
 245

BULGARIAN ACADEMY OF SCIENCES

CYBERNETICS AND INFORMATION TECHNOLOGIES  Volume 16, No 6
Special issue with selection of extended papers from 6th International Conference on Logistic,
Informatics and Service Science LISS’2016

Sofia  2016 Print ISSN: 1311-9702; Online ISSN: 1314-4081
DOI: 10.1515/cait-2016-0092

Application of Improved Recommendation System Based
on Spark Platform in Big Data Analysis

Li Xie, Wenbo Zhou, Yaosen Li
Institute of Disaster Prevention, Yanjiao Town 065201, China
Email: xieli@cidp.edu.cn

Abstract: In the era of big data, people have to face information filtration problem.
For those cases when users do not or cannot express their demands clearly,
recommender system can analyse user’s information more proactive and intelligent
to filter out something users want. This property makes recommender system play a
very important role in the field of e-commerce, social network and so on. The
collaborative filtering recommendation algorithm based on Alternating Least
Squares (ALS) is one of common algorithms using matrix factorization technique of
recommendation system. In this paper, we design the parallel implementation
process of the recommendation algorithm based on Spark platform and the related
technology research of recommendation systems. Because of the shortcomings of
the recommendation algorithm based on ALS model, a new loss function is
designed. Before the model is trained, the similarity information of users and items
is fused. The experimental results show that the performance of the proposed
algorithm is better than that of algorithm based on ALS.

Keywords: Spark, recommendation system, collaborative filtering, alternating least
squares.

1. Introduction

With the popularity of the Internet and the rapid growth of the number of Internet
users, the information on the Internet presents explosive growth. Although the mass
of information can meet the information needs of Internet users, a serious challenge
of processing information has to be handled. Users can not search for the needed
information from the vast amount of available information quickly and accurately.
Under this background, recommendation systems arise. Recommendation system

 246

can learn the user’s interest and behavior patterns through collection and analysis of
user’s information, which helps to recommend services for the particular user.

Due to the user’s difference and personalized recommendation information,
the recommendation system has much better performance than the traditional search
engine. An excellent recommendation system not only predicts the users’
preferences to enhance their experience accurately, but also allows enterprises
benefit quite a lot. According to VentureBeat statistics, Amazon’s recommendation
system can provide 35% of the sales of goods [1]. Collaborative Filtering (CF) is
one of the most successful techniques to construct a recommendation system in the
real world. It can forecast the preference of other unknown users and provide
personalized recommendation by analysing the existing partial users’ preferences. It
has been widely used in commercial websites including Amazon, Netflix, Hulu,
eBay, Taobao, etc.

W a n g and Z h a o [2] proposes the Online Multi-Task learning algorithm
based on CF (OMTCF), which can improve the recommendation accuracy
effectively. K o r e n [3] proposes an algorithm in which the time information is
considered as one of the users’ characteristics. This algorithm is called
TimeSVD++, and can solve the problem of time drift. L i n g, Y a n g and K i n g
[4] proposes SGD-RMF/DA-RMF Algorithm, which can solve the dynamic
changes of users. J a m a l i and E s t e r [5] proposes the TrustWalker Algorithm
based on random walk model, which is a good way to deal with the problem of
interest.

The recommendation algorithm includes collaborative filtering, nearest
neighbour clustering, content based recommendation, Bayesian network,
association rules, and so on. Collaborative filtering can be divided into memory-
based and model-based filtering. The collaborative filtering based on memory is
used to calculate the historical information of the existing users in the system and
the nearest neighbour of the target user. Then it uses the nearest neighbour to
predict the degree of preference of the target user to the item. The collaborative
filtering algorithm based on model is used to train the prediction model, which is
used to predict the model.

