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Abstract: In the era of big data, people have to face information filtration problem. 
For those cases when users do not or cannot express their demands clearly, 
recommender system can analyse user’s information more proactive and intelligent 
to filter out something users want. This property makes recommender system play a 
very important role in the field of e-commerce, social network and so on. The 
collaborative filtering recommendation algorithm based on Alternating Least 
Squares (ALS) is one of common algorithms using matrix factorization technique of 
recommendation system. In this paper, we design the parallel implementation 
process of the recommendation algorithm based on Spark platform and the related 
technology research of recommendation systems. Because of the shortcomings of 
the recommendation algorithm based on ALS model, a new loss function is 
designed. Before the model is trained, the similarity information of users and items 
is fused. The experimental results show that the performance of the proposed 
algorithm is better than that of algorithm based on ALS. 

Keywords: Spark, recommendation system, collaborative filtering, alternating least 
squares. 

1. Introduction 

With the popularity of the Internet and the rapid growth of the number of Internet 
users, the information on the Internet presents explosive growth. Although the mass 
of information can meet the information needs of Internet users, a serious challenge 
of processing information has to be handled. Users can not search for the needed 
information from the vast amount of available information quickly and accurately. 
Under this background, recommendation systems arise. Recommendation system 
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can learn the user’s interest and behavior patterns through collection and analysis of 
user’s information, which helps to recommend services for the particular user. 

Due to the user’s difference and personalized recommendation information, 
the recommendation system has much better performance than the traditional search 
engine. An excellent recommendation system not only predicts the users’ 
preferences to enhance their experience accurately, but also allows enterprises 
benefit quite a lot. According to VentureBeat statistics, Amazon’s recommendation 
system can provide 35% of the sales of goods [1]. Collaborative Filtering (CF) is 
one of the most successful techniques to construct a recommendation system in the 
real world. It can forecast the preference of other unknown users and provide 
personalized recommendation by analysing the existing partial users’ preferences. It 
has been widely used in commercial websites including Amazon, Netflix, Hulu, 
eBay, Taobao, etc. 

W a n g  and Z h a o  [2] proposes the Online Multi-Task learning algorithm 
based on CF (OMTCF), which can improve the recommendation accuracy 
effectively. K o r e n  [3] proposes an algorithm in which the time information is 
considered as one of the users’ characteristics. This algorithm is called 
TimeSVD++, and can solve the problem of time drift. L i n g, Y a n g  and K i n g  
[4] proposes SGD-RMF/DA-RMF Algorithm, which can solve the dynamic 
changes of users. J a m a l i  and E s t e r  [5] proposes the TrustWalker Algorithm 
based on random walk model, which is a good way to deal with the problem of 
interest. 

The recommendation algorithm includes collaborative filtering, nearest 
neighbour clustering, content based recommendation, Bayesian network, 
association rules, and so on. Collaborative filtering can be divided into memory-
based and model-based filtering. The collaborative filtering based on memory is 
used to calculate the historical information of the existing users in the system and 
the nearest neighbour of the target user. Then it uses the nearest neighbour to 
predict the degree of preference of the target user to the item. The collaborative 
filtering algorithm based on model is used to train the prediction model, which is 
used to predict the model. 

Online learning algorithm is fast, simple and based less on statistical 
hypothesis. The first order online learning algorithm is proposed by Crammer et al., 
and is called Passive-Aggressive. Recently, researchers have proposed second order 
online learning algorithm to improve the effect of online learning through learning 
confidence information. D r e d z e, C r a m m e r  and P e r e i r a  [6] proposed the 
Confidence-Weight (CW) learning algorithm by maintaining the Gauss distribution; 
it is applied to control parameter update size and orientation. Other second order 
online learning algorithms are Adaptive Regularization Of Weight (AROW) [7], 
New Adaptive Regularization Of Weight (NAROW) [8], Soft Confidence Weighted 
(SCW) and so on [9]. These algorithms are used for classification firstly; most of 
the online collaborative filtering algorithms, such as gradient descent method, mean 
value and so on, are also used by the first order optimization method. They ignore 
the second order informational. L u, H o i  and W a n g  [10] propose Confidence 
Weighted Online Collaborative Filtering (CWOCF) Algorithm. It combines second 
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order collaborative filtering and online learning. Although the AROW learning 
rules in the CWOCF Algorithm have better performance, its update rules are still 
strong, which may over-fit in some cases. The noise data processing by AROW still 
needs to be improved, and the computational cost can be reduced. 

