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Abstract: Graph mining is a major area of interest within the field of data mining in 

recent years. A key aspect of graph mining is frequent subgraph mining. Central to 

the entire discipline of frequent subgraph mining is the concept of subgraph 

isomorphism. One major issue in early subgraph isomorphism research concerns 

computational complexity. Normally, the subgraph isomorphism problem is  

NP-complete. Previous studies of frequent subgraph mining have not solved  

NP-complete problem in the subgraph isomorphism. In this paper, we propose a 

new algorithm which can deal with this problem. The proposed algorithm can solve 

the subgraph isomorphism in polynomial time in some settings. Moreover, the new 

algorithm is proved theoretically more effective than previous studies in closed 

frequent subgraph mining.  

Keywords: Frequent patterns, closed frequent subgraph, frequent subgraphs, 

subgraph mining, subgraph isomorphism. 

1. Introduction 

Data mining is a process for extracting knowledge from data. The data can be 

represented in many formats of structured data such as tables [1, 13], graphs [11], 

etc. Graph mining is recently a major area of interest within the field of data 

mining. A key aspect of graph mining is frequent subgraph mining. Frequent 

patterns are itemsets, subsequences, or substructures that appear in a data set with 

frequency no less than a user-specified threshold [4]. A substructure can refer to 

different structural forms, such as subgraphs, subtrees, or sublattices, which may be 

combined with itemsets or subsequences. If a substructure occurs frequently in a 

graph database, it is called a frequent structural pattern. Finding frequent patterns 

plays an essential role in mining associations, correlations, and many other 

interesting relationships among data. Moreover, it helps in data indexing, 

classification, clustering, and other data mining tasks as well. Thus, frequent pattern 
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mining has become an important data mining task and a focused theme in data 

mining research.  

Generally, Frequent Subgraph Mining (FSM) aims to identify all subgraph 

patterns whose occurrences within a graph data set are above a user defined 

threshold. These subgraph patterns are called frequent subgraphs. Theoretically, 

frequent subgraph mining can be formulated as a search in a search space, modelled 

by a lattice, consisting of all possible subgraph patterns. Because the number of 

possible frequent subgraphs increases exponentially with the size of the graph, 

traversing the search space completely is computationally intractable, because of a 

“combinatorial explosion”. Thus, a user specified support threshold is often used to 

prune this combinatorial search space, i.e., to separate infrequent subgraphs from 

the frequent ones. Frequent subgraph mining problem has received considerable 

critical attention [6, 8, 9, 17, 18]. It is widely accepted that FSM techniques can be 

divided into two categories: (i) the “A priori-based” approach (also called the BFS 

strategy based approach) [8] and (ii) the pattern growth approach [17]. Both 

approaches have advantages and disadvantages; however, they include generating 

candidate and isomorphism subgraph testing to decide which subgraph is frequent. 

In theoretical computer science, the subgraph isomorphism problem is a 

computational task in which two graphs G and H are given as input, and it has to be 

determined whether G contains a subgraph that is isomorphic to H. Subgraph 

isomorphism is a generalization of both the maximum clique problem and the 

problem of testing whether a graph contains a Hamiltonian cycle, and is therefore 

NP-complete [3] However certain other cases of subgraph isomorphism may be 

solved in polynomial time [2, 5] for planar graphs.  

A considerable amount of literature has been published on subgraph 

isomorphism in frequent subgraph mining problem [2, 5, 6, 10, 15]. These studies 

help to reduce time complexity of subgraph isomorphism. The use of adjacency 

matrices, although straightforward, does not lend itself to isomorphism detection, 

because the vertexes (and edges) can be enumerated in many different ways [16]. 