Online learning algorithm is fast, simple and based less on statistical
hypothesis. The first order online learning algorithm is proposed by Crammer et al.,
and is called Passive-Aggressive. Recently, researchers have proposed second order
online learning algorithm to improve the effect of online learning through learning
confidence information. D r e d z e, C r a m m e r and P e r e i r a [6] proposed the
Confidence-Weight (CW) learning algorithm by maintaining the Gauss distribution;
it is applied to control parameter update size and orientation. Other second order
online learning algorithms are Adaptive Regularization Of Weight (AROW) [7],
New Adaptive Regularization Of Weight (NAROW) [8], Soft Confidence Weighted
(SCW) and so on [9]. These algorithms are used for classification firstly; most of
the online collaborative filtering algorithms, such as gradient descent method, mean
value and so on, are also used by the first order optimization method. They ignore
the second order informational. L u, H o i and W a n g [10] propose Confidence
Weighted Online Collaborative Filtering (CWOCF) Algorithm. It combines second

 247

order collaborative filtering and online learning. Although the AROW learning
rules in the CWOCF Algorithm have better performance, its update rules are still
strong, which may over-fit in some cases. The noise data processing by AROW still
needs to be improved, and the computational cost can be reduced.

In this paper, we design the parallel implementation process of the
recommendation algorithm based on the Spark platform and on the related
technology research of recommendation system. The function of the cluster nodes
and the distribution of the task are analysed in detail after the algorithm is
submitted. Secondly, parallel implementation of the recommendation algorithms
based on Spark platform is described here; it includes collaborative filtering based
on users, collaborative filtering based on terms and recommendation algorithm
based on ALS model. We make a detailed implementation of the parallel
processing. Finally, a detailed analysis of the implementation process of the Spark
storage algorithm is carried out. In this paper we also present a new loss function
which is designed because of the shortcomings of the recommendation algorithm
based on ALS model. Before the model is trained, the similarity information of
users and items is fused. The experimental results show that the performance of
Spark is better than that of Hadoop in the parallel implementation of the
recommendation algorithms. Compared to the optimization scheme of the
recommendation algorithm proposed by ALS, our algorithm has better performance
than algorithm based on ALS.

2. Results and discussion

2.1. The introduction of Spark

In recent years, the large data computing platform called Spark has been widely
concerned due to the popularity of big data. Spark is an open source parallel
computing framework of BerkeleyAMP lab, which is similar to the Hadoop
MapReduce. It is a kind of fast and universal data analysis engine based on
memory. Compared with Hadoop MapReduce, Spark’ speed of iterative calculation
is faster. At present, a lot of sub projects have been derived in respect to the
development of large data calculation process based on the Spark platform.
Berkeley University regards entire ecosystem of the Spark as Berkeley Data
Analysis Stack (BDAS), which is shown in Fig. 1. On the basis of the core
framework of Spark, it mainly provides four categories of computing framework
including Streaming Spark, Graphx, MLbase, and SparkSQL. Streaming Spark
mainly supports the stream computing. Graphx is a parallel graph computing
framework. MLlib mainly supports the underlying distributed machine learning and
machine learning capabilities. SparkSQL is a query engine that supports SQL query
and analysis of structured data. Because of these sub projects, Spark provides a
more high-level, more extensive computing model. We introduce each sub item in
detail from the four parties to have a better understanding of Spark.

 248

Spark
 Streaming

Graphx MLlib
Spark
SQL

Spark Runtime

YARN, Mesos... HDFS, EC2, S2

Fig. 1. The Berkeley data analysis stack

1) Streaming Spark. The main function of Streaming Spark is that the flow of
data is accumulated to RDD based on the length of time. Then the RDD is
processed in batch, so that it can achieve the function of large scale data processing.
Due to this kind of working mode, its output is larger than that of the current
mainstream framework. At the same time, it also provides multiple APIs used in the
calculation of the stream data.

2) Graphx. Graphx is based on the BSP model, which provides an interface
similar to Google’s Pregel. It provides large-scale global synchronization of graph
computation. Spark's advantage is particularly evident in the case of many iterative
times, because it is based on the memory. GraphX splits the graph into a number of
sub graphs firstly, and then computes them based on these sub graphs. It can be
carried out in the calculation of the iterative operation and to achieve the task of
parallelization.

