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Abstract: Clustering on multiple manifolds serves as an analysis of the data lying on 

multiple manifolds. The smoothness and local linearity of data samples are utilized 

to define the local linear degree which is motivated by Principal Component Analysis 

(PCA) and Depth First Search (DFS). Then, Multiple Manifolds Clustering (LMMC) 
is proposed on the base of the Local Linear Analysis (LLA) via this definition and 

neighbor-growing algorithm, which are especially effective under the condition of 

interactions. Instead of addressing problems of complex optimization and K-means 

operation, LMMC is simple and efficient compared with traditional manifold 

clustering. The algorithm can achieve superior performance on complex subspace 

and manifolds clustering datasets. Meanwhile, comparative experiments are given to 

show the effectiveness and efficiency of this algorithm.  
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1. Introduction 

As an important research direction of machine learning and pattern recognition, 
cluster analysis is the task of grouping a set of data in such a way that objects in the 
same group are more similar to each other than to those in other groups [1]. As the 
theory of unsupervised learning flourishes and improves, research importance has 
been increasingly attached to cluster analysis as a branch. In the new era of big data, 
it is a meaningful matter of urgency to research the ways of efficient and regular data 
clustering. 

Over the past decades, K-means clustering has been successfully applied to a 
reasonable number of practical cluster problems, albeit typical of lazy learning  
[11, 12]. However, in the big data era represented by complicated data samples in 
bulk, it is gradually beyond the scope of K-means clustering to meet current demands 
as a simple and conventional algorithm. For instance, K-means clustering always fails 
to solve problems arising from linear separability of a pair of sets correctly and 
rationally. Clustering on linearly separable data sets is surely all the way challenging. 
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The major difficulty lies in exploring the law of homogeneous data classification. 
Meanwhile, there is ambiguity in ways to group areas of overlap composed of data 
between classes in data space. With different types of data clustering for overlapped 
zones, areas but for those overlapped may be wrongly partitioned and the entire 
cluster outcome will be destroyed as a result. Given this, proper data clustering for 
overlapped areas determines the success of the whole cluster analysis. 

In recent years, Spectral Clustering (SC) [2, 3] has attracted numerous research 
attentions. According to related research findings, massive challenging cluster 
problems have been addressed using SC. K-means clustering, remaining as the 
starting point of SC, uses the eigenvector of the affinity matrix constructed by SC 
instead of raw sample data. This simple starting point indeed tackles problems of 
basic Multiple Manifolds Clustering (MMC), such as the condition that homogeneous 
data obey the distribution on low-dimensional subspace or manifolds. However, a 
dominant prerequisite for SC is that no areas of overlap should be generated from 
data between classes. Any cluster problem handled by SC without this prerequisite 
will produce a result less effective than it can have been. Despite the said constraints, 
there remains heated discussion on SC theories. For example, the SC-based SMMC, 
as one of cluster algorithms [6], effectively groups data between classes in overlapped 
areas by training Probabilistic Principle Component Analysis (PPCA) factors on part 
of data samples. Nevertheless, super high spatiotemporal costs restrict its application 
to big data situations. 

K-manifold Algorithm is another recently popular cluster algorithm [14]. For 
the first time, among all the attempts made, K-manifold Algorithm handles MMC 
problems in overlapped areas. However, it behaves badly for well-separated clusters. 
Meanwhile, the classic concept of divide and conquer has been employed to solve 
cluster problems [19], for which data is partitioned into single manifolds and 
overlapped manifolds. The latter one is further divided into overlapped areas and non-
overlapped areas. Graphic models are established as the final step to complete 
clustering tasks. The effectiveness of the divide and conquer algorithm rests on 
discrimination of overlapped areas as well as estimation of local dimensions during 
the process of searching by graphic models. Parameter selection plays an important 
role at the same time. Thus the divide and conquer algorithm may encounter certain 
difficulties in practice [6]. 