With respect to isomorphism testing, it is therefore desirable to adopt a consistent 

labelling strategy that ensures that any two identical graphs are labelled in the same 

way regardless of the order in which vertexes and edges are presented (i.e., a 

canonical labelling strategy). A canonical labelling strategy defines a unique code 

for a given graph [11]. Canonical labelling facilitates isomorphism checking 

because it ensures that if a pair of graphs is isomorphic, then their canonical 

labellings will be identical [9]. One simple way of generating a canonical labelling 

is to flatten the associated adjacency matrix by concatenating rows or columns to 

produce a code comprising a list of integers with a lexicographical ordering 

imposed. To further reduce the computation resulting from the permutations of the 

matrix, canonical labellings are usually compressed, using what is known as a 

vertex invariant scheme [11]; this allows the content of an adjacency matrix to be 

partitioned according to the vertex labels.  

Alternative methods to reducing the search space include concentrating on the 

identification of a subset of the total set of frequent subgraphs, for example, closed 

frequent subgraph mining [18] or maximal frequent subgraph mining [7, 14]. 
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Although these methods address the issue to some extent, the combinatorial 

explosion issue is still unresolved; significantly large numbers of closed frequent 

subgraphs and maximal frequent subgraphs are still generated.  

In this paper, we propose new algorithm for closed frequent subgraph mining 

based on canonical labelling strategy, the Random Access Machine (RAM) model 

or von Neumann model [12] and the “A priori-based” approach. The RAM makes 

use of a random access memory, thus overcoming the limitation of Turing machines 

which use a sequential access tape as a memory component. The RAM that can 

access any field of their memory in one step has to know which cell to access, and 

each cell must be assigned an address. The subgraph isomorphism problem with 

canonical labelling strategy is defined by searching an element in an array 

according to code string and can utilize binary search on RAM. In the proposed 

algorithm, the subgraph isomorphism problem solve in polynomial time 

complexity. As far we know the subgraph isomorphism problem has not been 

considered in the random access machine model. This paper attempts to show that 

the new algorithm is faster than some algorithms in [6, 8, 9, 17, 18]. In addition, 

this paper also shows the correctness and gives the time complexity of the new 

algorithm. 

2. Preliminaries 

Definition 2.1. A labelled graph G is five element tuple ( , , , , ),
V E

G V E l    

where V is a set of vertices, E V V   is a set of edges. 
V

  and 
E

  are the set 

of vertex labels and edge labels respectively. The labelling function l defines the 

mappings 
V

V   and .
E

E   

Definition 2.2. Without loss of generality, we assume that there is a total order 

≥ on each label set 
V

  and .
E

  A graph ( , , , , )
V E

G V E l    is a subgraph of 

other graph ( , , , , )
V E

G V E l
 

       if  

(1) ,

(2) , ( ( ) ( )),

(3) ,

(4) ( , ) , ( ( , ) ( , )),

V V

u V l u l u

E E

u v E l u v l u v



  



  

 

G' is also referred to as a supergraph of G. 

Definition 2.3. Two graphs ( , , , , ),
V E

G V E l    ( , , , , )
V E

G V E l
 

       are 

isomorphic if there exists a bijection :f V V   such that: 



 6 

(1) , ( ( ) ( ( )));

(2) , , (( , ) ) ( ( ), ( )) ;

(3) ( , ) , ( ( , ) ( ( ), ( )).

u V l u l f u

u v V u v E f u f v E

u v E l u v l f u f v

  

    

  

 

Definition 2.4. A labelled graph G is subgraph isomorphism to a labelled 

graph G', denoted by G ⊆ G', if there exists a subgraph G" of G' such that G is 

isomorphic to G". 

Definition 2.5. Given a set of graphs GD (referred as a Graph Database) and a 

threshold σ (0 ≤ σ ≤ 1), the support of a graph G, denoted by supG is defined as the 

fraction of graphs in GD to which G is subgraph isomorphic of G':  

{ GD }
sup .

GD
G

G G G  


∣

∣ ∣
 

G is frequent if supG ≥ σ. 

Definition 2.6. The frequent subgraph mining problem is given a threshold σ 

and a graph database GD, finding all frequent subgraphs in GD. 

Definition 2.7. A set consisting of all Frequent Subgraphs of graph g denoted 

as FS(g).  