3) MLlib. Spark is a computing framework based on memory. If the machine
memory is relatively large, the RDD data will be all in memory. In this way, the
gradient descent, EM algorithm and other machine learning iterative algorithms are
able to run very efficiently. MLlib project is a machine learning solution in Spark
environment. At present, the machine learning algorithms realized by MLlib mainly
include support vector machine, decision tree, naive Bayes, K.Means, singular
value decomposition, and so on. Developers can use MLlib without having a
professional machine learning knowledge.

4) SparkSQL. In Hadoop system, Hive is a data warehouse query tool that
uses HiveSql to query data in HDFS or HBase. SparkSQL is a tool similar to Hive.
Due to the architecture in the Spark environment, SparkSQL has higher and faster
efficiency than Hive. SparkSQL can read the local files and also can read the HDFS
files; the file type usually includes the text type or Parquet file type. It can be used
to build a data source RDD in the program; the RDD is converted to the warehouse
table to deal with data set by a distributed SQL-like language.

2.2. Design idea of Spark

The idea of Spark is to design a kind of new fault-tolerant method in order to reduce
the I/O overhead of network and disk. In order to achieve this goal, a new data
format RDD is born. RDD is a read-only data block, which can be obtained by
reading the data from the storage system or by the operation of other RDD
(including Transformation and Action). The read-only property of the RDD data
indicates that if an RDD data block has to be operated, the result is a new RDD. In
this case, the same variable is used to represent the RDD before and after the

 249

transformation. The data inside RDD is not the real data, but is information of some
metadata. In the computer system, there is a noun called lineage, which is used to
indicate the transformation of this relationship before and after the transformation.
Through the lineage, the entire results of calculation no longer need to be stored in
the HDFS. If a node has an error, it is only necessary to re-calculate the lineage
relationship, which can be used for fault tolerance. Due to this design idea, Spark
can build a one-stop solution strategy.

1) Based on the core of Spark, a variety of computing methods are provided to
make an efficient data pipeline. Compared to the MapReduce, the Spark provides
much more complex query operations, in addition to the simple operation “map”
and “reduce”, which includes streaming computing, machine learning, graph
computation and so on. Therefore, users can use any of these features.

2) It is supported by multiple languages. Spark official website announces that
three kinds of interface languages are supported, which includes Scala, Python,
Java. Developers are allowed to choose their own language according to their own
interests. At the same time, Spark provides its own shell, which is more convenient
for users to improve its ease to interact with Spark.

3) It can be compatible with a variety of underlying storage systems. Spark can
run on any of the data sources in Hadoop, such as HDFS, Hive, Hbase, and so on.
This feature allows the developers and users to migrate from the original system to
the Spark system easily.

2.3. Comparison between Spark and MapReduce

Fig. 2. Operation process of MapReduce

Spark and MapReduce are big data computing frameworks. The difference
between them is mainly in the following two aspects:

1) On Fig. 2, the Shuffle process between the Mapper output and the Reducer
input in MapReduce requires frequent reading and writing disks. This process is
very slow; it is an important bottleneck restricting the performance of the
MapReduce framework. Spark is a computing system based on memory; the data
exchange in each of the RDDs is carried out mostly in memory, as is shown on

 250

Fig. 3. In the area of machine learning, it requires frequent iterations. Spark officials
claim that the performance of Spark is 100 times more than that of MapReduce.

2) In the programming model, the MapReduce framework provides only two
kinds of operators (map and reduce). However, Spark provides up to several dozens
of operators, which can be divided into two categories (Transformations and
Actions). There are map, filter, flatMap, sample, groupByKey, reduceByKey and
other Transformations operations. The actions operations include count, collect,
reduce, take and so on. Because these high-level APIs achieve a lot of data
operations, for the Spark program can be very simple to achieve a very powerful
function.

Fig. 3. Operation process of Spark

2.4. Introduction of the recommendation system

Personalized recommendation engine is meant to do information filtering; it tries to
find the items that are interesting for users from a large number of items. These
items can be of any type, such as movies, music, books, websites and news. The
score of one item for the user reflects the degree of user’s interest. The
recommendation system can predict the item that user has never used before, and
can give a score for each item. Then the recommendation engine can recommend
the highest scoring items to the users according to these scores.