Data in SC-based data clustering is mainly characterized by its distribution on 
multiple low-dimensional manifolds. Recently, some research work has been done 
on data clustering in several amounts of subspace, i.e., subspace clustering  
[2, 4, 5, 7, 8]. The predecessor of subspace clustering is the theory of subspace 
learning like sparse decomposition and Low Rank Representation (LRR). LRR-based 
subsequence clustering is a representative one, for which raw data matrices are 
decomposed on a low-rank basis before the obtained low-rank coefficients undergo 
K-means clustering so as to complete clustering. From the mathematical perspective, 
as subspace features linear manifolds, the corresponding subspace clustering is a 
matter of linear MMC. According to present-day research progress and previous 
mathematical experience, clustering of linear data is easier soluble than nonlinear 
types in most cases. What is more, many actual data spread over massive linear 
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subspaces. Therefore, it is of certain practical significance to conduct specific studies 
on data clustering in linear subspaces. However, this algorithm usually fails to find 
its application in manifold clustering. Despite the usage of some quadratic-fit-based 
methods [14] to approximate manifolds, it is still difficult to solve most complicated 
multi-manifold data cluster problems efficiently. 

2. Multi-Manifold Cluster algorithm based on Local linear analysis 
(LMMC) 

The main objective of MMC is to partition sets of label-free points
 1,..., d n

nX R  x x  into 1,..., KX X  with the hope that every type of clustered 
points is visually or mathematically smooth. Fig. 1 is the main test data sets that 
involve MMC. First, we propose a MMC algorithm that specializes in non-
overlapped areas. We then broaden its scope of application to overlapped areas under 
the guidance of local linear analysis. 

Many documents have put forward feasible solutions to MMC in non-
overlapped areas, such as SC and sparse LRR. In order for an unimpeded searching 
for solution to a local linear analysis model that we will expound later, we devise a 
neighbour-growing algorithm based clustering for MMC in non-overlapped areas. 
This cluster algorithm is as simple as referring to connectivity (graph theory), and 
handles non-overlapped MMC effectively. 

 
(a)                                                                       (b) 

 
(c)                                                                             (d) 

Fig. 1. Test data sets for MMC: A pair of intersecting lines in a two-dimensional surface (a); a triple of 
intersecting surfaces in three-dimensional space (b); a pair of smooth lines in a two-dimensional 

surface(c);  a pair of intersecting S-shape curves in a two-dimensional surface (d) 
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Inspired by the thought of connected spatial domains proposed in document [9], 
we define the clustering-oriented concept of neighbour joining as follows. 

Definition 1. We assume a pair of points 1 2, ,Xx x  ;d nX R   1 2,x x  on X 
is -neighbour connected if and only if there exists a finite element sequence

1 2, ,..., tw w w  and a neighbour radius  that let 

   1 , , 1,..., ,iN X N X i t   x w   
and 

       1 1 2 1 1 2, ,..., ,t t tN N N N      w x w w w w x w . 
The point set X itself is -neighbour connected if and only if a pair of arbitrary 

points in X is -neighbour connected. Furthermore, we define that a pair of point sets 
(X and Y) is -neighbour connected if and only if there exists 0 Xx  and 0 Yy

that are -neighbour connected.  
The above mentioned definition is the key premise of neighbour-growing 

algorithm. The major idea of neighbour-growing algorithm in non-overlapped areas 
[8] is built up on the basis that a single manifold is connected whilst manifolds are 
not connected to each other. Taking double-curve manifold data as an example (as 
shown in Fig. 2), the pair of curves is independently connected, but fails to connect 
to each other. 

  
Fig. 2. The diagram of regional connectivity 

The main steps of non-overlapped neighbor-growing algorithm are: 
1. Initialization: Label a sample point as 0; 
2. Growth: Let within-neighbor points labelled zero grow, and redistribute class 

labels to them; 
3. Render: All the classes emerging in Step 2 merge into one. 
We describe the process of the algorithm as: 
Algorithm 1. Non-overlapped neighbour-growing algorithm 

Input: Sample points set ,d nX R   neighbour radius , present class label No 
D = 1. 