In this paper, we design the parallel implementation process of the 
recommendation algorithm based on the Spark platform and on the related 
technology research of recommendation system. The function of the cluster nodes 
and the distribution of the task are analysed in detail after the algorithm is 
submitted. Secondly, parallel implementation of the recommendation algorithms 
based on Spark platform is described here; it includes collaborative filtering based 
on users, collaborative filtering based on terms and recommendation algorithm 
based on ALS model. We make a detailed implementation of the parallel 
processing. Finally, a detailed analysis of the implementation process of the Spark 
storage algorithm is carried out. In this paper we also present a new loss function 
which is designed because of the shortcomings of the recommendation algorithm 
based on ALS model. Before the model is trained, the similarity information of 
users and items is fused. The experimental results show that the performance of 
Spark is better than that of Hadoop in the parallel implementation of the 
recommendation algorithms. Compared to the optimization scheme of the 
recommendation algorithm proposed by ALS, our algorithm has better performance 
than algorithm based on ALS. 

2. Results and discussion 

2.1. The introduction of Spark 

In recent years, the large data computing platform called Spark has been widely 
concerned due to the popularity of big data. Spark is an open source parallel 
computing framework of BerkeleyAMP lab, which is similar to the Hadoop 
MapReduce. It is a kind of fast and universal data analysis engine based on 
memory. Compared with Hadoop MapReduce, Spark’ speed of iterative calculation 
is faster. At present, a lot of sub projects have been derived in respect to the 
development of large data calculation process based on the Spark platform. 
Berkeley University regards entire ecosystem of the Spark as Berkeley Data 
Analysis Stack (BDAS), which is shown in Fig. 1. On the basis of the core 
framework of Spark, it mainly provides four categories of computing framework 
including Streaming Spark, Graphx, MLbase, and SparkSQL. Streaming Spark 
mainly supports the stream computing. Graphx is a parallel graph computing 
framework. MLlib mainly supports the underlying distributed machine learning and 
machine learning capabilities. SparkSQL is a query engine that supports SQL query 
and analysis of structured data. Because of these sub projects, Spark provides a 
more high-level, more extensive computing model. We introduce each sub item in 
detail from the four parties to have a better understanding of Spark. 
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Fig. 1. The Berkeley data analysis stack 

1) Streaming Spark. The main function of Streaming Spark is that the flow of 
data is accumulated to RDD based on the length of time. Then the RDD is 
processed in batch, so that it can achieve the function of large scale data processing. 
Due to this kind of working mode, its output is larger than that of the current 
mainstream framework. At the same time, it also provides multiple APIs used in the 
calculation of the stream data. 

2) Graphx. Graphx is based on the BSP model, which provides an interface 
similar to Google’s Pregel. It provides large-scale global synchronization of graph 
computation. Spark's advantage is particularly evident in the case of many iterative 
times, because it is based on the memory. GraphX splits the graph into a number of 
sub graphs firstly, and then computes them based on these sub graphs. It can be 
carried out in the calculation of the iterative operation and to achieve the task of 
parallelization. 

3) MLlib. Spark is a computing framework based on memory. If the machine 
memory is relatively large, the RDD data will be all in memory. In this way, the 
gradient descent, EM algorithm and other machine learning iterative algorithms are 
able to run very efficiently. MLlib project is a machine learning solution in Spark 
environment. At present, the machine learning algorithms realized by MLlib mainly 
include support vector machine, decision tree, naive Bayes, K.Means, singular 
value decomposition, and so on. Developers can use MLlib without having a 
professional machine learning knowledge. 

4) SparkSQL. In Hadoop system, Hive is a data warehouse query tool that 
uses HiveSql to query data in HDFS or HBase. SparkSQL is a tool similar to Hive. 
Due to the architecture in the Spark environment, SparkSQL has higher and faster 
efficiency than Hive. SparkSQL can read the local files and also can read the HDFS 
files; the file type usually includes the text type or Parquet file type. It can be used 
to build a data source RDD in the program; the RDD is converted to the warehouse 
table to deal with data set by a distributed SQL-like language. 