The data source of the recommendation engine includes the metadata of
articles or the content, the basic information of the user, and the preference of the
user to the item. Users’ preference information is divided into explicit feedback and
implicit feedback. Explicit feedback includes a user's rating of items, comments, or
tags. Implicit feedback is the data generated by the user when visiting websites,
such as users’ browsing, item collection or page residence time. The explicit user
behaviour can accurately reflect the user’s preferences, but an additional cost has to
be paid. The implicit user behaviour can also reflect the user's preferences, but it
may not be very accurate, because there is a lot of noise in the data. The
recommendation engine uses some of the data from the data source according to the
different recommendation mechanisms, which to analyse the user’s interest directly
or build a certain rule model.

 251

2.5. Collaborative filtering recommendation algorithm

Collaborative Filtering (CF) algorithm is the most classical recommendation
algorithm among several commonly used recommendation algorithms. The core
idea is to use group wisdom to do recommendation operation. Collaborative
filtering is divided into collaborative filtering based on User (User-CF) and
collaborative filtering based on Item (Item-CF). User-CF is used to find similar
users according to the behaviour record firstly, and then to do recommendation
operation according to the similarity of users. There are many ways to calculate the
similarity, and the Pearson Product-Moment correlation coefficient is used to
calculate the score,

(1)

, ,

22
, ,

()()
sim(,) ,

() ()

i p a j p bp P

i p a j p bp P p P

r r r r
i j

r r r r



 

 


 



 

where  1 2, ,..., mU u u u is the user set,  1 2, ,..., nI i i i is the item set, R is

m n evaluation matrix; sim(,)i j is similarity between user i and user j; ,i pr and

,j pr are the scores of item p by user i and user j; ar and br are the average scores
of items by user i and user j.

For Top-N recommendation, the most simple similarity calculation is to use
Jaccard formula:

(2)
() ()

sim(,) ,
() ()

N i N j
i j

N i N j


where ()N i and ()N j indicate the item that user i and user j have used before.
The formula in the molecule is the number of the items that user i and user j used
before. The denominator in the formula is the number of the items that user i or
user j used before.

CF-Item is used to find similar item by the behaviour firstly, and then
recommend similar items to users according to the users’ choice. The similarity of
the goods is calculated according to the user’s behaviour information, rather than
the information itself. The similarity calculation of CF-Item can also be calculated
by the Pearson Product-Moment correlation coefficient shown in (1), or can be
calculated by the cosine similarity

(3) sim(,) ,u vu v
u v




where u and v represent the score vector of item u and item v, respectively. There
are many ways to calculate the similarity. In addition to the introduced above, there
are European distance, Manhattan distance, similarity calculation based on the hash
method, and so on. Each method has its advantages and disadvantages, for example
Euclidean distance is suitable to calculate the dimension of small vector similarity,

 252

and cosine theorem is suitable for the larger dimension of the similarity
calculations.

2.6. Collaborative filtering algorithm based on ALS

Collaborative filtering recommendation algorithm based on matrix decomposition
model mainly includes SVD and ALS. In the computational step of SVD, the matrix
R is obtained from the user rating matrix R with the weighted average, and then the
matrix R is decomposed by using mathematical SVD. In [11] is proposed a new
SVD++ model. However, the computational complexity of such method is very
high; it is difficult to apply it to a real recommendation system [12]. Z h o u,
W i l k i n s o n and S c h r e i b e r [13] proposes collaborative filtering algorithm
based on the Alternating Least Squares (ALS), which is a powerful matrix
decomposition algorithm. It can be very good to extend to the distributed computing
and solve the data sparse problem. The following describes the principle of
collaborative filtering algorithm based on ALS.