Initialization: Choose initial point , 1,i i x x  sample label Lk = 0,  
k = 1, …, n.  
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Repeat: 
Step 1. Check points falling in N(xi). 
Step 2. If all the points falling in N(xi) have not been labelled, endow them 

with class label D, and let D = D + 1. 
Step 3. If there exists a point y in N(xi) that belongs to label Lʹ, then label all 

other points as Lʹ. 
Step 4. Let point No 1i i  .  
Output: class label L = (L1, …, Ln). 
The essence of non-overlapped multi-manifold neighbour-growing algorithm is: 

a depth-first transversal is done on all neighbour-joining points, and points in 
neighbour-joining point sets will be labelled the same; two point sets that are not 
neighbour-joining will be labelled differently after the execution of this algorithm. 
The following theorem can be summarized out. 

Theorem 1. X and Y, a pair of -neighbour joining point sets, are not
-neighbour connected to each other. Thus, if we input Z = XY to Algorithm 1, the 
output of class label L must satisfy the following conditions: 

   L Lp q    ,p q  fall in the same set, 

   L Lp q    ,p q  fall in different sets. 
P r o o f : 
As X is -neighbour joining, when we traverse points in X and take 

neighborhood into account, two arbitrary connected points will be connected by a 
finite neighborhood sequence before merging into one class. Therefore, all points in 

X will be grouped in the same class. Similarly, all points in Y will be grouped in the 
same class. 

In addition, we assume that X and Y can merge into one, then it is sure that a 
certain finite neighborhood sequence [9] connects two points in X and Y, which is 
contradictory to the premise that X and Y are not -neighbour connected to each other. 
Therefore, we conclude that X and Y cannot be integrated into the same class. Until 
now, we have proved Theorem 1. 

For non-overlapped areas, Algorithm 1 performs well. However, considering 
that our research focus is clustering of multiple manifolds with overlapped points, the 
use of Algorithm 1 may fail to conform to the requirement that multiple overlapped 
manifolds are partitioned into independent classes. In essence, the main problem is 
to categorize overlapped areas. To this end, prior analysis of overlapped areas is a 
necessity. 

Given the smoothness and low-dimension of manifolds for us to cluster, 
especially of local areas, we take data sets a, b, c, d (see Fig. 1) as examples to detect 
the local, linear characteristics of every points in the data sets. The local 
characteristics are always embodied by linearity [10]. A point set that does not feature 
low dimension in a locality is definitely unsmooth and not manifold alike in the 
locality [10]. 

Principal component analysis is conducted on all points contained in the 
neighborhood of every point (or every row in the neighbour-joining matrix) in the 
said data sets. The reason is that when there is a point located in a low-dimensional 
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subspace, the eigenvalue of the sample’s covariance matrix will promptly attenuate, 
or only a few is none-zero element. In this way, we measure the degree to which a 
data set fits a one-dimension subspace by using the contribution degree of the 
maximum eigenvalue among all eigenvalues. Similarly, we measure the degree to 
which a data set fits a two-dimension subspace by using the combined contribution 
degree of the first two largest eigenvalue among all eigenvalues. 

Specifically, we conduct principal component analysis on points in the 
neighborhood with its radius of 0.4, 0.5, 0.2, 0.3, respectively, and accordingly plot 
the ratio of the maximum eigenvalue to the sum of eigenvalue of all points in the data 
set, as shown in Figs 3-6. On the right is the spatial distribution of points in each data 
set. On the left is the distribution of the said ratio. Points with deeper colors have 
larger ratio. 

As can be seen from Figs 3-6, the ratio of eigenvalue in overlapped areas is 
extremely low, whilst quite high in non-overlapped areas. Such statistics (ratio of 
eigenvalue) with distinguishing features help find solutions to point clustering in 
overlapped areas. In addition, the final clustering result is not affected by a few 
outliers in non-overlapped areas due to low ratio of eigenvalue. 