2.2. Design idea of Spark 

The idea of Spark is to design a kind of new fault-tolerant method in order to reduce 
the I/O overhead of network and disk. In order to achieve this goal, a new data 
format RDD is born. RDD is a read-only data block, which can be obtained by 
reading the data from the storage system or by the operation of other RDD 
(including Transformation and Action). The read-only property of the RDD data 
indicates that if an RDD data block has to be operated, the result is a new RDD. In 
this case, the same variable is used to represent the RDD before and after the 
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transformation. The data inside RDD is not the real data, but is information of some 
metadata. In the computer system, there is a noun called lineage, which is used to 
indicate the transformation of this relationship before and after the transformation. 
Through the lineage, the entire results of calculation no longer need to be stored in 
the HDFS. If a node has an error, it is only necessary to re-calculate the lineage 
relationship, which can be used for fault tolerance. Due to this design idea, Spark 
can build a one-stop solution strategy. 

1) Based on the core of Spark, a variety of computing methods are provided to 
make an efficient data pipeline. Compared to the MapReduce, the Spark provides 
much more complex query operations, in addition to the simple operation “map” 
and “reduce”, which includes streaming computing, machine learning, graph 
computation and so on. Therefore, users can use any of these features. 

2) It is supported by multiple languages. Spark official website announces that 
three kinds of interface languages are supported, which includes Scala, Python, 
Java. Developers are allowed to choose their own language according to their own 
interests. At the same time, Spark provides its own shell, which is more convenient 
for users to improve its ease to interact with Spark. 

3) It can be compatible with a variety of underlying storage systems. Spark can 
run on any of the data sources in Hadoop, such as HDFS, Hive, Hbase, and so on. 
This feature allows the developers and users to migrate from the original system to 
the Spark system easily. 

2.3. Comparison between Spark and MapReduce 

 
Fig. 2. Operation process of MapReduce 

Spark and MapReduce are big data computing frameworks. The difference 
between them is mainly in the following two aspects: 

1) On Fig. 2, the Shuffle process between the Mapper output and the Reducer 
input in MapReduce requires frequent reading and writing disks. This process is 
very slow; it is an important bottleneck restricting the performance of the 
MapReduce framework. Spark is a computing system based on memory; the data 
exchange in each of the RDDs is carried out mostly in memory, as is shown on  
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Fig. 3. In the area of machine learning, it requires frequent iterations. Spark officials 
claim that the performance of Spark is 100 times more than that of MapReduce. 

2) In the programming model, the MapReduce framework provides only two 
kinds of operators (map and reduce). However, Spark provides up to several dozens 
of operators, which can be divided into two categories (Transformations and 
Actions). There are map, filter, flatMap, sample, groupByKey, reduceByKey and 
other Transformations operations. The actions operations include count, collect, 
reduce, take and so on. Because these high-level APIs achieve a lot of data 
operations, for the Spark program can be very simple to achieve a very powerful 
function. 

 
Fig. 3. Operation process of Spark 

2.4. Introduction of the recommendation system 

Personalized recommendation engine is meant to do information filtering; it tries to 
find the items that are interesting for users from a large number of items. These 
items can be of any type, such as movies, music, books, websites and news. The 
score of one item for the user reflects the degree of user’s interest. The 
recommendation system can predict the item that user has never used before, and 
can give a score for each item. Then the recommendation engine can recommend 
the highest scoring items to the users according to these scores. 

The data source of the recommendation engine includes the metadata of 
articles or the content, the basic information of the user, and the preference of the 
user to the item. Users’ preference information is divided into explicit feedback and 
implicit feedback. Explicit feedback includes a user's rating of items, comments, or 
tags. Implicit feedback is the data generated by the user when visiting websites, 
such as users’ browsing, item collection or page residence time. The explicit user 
behaviour can accurately reflect the user’s preferences, but an additional cost has to 
be paid. The implicit user behaviour can also reflect the user's preferences, but it 
may not be very accurate, because there is a lot of noise in the data. The 
recommendation engine uses some of the data from the data source according to the 
different recommendation mechanisms, which to analyse the user’s interest directly 
or build a certain rule model. 
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2.5. Collaborative filtering recommendation algorithm 

Collaborative Filtering (CF) algorithm is the most classical recommendation 
algorithm among several commonly used recommendation algorithms. The core 
idea is to use group wisdom to do recommendation operation. Collaborative 
filtering is divided into collaborative filtering based on User (User-CF) and 
collaborative filtering based on Item (Item-CF). User-CF is used to find similar 
users according to the behaviour record firstly, and then to do recommendation 
operation according to the similarity of users. There are many ways to calculate the 
similarity, and the Pearson Product-Moment correlation coefficient is used to 
calculate the score, 
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where  1 2, ,..., mU u u u  is the user set,  1 2, ,..., nI i i i  is the item set, R  is 

m n  evaluation matrix; sim( , )i j  is similarity between user i  and user j; ,i pr  and 

,j pr  are the scores of item p by user i  and user j; ar  and br  are the average scores 
of items by user i  and user j. 