Matrix ()m n
ijR R  represents the rating matrix of n items by m users. We

hope to find a low rank matrix X to approximate the matrix R, T ,X UV
,m dU C  ,n dV C d and d represents the number of eigenvalues. In general,

,d r min(,),r m n and r represents the rank of the matrix, and the loss
function is as follows:
(4) 2(,) () ,ij ijij

L U V R X 

where 2()ij ijR X is a common error term in the low rank approximation. Here we

need to find a way to solve the optimization problem arg min (),x L x which is to
minimize the loss function. Formula (4) can be re-written as follows:
(5) T 2(,) () .ij i jij

L U V R U V 

In order to prevent over-fitting, the second order regularization term is added
to the above formula:
(6)

2 2T 2(,) () ().ij i j i iij
L U V R U V U V   

If V is known, the ridge regression can be used to predict each line of U, and
vice versa. Therefore, the matrix V is fixed, then the derivative of the Ui is taken;
now we can obtain the following formula for Ui:
(7) T T 1() , [1,],i i ui ui ui uiU RV V V n I i m   
where Ri represents the score vector for the item by user i; Vui represents the
characteristic matrix formed by the characteristic vectors of the items evaluated by
the user i; Uui represents the number of items evaluated by the user i. In the same
way, the matrix U is fixed, then the derivative of V is taken; we can obtain the
following formula for V:
(8) T T 1() , [1,],j j mj mj mj mjV R U U U n I j n   

 253

where Rj represents the score vector for the item by user j; Umj represents the
characteristic matrix formed by the characteristic vectors of the items evaluated by
the user j; nmj represents the number of items evaluated by the user j; I is dd unit
matrix.

Based on the ALS collaborative filtering algorithm is performed, namely the
formulae (4) and (5) are called alternately to update U and V. Calculation processing
ends if the result of the calculation is convergence or the number of iterations
reaches the maximum value. Finally, the approximation matrix X is got to
recommend items for users.

When the algorithm is implemented on Spark, the original data set is stored in
the distributed file system HDFS. Then, the data on the HDFS is read and
transformed into a compression matrix to create RDD according to the transformed
matrix data. The intermediate data U and V generated in each iteration, as well as
the data set are cached to memory.

2.7. Collaborative filtering algorithm based on improved ALS

The definition of loss function is particularly important in the ALS model training
method described in Section 4.1. In the processing, we find that the matrix U and
matrix V can lose some information of users or items. The similarity between the
users and items which is obtained by matrix U and matrix V is not similar to that
between the users and items after training. So, we need to design a new loss
function that can take into account the similarity between the user and the item.
After the model is trained, their similarities will be same as the former similarities.
The pseudo-code of specific process of the algorithm is as follows:

Input: user’s rating matrix R
Output: matrix U and matrix V
For u from 1 to N – 1
For v from u + 1 to N

Calculate sim(u, v) according to Formula (1)
End for
For m from 1 to M – 1
For n from m + 1 to M

Calculate sim(m, n) according to Formula (2)
End for
For i from 1 to Iterations

Fixed V
Calculate U according to Formula (7)
Fixed U
Calculate V according to Formula (8)

End for

 254

3. Results and discussion

3.1. Experimental environment and data

We build a total of Spark cluster that contains six virtual machines; one is the main
node (master), the others are the sub-nodes (workers); they are running on the
OpenStack cloud platform. The main configuration of each virtual machine is as
follows: 4 virtual kernels, memory is 128G, and disk is 500G. Java version is JaVa-
7-oracle, and Linusystem is the Ubulltul 12.04, Spark version is 1.0.0, Hadoop
version is 2.2.0. In this experiment, we use the data set of MovieLens in the
website. We randomly selected 10 thousands of the 1 million data-items as the
experimental data. Randomly 80% of the data set is selected as a training set, and
20% is selected as a test set.

3.2. Results and discussion

In this paper, we use Root Mean Square Error (RMSE) to evaluate the accuracy of
the prediction. The smaller RMSE, the higher the accuracy is,

(9)
2

,
()

RMSE ,
ui uiu i T

r r

T






where uir represents the actual score of the user u on the film i, and uir is
predicted by the recommendation algorithm.

Table 1. The results of different algorithms
Iterations Algorithm based on ALS Improved algorithm

20 1.1132 1.0816
40 0.9124 0.8741
60 0.8696 0.8264
80 0.7935 0.7682

100 0.7254 0.7016

In Table 1, we can find the different results of these two algorithms in different
iterations. The RMSE decreases with the increase of the number of iterations.
Comparing with these two different results, the root mean square of our new
algorithm is smaller than that of algorithm based on ALS in different iterations. The
average RMSE in the five iterations decreases by 3.7% by the proposed algorithm.