   
Fig. 3. Distribution of local linear degree (ratio of eigenvalue) for data a (Fig. 1) 

   
Fig. 4. Distribution of local linear degree (ratio of eigenvalue) for data b (Fig. 1) 
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Fig. 5. Distribution of local linear degree (ratio of eigenvalue) for data c (Fig. 1) 

  
Fig. 6. Distribution of local linear degree (ratio of eigenvalue) for data d (Fig. 1) 

The general mode of solution to the problem of multiple manifold clustering is: 
for a point set  1,...,

d n
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X


 ), and the other is to render every class as smooth 

as possible, so as to ensure points of every class to fall onto a smooth manifold. 
Against this background, it is particularly important to define the degree of 
smoothness of a point in a certain class. Considering the local linearity of a manifold, 
we measure the smoothness degree of a class sample space by inspecting the linearity 
of a sphere neighbourhood N(x) = {y| ||y – x||2 < } of a sample point in a class sample 
space and by integrating the linearity of all neighbourhoods. 

Now we mainly use principal component analysis to detect the linear 
information of N(x). By principal component analysis, we are capable of finding the 
major distribution law of a sample matrix in low-dimensional subspace. For example, 
a d-dimensional sample matrix that is proved to have only one non-zero eigenvalue 
by principal component analysis can be regarded as one-dimensional in essence, i.e. 
all the sample leaves are distributed in a one-dimensional manifold. 

Accordingly, local linearity R(A, p) is defined as the accumulated contribution 
degrees of the first p-dimensional principal components of a sample point matrix 

,d mA R   and can be expressed as 
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where p < d,  1 ≥ 2 ≥ …≥ d are the eigenvalues of covariance counterpart A. 
As the whole sample point set is partitioned into a number of small neighbours, 

we can describe the smoothness of the point set by p-dimensional local linearity of 
every small neighbour. We then define the smoothness matrix M(X) of the sample 
point set. 

The total smoothness  M   of a sample point set   is 

(2)          , , .M R N p d R N p 



   




      

Assuming that the label of the set X of all sample points is vector L, whose 
number of classes is K, 1, 2,..., ,iL K  we then define the smoothness of sample point 
set X as  

(3)     
 

1
, ,

K
i

i i

M X
f L K

X

  

where iX  is the cardinality of the set iX  (or the number of elements for a finite set). 
We eliminate the influence of data numbers on clustering effect by dividing the total 
smoothness by cardinality. In this way, we can rationally separate smooth manifolds 
into two independent classes which contain either few or many samples, without 
being interfered by the efforts the algorithm makes to balance sample volume. It is 
our expectation that the result of classification reaches its maximum smoothness. 
Thus, we construct an optimization model in relation to class label: 

(4)    
 

1
max , ,

K
i

i i

M X
f L K

X

  

   

 

s.t. ,

.
i

i
X

i j j

M X R d

X L i

 

 



x
 

This model involves a matter of combinatorial optimization. The optimization 
objective is the overall smoothness of each sample class, and the strategy variable 
[13] is class label. We attempt to find a best class label towards the highest 
smoothness of all classes of sample data. 

However, this matter of combinatorial optimization is obviously NP-hard. The 
sole but unpractical access to optimal solution is an inch-by-inch search for the 
possible number of classes K and class label variance L. To this end, it is a necessity 
to find an approximate solution to that model so as to produce acceptable fruits within 
limited time. Fortunately, we have achieved success by modifying the 
aforementioned non-overlapped neighbour-growing clustering algorithm to a certain 
extent. Below is our exhibition of the reasonably modified technique. 