For Top-N recommendation, the most simple similarity calculation is to use  
Jaccard formula: 

(2)   
( ) ( )

sim( , ) ,
( ) ( )

N i N j
i j

N i N j
  

where ( )N i  and ( )N j  indicate the item that user i  and user j  have used before. 
The formula in the molecule is the number of the items that user i  and user j used 
before. The denominator in the formula is the number of the items that user i  or 
user j  used before. 

CF-Item is used to find similar item by the behaviour firstly, and then 
recommend similar items to users according to the users’ choice. The similarity of 
the goods is calculated according to the user’s behaviour information, rather than 
the information itself. The similarity calculation of CF-Item can also be calculated 
by the Pearson Product-Moment correlation coefficient shown in (1), or can be 
calculated by the cosine similarity  

(3)  sim( , ) ,u vu v
u v


  

where u  and v  represent the score vector of item u and item v, respectively. There 
are many ways to calculate the similarity. In addition to the introduced above, there 
are European distance, Manhattan distance, similarity calculation based on the hash 
method, and so on. Each method has its advantages and disadvantages, for example 
Euclidean distance is suitable to calculate the dimension of small vector similarity, 
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and cosine theorem is suitable for the larger dimension of the similarity 
calculations. 

2.6. Collaborative filtering algorithm based on ALS 

Collaborative filtering recommendation algorithm based on matrix decomposition 
model mainly includes SVD and ALS. In the computational step of SVD, the matrix 
R is obtained from the user rating matrix R with the weighted average, and then the 
matrix R is decomposed by using mathematical SVD. In [11] is proposed a new 
SVD++ model. However, the computational complexity of such method is very 
high; it is difficult to apply it to a real recommendation system [12]. Z h o u, 
W i l k i n s o n  and S c h r e i b e r  [13] proposes collaborative filtering algorithm 
based on the Alternating Least Squares (ALS), which is a powerful matrix 
decomposition algorithm. It can be very good to extend to the distributed computing 
and solve the data sparse problem. The following describes the principle of 
collaborative filtering algorithm based on ALS. 

Matrix ( )m n
ijR R  represents the rating matrix of n  items by m  users. We 

hope to find a low rank matrix X to approximate the matrix R, T ,X UV  
,m dU C   ,n dV C d  and d represents the number of eigenvalues. In general, 

,d r  min( , ),r m n  and r represents the rank of the matrix, and the loss 
function is as follows: 
(4)   2( , ) ( ) ,ij ijij

L U V R X   

where 2( )ij ijR X  is a common error term in the low rank approximation. Here we 

need to find a way to solve the optimization problem arg min ( ),x L x  which is to 
minimize the loss function. Formula (4) can be re-written as follows: 
(5)   T 2( , ) ( ) .ij i jij

L U V R U V   

In order to prevent over-fitting, the second order regularization term is added 
to the above formula: 
(6)   

2 2T 2( , ) ( ) ( ).ij i j i iij
L U V R U V U V     

If V is known, the ridge regression can be used to predict each line of U, and 
vice versa. Therefore, the matrix V is fixed, then the derivative of the Ui is taken; 
now we can obtain the following formula for Ui: 
(7)   T T 1( ) , [1, ],i i ui ui ui uiU RV V V n I i m     
where Ri represents the score vector for the item by user i; Vui represents the 
characteristic matrix formed by the characteristic vectors of the items evaluated by 
the user i; Uui represents the number of items evaluated by the user i. In the same 
way, the matrix U is fixed, then the derivative of V is taken; we can obtain the 
following formula for V: 
(8)   T T 1( ) , [1, ],j j mj mj mj mjV R U U U n I j n     
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where Rj represents the score vector for the item by user j; Umj represents the 
characteristic matrix formed by the characteristic vectors of the items evaluated by 
the user j; nmj represents the number of items evaluated by the user j; I is dd unit 
matrix. 