Definition 2.8. If g is a subgraph of g', then g' is a supergraph of g, denoted 

by g ⊆ g' (proper supergraph, if g ⊂ g'). Let FS be the set of  

frequent subgraphs, the set of closed frequent subgraphs, CS, is defined 

CS { | FS, FS: and sup sup }.g gg g g g g 
        

Definition 2.9. A k-subgraph of graph g is a subgraph g' ⊆ g such that |Vg'|=k. 

Definition 2.10. Given an n n  adjacency matrix M of a graph G with n 

vertices, we define the code of M, denoted by code(M), as the sequence formed by 

concatenating lower triangular entries of M (including entries on the diagonal) in 

the order: 1,1 2,1 2,2 ,1 ,2 , 1 ,... ...n n n n n nm m m m m m m  where mi,j is the entry at the i-th row and 

j-th column in M (0 ).j i n    We assume that the rows in M are numbered 1 

through n from top to bottom and the columns are numbered 1 through n from left 

to right. 

3. The PSI-CFSM algorithm 

In this paper, we propose a method about optimization computation for subgraph 

isomorphism in frequent subgraph mining. The proposed method is proved 

theoretically faster than gSpan [17] and FFSM [6]. A graph will be represented 

uniquely with a code by using canonical labelling, lexicographic order similar to 

MDFS-C [17, 18] and CAM [6, 8, 9]. The unique representation of a graph with a 

code of CAM or MDFS-C will avoid duplication generating of subgraphs and can 

help to construct ordered array that contain subgraphs in code of MDFS-C of CAM. 

Furthermore, the test subgraph isomorphism described as follow can utilize binary 

search in random access machine model. We consider subgraph isomorphism 

problem that is to match a pair of two subgraph. This problem is equivalence to 

comparing a pair of strings that are codes of MDFS-C of CAM representation of the 
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two subgraphs. The time complexity of binary search is O(log n) where n is the size 

of the input ordered array. The algorithm is called Polynomial Subgraph 

Isomorphism Closed Frequent Subgraph Mining (PSI-CFSM). It uses “A priori-

based” approach and random access machine model. According to “A priori-based” 

approach, the frequent subgraph mining process starts from level one that generates 

a set 
2

iC  of 2-subgraph (subgraphs have two nodes or only one edge) candidates of 

each graph Gi in graph database GD. It then tests 2-subgraph isomorphism and 

counts support each of the set 
2

iC  to find a set of frequent 2-subgraphs of graph Gi, 

a set of frequent 2-subgraphs of GD, a set of closed frequent 2-subgraph of Gi and a 

set of closed frequent 2-subgraph of GD which are denoted as 
2FSi , 

2FS , 
2CSi  and 

2CS , respectively. The next process is a loop with k ≥ 3 that generates a set i

kC  of 

candidate k-subgraphs (subgraphs having k nodes can contain more than k–1 edges 

and less than (k(k–1)/2) edges) of Gi from the set of frequent 2-subgraph 
2FSi  

combined with the set of frequent (k–1)-subgraphs 
1FSk

i


. It then tests k-subgraph 

isomorphism and counts support of k-subgraph of i

kC  to find a set of frequent  

k-subgraphs of Gi, a set of frequent k-subgraphs of GD, a set of closed frequent  

k-subgraphs of Gi and a set of closed frequent k-subgraphs of GD denoted as FSk

i , 

FSk
, CSk

i  and CSk
, respectively. In this process at k, every k-subgraph of CSk

i  and 

CSk
 is constructed with a linked list containing (k–1)-subgraph of 

1FSk

i


 and 

1FSk
, respectively. The algorithm checks each k-subgraph of CSk

i  and CSk
 such 

that the k-subgraph contains (k–1)-subgraph of 
1CSk

i


 and 

1CSk
 in their linked list 

and removes identified (k–1)-subgraphs in 
1CSk

i


 and 

1CSk
, respectively. The loop 

process stops when no candidate k-subgraph is generated. The set of union sets CS1, 

CS2, ..., CSk  is the set of closed frequent subgraphs. We can see that k-subgraph 

isomorphism testing process is to find a code of unique representation of  

k-subgraph in an ordered array in which each element containing a code of unique 

representation of k-subgraph in the k-subgraphs set. Subgraph isomorphism testing 

process uses binary search in random access machine to reduce time complexity to 

polynomial. Hence, the PSI-CFSM algorithm is faster than gSpan, FFSM and FSG 

algorithms in running time. 

