | DataNode Information % IAHApph[annns x ‘hrtpwqm :B042jnode aj &
€ @ quickstart cloudera:50070/explorer iml outpus v O search tE ¢ &0 =
CCloudera iHue [EHadoopv [HBasev Elimpalav [Sparkv Solr []Oozie [Cloudera Manager [Getting Started

Hadoop Overview Dafanodes  Snapshot  StarfupProgress  Utilides -

Browse Directory

outputA.ot Go!

Permission Owner Group Size Replication Block Size Name
TWH-T— cloudera supergroup 0B 1 128 M8

W~ cloudera supergroup 3197KB 1 128 M8

Hadoop, 2014.

Fig. 7. Snapshot of the output file contents for the matrix dimension 320
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Completed  Running Used Totl Reserved  Used  Total  Reserved  MNodes Nodes Nodes Nodes Nodes
0 0B 868 0B 0 8 0 1 0 0 0 0
Apps Containers Containers Containers Memory Memory Memory VCores VCores VCores
q Completed Running Pending Reserved Used Pending Reserved Used Pending Reserved
1 0 0 08 08 0B 0 0 0
Search:
r } Running  Allocated Allocated -
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(b)

Fig. 8. Overview of the mapreduce application of FASTsparseMUL for matrix dimension 320,
displaying execution time of FASTsparseMUL for the matrix dimension 320. (Finish Time — Start

Time = 19:41:56 — 19:41:04 = 52 sec (shown in Table 2))

» Application

- Job

Qverview
Counters
Configuration
Map tasks
Reduce tasks

» Toals

Logged in as: diwho

Show 20 -|entries Search:
Task Successful Attempt
Name . State *  StartTime *  FinishTime < E\apsedh StartTime ©  Finish Time EIHDSEdA
Time ¢ Time
task 1465694456066 0001 m_000000 SUCCEEDED  Satjun 11 Sat Jun 11 12s5ec Sat Jun 11 Sat Jun 11 12sec
19:41:23-0700  19:41:36 -0700 19:41:23-0700  19:41:36 -0700
2016 2016 2016 2016

Showing 1 to 1 of 1 entries

Fig. 9. Overview of map tasks for the FASTsparseMUL’s mapreduce job
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Fig. 10. Overview of reduce tasks for the FASTsparseMUL’s mapreduce job
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Fig. 11. Overview of the history of FASTsparseMUL’s mapreduce job
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Scale up is calculated by using the following formula,

Q Scale up(dimension) = log(T(dimension)/T(32)),
where T denotes the execution time.

Scale up is inversely proportional to the scalability. The scalability
improvement of FASTsparseMUL compared to sparse matrices multiplication using
HAMA_Hadoop, HAMA_HPMR and VLCA approach is depicted in Fig. 12 and
tabulated in Table 3.

Table 3. Scale up values of various sparse matrices multiplication approaches

. Scale up
Matrix FASTsparse
dimension | HAMA_Hadoop HAMA_HPMR VLCA MUFI)_
32 0.0 0.0 0.0 0.0
64 0.73 0.65 0.6 —0.05
128 0.80 0.80 0.76 -0.07
192 0.91 0.86 0.82 0.01
256 1.05 1.03 0.93 0.06
320 1.15 1.10 1.02 0.1
1.4
1.2
' _/R/J‘/"
/l\ 0.6 ——HAMA_Hadoop
g_ 04 //'\ HAMA_HPMR
% ) // VLCA
o 0.2
v 4= FASTsparseMUL
0 B — A== .
32 64 128 192 256 320
-0.2
Matrix dimension ——

Fig. 12. Scale up comparison of FASTsparseMUL with sparse matrices multiplication approaches
of HAMA_Hadoop, HAMA_HPMR and VLCA

5. Discussion

The proposed FASTsparseMUL algorithm is compared with sparse matrices
multiplication approaches of HAMA_Hadoop, HAMA_HPMR and VLCA on a
single node hadoop pseudo distributed environment. Though the algorithm initially
takes more time for execution, it takes less time for other matrix dimensions
afterwards, as shown in Fig. 5 and Table 2. There is improvement in the scalability
also. Scale up values are low for FASTsparseMUL as shown in Fig. 12 and Table 3,
which means that the scalability is high comparing to the sparse matrices
multiplication approaches of HAMA_Hadoop, HAMA_HPMR and VLCA, as scale
up is inversely proportional to scalability. Possible decrement in execution time and
increment in scalability prove that the algorithm is more suitable for Big Data
applications. The algorithm may be combined with HAMA_ Hadoop or
HAMA_HPMR or VLCA in the fully distributed cluster environment to get the
results still better in the big sparse data perspective.
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6. Conclusion

An efficient Big Data algorithm for the multiplication of a pair of sparse matrices is
proposed. In the sparse data case, the experiments prove that the algorithm
outperforms the state-of-the-art big matrices multiplication approaches. It is more
suitable for the Big Data applications showing better results in terms of scalability
and execution time compared to the sparse matrices multiplication approaches of
HAMA_Hadoop, HAMA_HPMR and VLCA. Application of the algorithm to dense
matrices is yet to be studied. There are some future research directions possible in
this problem domain. FASTsparseMUL may be combined and implemented with
HAMA-Hadoop or HAMA-HPMR or VLCA to get significant improvement in the
performance of sparse matrices multiplication. Moreover, FASTsparseMUL may be
further developed to perform sparse matrices chain multiplication. The
implementations of FASTsparseMUL with Spark and HBase are other possible
research directions. The Big Data algorithms with compact representations of
matrices are more desirable to improve the performance of sparse matrices data
processing. The Big Data research needs encouragement in this problem domain.
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