When principal component analysis is done on the neighbourhood of every 
point, we obtain different values of local linearity R, as shown in Figs 3-6. 
Nevertheless, the fundamental law reflected by them lies in a high linearity of the 
smooth area and a low linearity of the overlapped part. An understandable 
explanation is that the points in the overlapped area come from multiple manifolds 
[14] and cannot be smoothed together. In other words, in order to maximize the 
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objective function, these points should not be grouped in the same class, or else the 
value of the objective function will plummet due to less smoothness. Given this, a 
natural idea strikes us that these points be omitted before we complete clustering 
smooth points. 

The proposed LMMC Algorithm in this paper reflects the thought of greedy 
algorithm in essence. Every time we arrive at a tiny, snap decision at the local level 
as a second-best solution, albeit uncertain about whether we miss the optimal one. 
Specifically, the major thought of finding solutions to the problem of overlapped 
manifold clustering based on neighbour-growing algorithm is: We conduct principal 
component analysis on the neighbourhood of each point, and obtain the local linear 
degree of the points. Only those with high linearity are included in the neighbour-
growing algorithm, and the rest are marked as “critical points”. When the algorithm 
operates, principal component analysis is done on the neighbourhood of each point, 
whose principal component is the direction of its manifold. Finally, points with 
similar manifold directions are integrated into the same class. 

Here are some necessary definitions concerning the algorithm. 
Definition 2. The direction of x-manifold D(x) is the principal component of 

points in  N x  obtained by principal component analysis. 
Definition 3. The distance of x-manifold from y-manifold, represented by 

Dist(x, y), is 

(4)     
   

   
   

T

2 2

Dist , =cos , .
D D

D D
D D


x y

x y x y
x y

 

Here is how we describe the multiple manifolds clustering algorithm based on 
local linear analysis: 

Algorithm 2. LMMC clustering 

Input: Sample point set X  Rdn, neighbor radius , current class label No  
b = 1. 

Initialization: Initialize sample label 0, 1,..., .kL k n   
Define the threshold of contribution degree for principal component analysis 

Thr.  
Define the inherent dimension of manifold Dim. 
Define the set of critical points T = . 
Initialize 1i  , transverse xi  X.  
Repeat: 
Step 1. Undertake principal component analysis on points in  iN x , and 

obtain the local linear degree   ,DimiR N x  and the direction of x -manifold 

 iD x . 

Step 2. If   ,DimiR N x  exceeds the threshold of contribution degree Thr, 

continue to Step 3; or otherwise we add ix to the set of critical points T, and jump to 
Step 5. 
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Step 3. If no points in  iN x  are grouped, renew the class labels of all points 
in  iN x  as b , let 1b b  ，and jump to Step 5. 

Step 4. If there exists a point y  in  iN x  that is grouped to class L , then 
unify the class label of all points in  iN x  as L . 

Step 5. Let point No 1i i  . 
Step 6. If i n , the loop ends. 
Initialize: 1i  , traverse .i Tz   
Repeat: 
Step 1. Calculate manifold distance according to Definition 3, and extract two 

points * *
1 2,z z from  iN z , which have the nearest manifold distance and satisfy the 

condition that at least one of *
1( ),L z  *

2( )L z  is non-zero (i.e., there is at least one point 
of them that falls out of the set of critical points T).  

Step 2. If    * *
1 2 ,L Lz z  set all points of the classes to which *

1z  belongs to the 
same label. 

Step 3. Let point No 1i i  . If i T , the loop ends.  
Output: Class label L. 
Algorithm 2 contains two loops. The first one is to search for points in non-

overlapped areas, followed by clustering analysis. By means of neighbour-growing, 
neighbour-joining points are grouped into the same class. The second one is to 
process points in overlapped areas (critical points). Under neighbourhood conditions, 
points in the critical point set are constantly sifted according to their distance of 
manifolds from labelled points in the non-critical point set, and the most approaching 
one is labelled the same. The proposed LMMC Algorithm is free from complicated 
arithmetical calculations, but is characterized by its simplicity of eigenvalue 
decomposition and low time complexity. Specifically, it is required for LMMC to 
decompose the eigenvalue of the set of local sample points, which does not slow the 
operation of the algorithm with generally small numbers. Moreover, no additional  
K-means clustering is demanded in this process. Instead, clustering analysis is 
directly done on sample point data using neighbour-searching. 