3.1. Canonical labelling strategy 

 
Fig. 1. A sample graph database GD 
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Minimum DFS Code (M-DFSC): There are a number of variants of the Depth 

First Search (DFS) code canonical labelling scheme; but essentially each vertex is 

given a unique identifier generated from a DFS traversal of the graph (DFS 

subscripting). Each constituent edge of the graph in the DFS code is then 

represented by a 5-tuple: (i, j, li, le, lj), where i and j are the vertex identifiers, li and 

lj are the labels for the corresponding vertexes, and le is the label for the edge 

connecting the vertexes. Based on the DFS lexicographic order, the M-DFSC of a 

graph g is defined as the canonical labelling of g [17, 18]. The DFS codes for the 

left-most branch and the right-most branch of the example graph G given in  

Fig. 1. (g1) are {(0, 1, x, a, x), (1, 2, x, a, z), (2, 3, z, d, z)} and {(0, 1, x, a, x),  

(1, 4, x, b, y), (4, 5, y, c, z)}, respectively. 

Canonical Adjacency Matrix (CAM): Given an adjacency matrix M of a graph 

g, an encoding of M can be obtained by the sequence of concatenating lower  

(or upper) triangular entries of M, including entries on the diagonal. Since different 

permutations of the set of vertexes correspond to different adjacency matrices,  

the canonical (CAM) form of g is defined as the maximal (or minimal) encoding. 

The adjacency matrix from which the canonical form is generated defines  

the Canonical Adjacency Matrix or CAM [6, 8, 9]. The encoding for the example 

graph G given in Fig. 1. (g1), represented by the canonical adjacency matrix have 

code(CAM(g1)) = xaxabzabdzbb00yc000cz. 

3.2. Generate subgraph candidates 

gSpan [17] developed an efficient way to reduce the total number of nodes need to 

be considered. In gSpan, the extension operation is only performed to nodes on the 

“rightmost path” of a graph. Given a graph g and one of its depth first search trees 

T, the rightmost path of g with respect to T is the rightmost path of the tree T. gSpan 

chooses only one depth first search tree T which produces the canonical form of g 

for extension. gSpan extents one edge to right most path to receive (k+1)-subgraph 

from k-subgraph (k-subgraph in gSpan means that the subgraph have k edges). 

The FFSM [6] algorithm uses two procedures FFSM_Extension and 

FFSM_Join to generate candidate subgraphs. FFSM_Join combines two  

k-subgraphs to generate (k+1)-subgraphs if the two k-subgraphs sharing a common 

(k–1)-subgraph (k-subgraph in FFSM means that the subgraph have k edges) and 

the FFSM_Join does not generate unique (k+1)-subgraphs from the two  

k-subgraphs. FFSM_Extension improves the efficient gSpan by always choosing a 

single fixed node in a CAM and attaches a newly introduced edge to it together with 

an additional node. 

In the proposed algorithm, PSI-CFSM, we use an enumeration technique that 

is an extension operation to construct a (k+1)-subgraph candidate g from a  

k-subgraph graph of Gi by adding additional edges (the k-subgraph means that the 

subgraph have k nodes). The newly introduced edge might connect two existing 

nodes or connect an existing node with a node introduced together with the edge. A 

simple way to perform the extension operation is to introduce every possible edge 

to every node in a graph g. This method has clearly a polynomial time complexity 

for the set of available vertex- and edge- labels for a graph g, respectively. 
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Procedure 
1 2Combine( , )i i