4. Conclusion

With the popularity of the Internet, it becomes very difficult for people to search the
information they need from the vast amounts of information. Recommendation
system can recommend related information to users intelligently through analysis of
the interests and behaviours of users. The collaborative filtering recommendation
algorithm based on ALS is one of most common algorithms using matrix
factorization technique in recommendation systems. It combines a lot of ratings

 255

data to calculate and store characteristic matrix in the process of calculation, so it
may encounter the bottleneck of computation speed, if it runs on a single node.
Spark is a new kind of distributed computing platform in the big data era and has
excellent computing performance. In this paper, firstly, we make research on the
existing collaborative filtering algorithm based on ALS and the big data distributed
computing platform of Spark. Then, we realize the shortcomings of the
recommendation algorithm based on ALS model. Finally, a new loss function is
designed. Before the model is trained, the similarity information of users and items
is fused. The experimental results show that the performance of our algorithm is
better than that of algorithm based on ALS.

R e f e r e n c e s

1. L i u, J. G., T. Z h o u, B. H. W a n g. Research Progress of Personalized Recommendation System.
– Regress in National Science, Vol. 19, 2009, No 1, pp. 1-15.

2. W a n g, J., P. Z h a o. Online Multi-Task Collaborative Filtering for On-the-Fly Recommender
Systems. – In: Proc. of 7th ACM Conference on Recommender Systems, New York, ACM,
2013, pp. 237-244.

3. K o r e n, Y. Factorization Meets the Neighbourhood: A Multifaceted Collaborative Filtering
Model. – In: Proc. of 14th ACM SIGKDD International Conference on Knowledge
Discovery and Data Mining, Las Vegas, ACM, 2008, pp. 426-434.

4. L i n g, G., H. Y a n g, I. K i n g. Online Learning for Collaborative Filtering. – In: Proc. of 2012
International Joint Conference on Neural Networks, IEEE, 2012, pp. 1-8.

5. J a m a l i, M., M. E s t e r. TrustWalker: A Random Walk Model for Combining Trust-Based and
Item-Based Recommendation. – In: Proc. of 15th ACM SIGKDD International Conference
on Knowledge Discovery and Data Mining, New York, ACM, 2009, pp. 397-406.

6. D r e d z e, M., K. C r a m m e r, F. P e r e i r a. Confidence-Weighted Linear Classification. – In:
Proc. of 25th International Conference on Machine Learning, Helsinki, ACM, 2008,
pp. 264-271.

7. C r a m m e r, K., A. K u l e s z a, M. D r e d z e. Adaptive Regularization of Weight Vectors –
Machine Learning, Vol. 91, 2013, No 2, 155-187.

8. O r a b o n a, F., K. C r a m m e r. New Adaptive Algorithms for Online Classification. – In: Proc.
of 24th Annual Conference on Neural Information Processing Systems, Vancouver, 2010,
pp. 1840-1848.

9. W a n g, J., P. Z h a o, S. C. H. H o i. Exact Soft Confidence-Weighted Learning. – In: Proc. of
29th International Conference on Machine Learning. Edinburgh, Scotland, 2012.

10. L u, J., S. H o i, J. W a n g. Second Order Online Collaborative Filtering. – In: Proc. of Asian
Conference on Machine Learning, 2013, pp. 325-340.

11. P a n, R., Y. Z h o u, B. C a o. One-Class Collaborative Filtering. – In: Proc. of 8th IEEE
International Conference Data Mining, 2008, ICDM’08, IEEE, 2008, pp. 502-511.

12. L i u, Q. Research on the Key Algorithm in Collaborative Filtering Recommendation System.
Zhejiang University, 2013.

13. Z h o u, Y. H., D. W i l k i n s o n, R. S c h r e i b e r. Large Scale Parallel Collaborative Filtering
for the Netflix Prize. – In: Proc. of 4th International Conference on Algorithmic Aspects in
Information and Management, ShangHai, Springer, 2008, pp. 337-348.