3. Experiments and simulation 
In this section, we writes MATLAB programs to conduct experiments and simulation 
test on the proposed multi-manifold clustering algorithm using common manifold 
clustering data sets. The computer configuration is Intel I5 processor 4500 (1.8 GHz), 
8GB DDR3 ROM, and the program debugging environment is MATLAB2014b. 

During the process of the experiment, we change related algorithm parameters 
within a certain scope, in order to find the best one by means of network searching. 
Fig. 7 is the clustering result of LMMC on each data set and the corresponding actual 
labels.  
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a(1) Experimental result                                 a(2) Actual result 

 
b(1) Experimental result                                   b(2) Actual result 

 
c(1) Experimental result                                     c(2) Actual result 

 
d(1) Experimental result                                    d(2) Actual result 

Fig. 7. The clustering result of LMMC on data set (a, b, c, d, Fig. 1)  
and the corresponding actual labels 
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Table 1 shows the accuracy rate of LMMC clustering and other clustering 
methods such as GPCA [20], SC [12], SCC [18], K-means [11], K-planes [21],  
K-manifolds [19]. Table 2 is the time (s) required for LMMC and other methods to 
run on each data set. Data set a, b, c and d is intersecting lines, hyperbola, concentric 
circles and a pair of intersecting S-shaped curves as shown in Fig. 1, respectively. 

Table 1. Accuracy rate of LMMC clustering and other clustering methods (percentage) 

Method Data set (Fig. 1) 
a b c d 

GPCA 78.7 98.3 50.0 52.4 
SC 40.8 83.1 50.7 58.8 
SCC 94.9 98.7 100.0 59.6 
K-means 60.6 36.6 50.5 58.2 
K-planes 98.3 58.9 50.5 55.2 
K-manifolds 59.0 95.3 59.3 96.8 
LMMC 95.0 100.0 100.0 90.7 

Table 2. Time (s) required for LMMC and other methods to run on each data set 

Method Data set (Fig. 1) 
a b c d 

GPCA 0.01 0.01 0.01 0.01 
SC 2.39 3.29 1.38 4.29 

SCC 3.06 1.95 0.56 0.71 
K-means 0.01 0.02 0.01 0.01 
K-planes 0.01 0.01 0.01 0.01 

K-manifolds 144.60 837.21 59.39 261.39 
LMMC 1.12 3.54 1.12 5.34 

It can be seen from the above experimental result, that with steady clustering 
performance, LMMC Algorithm is an effective approach to addressing the problem 
of nonlinear clustering and overlapped manifold clustering. Despite the poor 
performance in handling outliers at times, the output of this algorithm does not greatly 
deviate from actual clustering results which will otherwise be caused by outliers. 
Meanwhile, the small number of outliers is powerless in weakening the overall 
clustering effect. 

4. Conclusion 

This paper starts from the local linearity of data lying on multiple manifolds, and 
proposes a simple but effective multiple manifolds clustering algorithm which 
reflects the thought of depth-first search, neighbour-joining and principal component 
analysis. The principal component theory provides a basis for this algorithm to define 
linearity. Highly-efficient clustering analysis is done on sample points using the 
concept of depth-first search and neighbour-joining. The experiment result shows that 
this algorithm has strong robustness in dealing with manifold data in overlapped 
areas, and performs well against non-linear manifold clustering. In terms of time 
complexity, this algorithm remains in a low complexity, albeit slightly slower than 
K-means algorithm and other extremely simple algorithms. The shortcoming of this 
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algorithm lies in its sensitivity to neighbour-size parameters. Thus, our follow-up 
research will be focused on improving parameter sensitivity using advantageous 
spectral clustering. 
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