kF F
 

Input: A set 
1 ( )k

iF FS i  , a set 
2 ( )iF FS i  

Output: a set of candidate k-subgraphs of graph g denote as i

kC  

1.  i

kC   

2.  for each 
1

i

ku F   

3.   ng u  

4.   diagonal( )tg u  

5.   for each 
2

iv F  

6.    diagonal( ) / / ( , )ag v ag x y   

7.    if (( ) ( ))x ag x tg y tg y ag y tg x tg             then 

8.     add new row in u 

9.     set location (| diagonal( ) | 1, col( )) location (2,1)u vu x   

10.    else if (( ) ( ))x ag x tg y tg y ag y tg x tg           then 

11.     location (row( ), col( )) location (2,1)u vy x   

12.   add ng into i

kC  

13.  return i

kC  

Lemma 3.1. The procedure 
1 2Combine( , )i i

kF F
 is correct. 

P r o o f: We prove the correctness of 
1 2Combine( , )i i

kF F
 by induction for all  

k ≥ 3. In basis step at k = 3, 
1 2Combine( , )i i

kF F
 generates a set 3

iC  of candidate  

3-subgraphs of graph GD.ig   Clearly, given u, v two graphs in 
2

iF , 

diagonal( ) { , }, diagonal( ) { , }x y x yu u u v v v  , if diagonal( ) diagonal( )u v  and 

(( ) ( ) ( ) ( ))x x x y y x y yu v u v u v u v        then the combination of u, v will 

generate candidate 3-subgraphs GD.isg g   Inductive step: at k > 3 step, we 

suppose that 
1 2Combine( , )i i

kF F
 is correct and generate 

i

kC . The 
i

kC  after pruning 

supi

k cc C     obtains 
i

kFS . We need prove that 
2Combine( , )i i

kF F  is correct 

and generates 1

i

kC  . At k+1 step, 2Combine( , )i i

kF F  generates 1

i

kC  , let 

1,
i i

k ksc C sp C  , the diagonal(sc) and diagonal(sp) can be found and 

|diagonal(sc)| – |diagonal(sp)| = 1. By removing all edges containing node 

diagonal( ) diagonal( )nx sc sp   to obtain subgraph nc then i

knc F . By 

hypothesis induction nc must be a member of 
i

kC  that is a candidate k-subgraph. 

Otherwise, FS , FSi i i i

k k k knc C nc C   . Hence, at k+1 step, 1

i

kC   is correct using 

2Combine( , )i i

kF F , and after pruning 
1 supi

k rsrs C     we will obtain 
1

i

kFS 
.□ 

Lemma 3.2. The procedure 
1 2Combine( , )i i

kF F
 runs in polynomial time 

complexity. 
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P r o o f: Let m is the number of edges of a subgraph 
1

i

kg F  , 

| diagonal( ) | 1g k  , | diagonal( ) | 1 2m g k    , n is cardinality of 2

iF  (each 

subgraph in 2

iF  contains only one edge), h is cardinality of 1

i

kF  , before adding one 

node to (k – 1)-subgraph g to obtain k-subgraph g' then the number of maximal 

nodes can be add to g is | | | diagonal( ) |
igV g . By CAM representation, the number 

of edges of g maximum is 
( 2) ( 3)

2

k k  
. Assume that each subgraph 1

i

kg F   

can be added maximum number of edges when generating candidate  

k-subgraph 
i

kg C  then the number of edges can be added to g is (k – 1). Thus, the 

procedure 
1 2Combine( , )i i

kF F
 has maximum number of computation step that is 

(| | ( 1)) ( 1)
igh V k k     . In our algorithm, we focus in closed frequent subgraph 

mining, we use the procedure 
1 2Combine(CS , FS )i i

k
 to generate the set of candidate 

k-subgraphs 
i

kC  and the cardinality of 
i

kC  is much less than using 

1 2Combine(FS , FS )i i

k
.□ 

3.3. Test subgraph isomorphism 

In algorithms [6, 8, 9, 17, 18] the subgraph isomorphism testing process runs in a 

sequence way. Therefore, a new candidate subgraph g generated by right most path 

extension (gSpan) [17] or by joining (FFSM) [6] must test subgraph isomorphism 

with every graph GDig g   . The subgraph isomorphism testing process 

compares code of MDFS-C or CAM of one candidate subgraph g with every 

subgraph GDig g    in a set of very large subgraphs of graph GDig  . 