Based on the ALS collaborative filtering algorithm is performed, namely the 
formulae (4) and (5) are called alternately to update U and V. Calculation processing 
ends if the result of the calculation is convergence or the number of iterations 
reaches the maximum value. Finally, the approximation matrix X is got to 
recommend items for users. 

When the algorithm is implemented on Spark, the original data set is stored in 
the distributed file system HDFS. Then, the data on the HDFS is read and 
transformed into a compression matrix to create RDD according to the transformed 
matrix data. The intermediate data U and V generated in each iteration, as well as 
the data set are cached to memory. 

2.7. Collaborative filtering algorithm based on improved ALS 

The definition of loss function is particularly important in the ALS model training 
method described in Section 4.1. In the processing, we find that the matrix U and 
matrix V can lose some information of users or items. The similarity between the 
users and items which is obtained by matrix U and matrix V is not similar to that 
between the users and items after training. So, we need to design a new loss 
function that can take into account the similarity between the user and the item. 
After the model is trained, their similarities will be same as the former similarities. 
The pseudo-code of specific process of the algorithm is as follows: 
 
Input: user’s rating matrix R 
Output: matrix U and matrix V 
For u from 1 to N – 1  
For v from u + 1 to N 

Calculate sim(u, v) according to Formula (1) 
End for 
For m from 1 to M – 1  
For n from m + 1 to M 

Calculate sim(m, n) according to Formula (2) 
End for 
For i from 1 to Iterations 

Fixed V 
Calculate U according to Formula (7) 
Fixed U 
Calculate V according to Formula (8) 

End for 
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3. Results and discussion 

3.1. Experimental environment and data  

We build a total of Spark cluster that contains six virtual machines; one is the main 
node (master), the others are the sub-nodes (workers); they are running on the 
OpenStack cloud platform. The main configuration of each virtual machine is as 
follows: 4 virtual kernels, memory is 128G, and disk is 500G. Java version is JaVa-
7-oracle, and Linusystem is the Ubulltul 12.04, Spark version is 1.0.0, Hadoop 
version is 2.2.0. In this experiment, we use the data set of MovieLens in the 
website. We randomly selected 10 thousands of the 1 million data-items as the 
experimental data. Randomly 80% of the data set is selected as a training set, and 
20% is selected as a test set. 

3.2. Results and discussion 

In this paper, we use Root Mean Square Error (RMSE) to evaluate the accuracy of 
the prediction. The smaller RMSE, the higher the accuracy is, 

(9)   
2

,
( )

RMSE ,
ui uiu i T

r r

T






 

where uir  represents the actual score of the user u  on the film i, and uir  is 
predicted by the recommendation algorithm. 

Table 1. The results of different algorithms 
Iterations Algorithm based on ALS Improved algorithm 

20 1.1132 1.0816 
40 0.9124 0.8741 
60 0.8696 0.8264 
80 0.7935 0.7682 

100 0.7254 0.7016 

In Table 1, we can find the different results of these two algorithms in different 
iterations. The RMSE decreases with the increase of the number of iterations. 
Comparing with these two different results, the root mean square of our new 
algorithm is smaller than that of algorithm based on ALS in different iterations. The 
average RMSE in the five iterations decreases by 3.7% by the proposed algorithm. 

4. Conclusion 

With the popularity of the Internet, it becomes very difficult for people to search the 
information they need from the vast amounts of information. Recommendation 
system can recommend related information to users intelligently through analysis of 
the interests and behaviours of users. The collaborative filtering recommendation 
algorithm based on ALS is one of most common algorithms using matrix 
factorization technique in recommendation systems. It combines a lot of ratings 
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data to calculate and store characteristic matrix in the process of calculation, so it 
may encounter the bottleneck of computation speed, if it runs on a single node. 
Spark is a new kind of distributed computing platform in the big data era and has 
excellent computing performance. In this paper, firstly, we make research on the 
existing collaborative filtering algorithm based on ALS and the big data distributed 
computing platform of Spark. Then, we realize the shortcomings of the 
recommendation algorithm based on ALS model. Finally, a new loss function is 
designed. Before the model is trained, the similarity information of users and items 
is fused. The experimental results show that the performance of our algorithm is 
better than that of algorithm based on ALS. 
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