Assume the number of subgraphs of graph GDig   is 2n
 then the process implies 

2n
 comparison step. We can easily see why the process runs slow. Hence, subgraph 

isomorphism testing step of algorithms such as FFSM, gSpan, CloseGraph has the 

time complexity in NP class. 

We improve subgraph isomorphism testing step of the above algorithms by 

using a random access machine model in binary search. In the complexity theory, 

the time complexity of binary search is (log )O n  where n is number of candidate 

subgraphs. Assume the cardinality of candidate subgraphs is 2n
 then number of 

computation steps of subgraph isomorphism by binary search on random access 

machine model is 2log 2n n  and the time complexity is ( )O n . 

Procedure BinarySearch(L, x, first, last) 

Input: Array L[first, last] and value x 

Output: –1 if x L or , 0i i n   if L[i] = x 

Step 1.  if (first > last) return –1 

Step 2.  else  



 11 

Step 3.   
first last

middle
2

 
  

 
 

Step 4.   if (L[middle]=x) return middle 

Step 5.   else if (L[middle]<x) return BinarySearch(L, x, middle+1, last) 

Step 6.   else return BinarySearch(L, x, first, middle – 1) 

Lemma 3.3. The procedure BinarySearch(L, x, first, last) runs in time 

complexity O(logn). 

P r o o f: Let T(n) is the number of computation steps that algorithm 

BinarySearch needs to perform when the size of the input is n. At n=0 we have  

T(0) = c', where c' is constant and |L|=0, the procedure just performs a constant 

number of computation steps. At n > 0, the procedure performs a constant number c 

of computation steps to find the element in the middle of L, compares that element 

with x and defines the range on the left half or on the right half of the array L for 

recursion. Assume that both halves of the array L have the same size, (n–1)/2. 

Hence, the total number of computation steps BinarySearch performs when n > 0 is 

T(n) = c + T((n–1)/2). The recurrence equation as follow: 

(0)T c  

(3.3.1)  
1

( )
2

n
T n c T

 
   

 
 if n > 0, 

0 1

2 2

1
1

1 1 2 2 22

2 2 2 2

n

n n n
T c T c T c T

 
          

           
      

 

, 

0 1 0 1 1

1 2

2 2 ...2 2 2 ...2

2 2

k

k

k

k

n n
T c T



 

        
    

   
. 

The procedure will stop whenever the argument is equal to zero: 

(3.3.2)  
0 1 1

2

2 2 ...2
0

2

k

k

n 



  
 ; 

(3.3.3)  
0 1 1

2

2 2 ...2
( ) ...

2

k

k

n
T n c c c f





   
      

 
. 

The set of Equations (3.3.1) has k+2 equations, the number of c terms in 

(3.3.3) is k+2 and so T(n) = (k+2)c + c'. According to the fact that (3.3.2): 

(3.3.4)  
1

0 1 1 1

0

2 2 ... 2 2 2 1
k

k i k

i

n


 



       . 

Therefore, taking logarithms on the both sides of the last equality (3.3.4) we 

obtain 
22 log ( 1)k n   . Then, 

2( ) clog ( 1)T n n c   .  

Ignoring constant terms, we finally conclude that T(n) = O(logn). □ 

Lemma 3.4. The procedure BinarySearch(L, x, first, last) is correct 

P r o o f: We need to prove that 0n  , BinarySearch(L, x, first, last) returns 

a range in sorted array L with 0 first last | |L    if value x is in sorted array L. 
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Basis step: At n=0 step, sorted array L contains a range from 0 to |L|–1 

BinarySearch(L, x, 0, |L|–1) returns the range [0, | | 1] [0, | | 1]L L    for searching 

x. Clearly, value x is in the range [0, |L| –1] of L, [0] [| | 1]L x L L   . 

Inductive step: Suppose that at n ≥ 0 step and BinarySearch(L,x,firstn,lastn) 

returns the range [first , last ] [0, | | 1]n n L   for searching x, 

[first ] [last ]n nL x L  . 

We need to prove that at n + 1 step BinarySearch(L, x, first(n+1), last(n+1)) must 

returns the range ( 1) ( 1)[first , last ] [0, | | 1]n n L     for searching x, 

( 1) ( 1)[first ] [last ]n nL x L   . 

BinarySearch(L, x, first(n+1), last(n+1)) returns [first(n+1), last(n+1)]: 

(3.4.1)  [first ] [last ]n nL x L   (hypothesis induction) 

In case 1:  

(3.4.2)  
first last

2

n nL x
  

  
  

, 

( 1) ( 1)

first last
[first , last ] 1, last

2

n n
n n n 

  
   

  
. 

By (3.4.1), (3.4.2) 
first last

1 [last ]
2

n n
nL x L

  
    

  
, 

(3.4.3)  ( 1) ( 1)[first ] [last ]n nL x L   . 

In case 2:  

(3.4.4)  
first last

2

n nL x
  

  
  

, 

( 1) ( 1)

first last
[first , last ] first , 1

2

n n
n n n 

  
   

  
. 

By (3.4.1), (3.4.4) 
first last

[first ] 1
2

n n
nL x L

  
    

  
, 

(3.4.5)  ( 1) ( 1)[first ] [last ]n nL x L   . 

From equalities (3.4.3), (3.4.5) we have the lemma proved. □ 

Procedure TestIsomorphism( , )j i

k kg C C  

Input: ,j i

k kg C C  

Output: true of false 

1.  bBinarySearch( code(CAM( )), code(CAM( )), 0, | |i i

k kg C g C ) 

2.  if (b > 0) return true 

3.  else return false 

Lemma 3.5. The procedure TestIsomorphism( , )j i

k kg C C  runs in time 

complexity (log | |)i

kO C . 



 13 

P r o o f : This is evident by Lemma 3.3. 

Lemma 3.6. The procedure TestIsomorphism( , )j i

k kg C C  is correct. 

P r o o f : This is evident by Lemma 3.4. 

3.5. The algorithm 

In PSI-CFSM algorithm, the first step constructs a sorted array, in the order of  

code of Canonical Adjacency Matrix (CAM) of subgraphs with two nodes  

(2-subgraph) or only one edge of graph Gi in graph database GD. This sorted  

array is denoted as 2

iC , and we denote 
2 2{ }iC C . With each element u in  

2

iC , we compare codeCAM(u) with codeCAM(v), 
2 2 2{ }j iv C C C   . If 

code(CAM(u)) = code(CAM(v)) then we increase the count support of u by 1.  

If supu   then we put u into 
2FS , 

2FSi . 
2FS  (

2FSD ) is the set of frequent  

2-subgraphs of graph database GD and 
2FSi  is the set of frequent 2-subgraphs of 

graph Gi in graph database GD. We construct a loop with k ≥ 3 to compute 

, FS , FS , CS , CSi i i

k k k k kC  based on the PSI-CFSM algorithm. 

Algorithm PSI-CFSM(GD,  = min_sup) 

Input: graph database GD,  =min_sup 

Output: 2 3CS , CS , ..., CSk , closed frequent subgraph sets corresponding level 

Step 1.  Building ordered array according to code(CAM) of 
2

iC  

Step 2.  for each 
2

iu C  

Step 3.   TestIsomorphism( 2, ju C ) and find supu   to put u into 

2 2 2 2FS , FS , CS , CSi D i  

Step 4.  while ( i : Combine (
1 2CS , FSi i

k
) is not null) 

Step 5.   Build ordered array according to code(CAM) of i

kC  

Step 6.   for each 
k

iu C  

Step 7.    TestIsomorphism( , k

ju C ) and find supu  to put u into 

FS , FS , , CSCSk k k

i D i

k
 

Step 8.    Test 
1

i

kv CS   if sup supv u  then remove v out 

1 1, CS SC k

i

k 
 

Step 9.   1k k   

Lemma 3.7. The algorithm PSI-CFSM is correct. 

P r o o f: By induction on k ≥ 2, we show that the set FSk computed by the 

algorithm coincides with the set of frequent k-subgraphs. At basic step, the 

induction is initialized (k=2, corresponds to FS2, set of all frequent subgraphs with 

2 vertex or one edge) that is easily tested. Let’s assume that at step k FSk–1 is the set 

of frequent subgraphs with k–1 vertices, and FSk–1 coincides with a set of frequent 

subgraphs of size k–1. The maximum number of edges of subgraph with  

k–1 vertices is (k–1)(k–2)/2. We need to prove that FSk coincides with the set of 
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frequent subgraphs of size k. For the inductive step, it is sufficient to prove that 

given an arbitrary frequent subgraphs X of size k, X is surely included in the set FSk. 

Thus, X is also a member of set FSi

k
 of k-subgraphs of one graph gi in graph 

database GD. FSi

k
 is obtained by pruning step that removes candidate k-subgraphs 

supi

k rr C     where i

kC  is output of Combine(
1 2CS , FSi i

k
). Then 

Combine(
1 2CS , FSi i

k
) is correct by Lemma 3.1. Hence, FSk contains X and 

coincides with the set of frequent subgraphs of size k. 

We now consider the time complexity of PSI-CFSM algorithm. We suppose 

that the cardinality of graph database GD is n and each computation step is  

constant 1. At line 1, the number of computation steps is cardinality of all edges of 

all graphs in graph database GD 1

GD

| CS | (| | ( 1)) ( )| | 1
i

i

i

i

kg g

g

V k kE 



 
  

 
     . At 

line 2 and 3, the number of steps is 2

GD GD

| | log | |
i i

i i

g g

g g

E E
 

   
      

   
  . From line 4 to 

line 9 is a loop which has k steps. Line 4 runs the procedure Combine that has  

1| CS | (| | ( 1)) ( 1)
i

i

k gV k k       steps. Thus, at line 5 the number of computation 

steps is 
GD

1| CS | (| | ( 1)) |( 1) |
i

i

i

k kg

i

g

V k k C



     
 
  
 
 . In the similar way  

2-subgraphs computation is initialized; at line 5, 6, 7, 8 and 9 the number of 

computation steps is  

1 2

GD GD

| | log | || CS | (| | ( 1)) ( 1)
i

i

i

i i

k k

i

g g

k g C CV k k
 

   
   

    
  

 
   
  . 

Assume that every graph gi in graph database GD has | | 3
igV   then the 

number of computation steps from line 1 to line 3 is too small in comparing from 4 

to 9. Hence, the total number of computation steps in time complexity of the PSI-

CFSM algorithm is 
max(| |)

2

1 GD GD

1| CS | (| | ( 1)) ( | | log |1) |
g

i

i

i

i

V

i i

k k

k g g

i

k gV k k C C
  



   
      


     

  
   . 

4. Conclusion 

In this paper, we introduce an efficient method to reduce subgraph isomorphism 

testing process. The proposed method obtains polynomial time complexity in closed 

frequent subgraph mining. The subgraph isomorphism problem has time complexity 

in NP class in the current state-of-the-art frequent subgraph mining algorithms. To 

obtain polynomial time complexity in subgraph isomorphism, we use binary search 

to find string code of unique representation of a k-subgraph in an ordered unique 

string code array of a k-subgraph set in a random access machine model.  In future, 
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we will continue this study by applying parallel mining to increase the effectiveness 

and efficiency of frequent subgraph mining. 
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