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Abstract: Although Clustering Algorithm Based on Sparse Feature Vector 
(CABOSFV) and its related algorithms are efficient for high dimensional sparse 
data clustering, there exist several imperfections. Such imperfections as subjective 
parameter designation and order sensibility of clustering process would eventually 
aggravate the time complexity and quality of the algorithm. This paper proposes a 
parameter adjustment method of Bidirectional CABOSFV for optimization purpose. 
By optimizing Parameter Vector (PV) and Parameter Selection Vector (PSV) with 
the objective function of clustering validity, an improved Bidirectional CABOSFV 
algorithm using simulated annealing is proposed, which circumvents the 
requirement of initial parameter determination. The experiments on UCI data sets 
show that the proposed algorithm, which can perform multi-adjustment clustering, 
has a higher accurateness than single adjustment clustering, along with a 
decreased time complexity through iterations.  

Keywords: Data mining, high dimensional sparse data, simulated annealing, 
clustering validity. 

1. Introduction 

Increasing significance has been attached to data mining technologies [1]. With its 
development, the object data are becoming large-scaled and high dimensional [2]. 
In these analyses, the clustering algorithms designed for lower dimensional data can 
no longer meet the requirements, whereas the classic Clustering Algorithm Based 
On Sparse Feature Vector (CABOSFV) [3] is an efficient algorithm for high 
dimensional data clustering. Classic CABOSFV uses Sparse Feature Dissimilarity 
(SFD) to describe the dissimilarity between sets; it uses Sparse Feature Vector 
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(SFV) to extract features of the set, to reduce data scale, and then to implement 
clustering by addition of SFV. Classic CABOSFV is insensitive to noise, it is 
available to cluster both sparse and dense high dimensional data, and has helped 
solving a series of high dimensional data clustering problems [4-9].  

1.1. CABOSFV clustering algorithms 

However, there exist several defects of existing CABOSFV related algorithms: 
Subjective parameter specifying. SFD threshold b is a crucial parameter of 

CABOSFV clustering. An overestimated b increases the risk of objects being 
assigned to wrong clusters. Conversely, underestimating b increases the risk of 
objects being rejected by the suitable cluster. The only existing method is to 
designate this parameter subjectively. S o n g  and X i a o  [10] proposed a method 
to determine the cap of b; Z h u, T u, G a o  et al. [11] proposed an advanced 
algorithm based on self-adaptive threshold. Still, the optimal b changes with the 
clustering task and data set, which makes it difficult to be determined objectively in 
advance. Therefore, a parameter adjustment method of CABOSFV is necessary to 
perform multiple clustering and optimize the parameter according to the clustering 
results through iterations. 

Complexity of unidirectional CABOSFV clustering through iterations. Classic 
CABOSFV is an agglomerative clustering algorithm, its process of clustering is 
unidirectional, that once an object has been assigned to a cluster, it can no longer be 
reassign to more suitable ones. Restricted by the unidirectionality, each adjustment 
needs to start over and cannot make use of the previous results, which considerably 
increases the computational complexity and limits the feasibility of optimization 
through iterations. G a o, Y a n g  and L i  [12] proposed Bidirectional CABOSFV 
by defining Bidirectional Sparse Feature Vector (B-SFV) and addition-subtraction 
of B-SFVs, which improved the performance of clustering through multiple 
adjustments, but gave no method of parameter optimization. 

Limitation on clustering quality of single adjustment CABOSFV. The 
CABOSFV algorithms are sensitive to the clustering order, which is affected by 
both data input order and clustering pattern. On this issue, Zhu, Gao, Wu and others 
(see [13-16]) proposed several data pre-processing methods based on object sorting, 
which can reduce the effects of input order sensibility to some extent. However, 
none can eliminate the effects of input order, and the effects of clustering pattern 
have not been addressed. Bidirectional CABOSFV has the ability of performing 
both decomposing and agglomerative clustering in multiple adjustments; it allows 
separation and re-aggregation to form the previous results, which can further reduce 
the influence of the clustering order on the quality of clustering. However, this 
advantage cannot be presented in single adjustment clustering, in which both 
decomposing and agglomerative clustering are unidirectional, the deviation affected 
by clustering order will be accumulated in the clustering process, reduces the 
quality and stability of clustering. Therefore, to approach the optimal solution of 
times and parameters of the adjustments is a combinatorial optimization problem.  
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1.2. Simulated annealing  

The Simulated Annealing (SA) approach for optimization problems was proposed 
by K i r k p a t r i c k, G e l a t t  and V e c c h i  [17], and has been widely applied in a 
variety of optimization problems due to the simple implementation and 
convergence properties [18], and proved efficient in various fields [19-22].  

As pointed out by P e n g  and C u i  [23], Simulated Annealing is known for 
being a slow method when compared to more recent strategies. However, the 
solution quality is generally better 

Given the high complexity of classic CABOSFV iterations as mentioned 
above, this paper proposed a method to adjust the parameter of Bidirectional 
CABOSFV. Based on that, we use simulated annealing and clustering validity 
indexes to optimize the number and parameters of adjustments, circumvents the 
requirement of initial parameter determination, thereby improves the efficient of 
clustering. 

All clustering data in this paper is binary, as W u  and W e i  [24] have 
proposed a method to transform categorical variables to binary variables. 

2. Bidirectional CABOSFV 

2.1. Bidirectional sparse feature vector 

Definition 1. Sparse Feature Dissimilarity, SFD. Given n objects, X is a set of the 
objects; the number of objects contained is |X|; a denotes the number of attributes 
that values 1 for all the objects in X; e denotes the number of attributes that values 
differently for all the objects in X. Define Sparse Feature Dissimilarity of X as 

(1)   SFD( ) .
| |

eX
X a




 

Definition 2. Attribute Counting Vector, ACV. Given n objects, each object 
is described by attributes A1, A2,…, Am; X is a set of objects, objects contained are 
x1, x2,…, x|X|; Jij(X) denotes the value of attribute Ai for object xj; C1(X), C2(X), ..., 
Cm(X) denote the times of each attribute valuing 1 for all objects in X, which is 
given by 
(2)    | |

1
( ) ( ) , {1, 2,..., }.X

i ijj
C X J X i m


   

Define ACV of X as vector  
(3)           1 2, , . , mT X C X C X C X   

Definition 3. Bidirectional Sparse Feature Vector, BSFV. Given n objects, 
X is a set of the objects, the number of objects contained is |X|; T(X) is the ACV of 
X; S denotes the set of attributes that values 1 for all the objects in X; NS denotes 
the set of attributes that values differently for all the objects in X; SFD(X) is the 
Define SFD of X. Define BSFV of X as 
(4)             BSFV , , , NS , SFD .X X T X S X X X  
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2.2. Addition of BSFV 

Definition 4. Addition of BSFVs. Given n objects, each object is described by 
attributes A1, A2,…, Am; X and Y are two sets of objects that have no intersection, the 
SFVs are 

          

          

SFV , , , NS , SFD ,

S

| |

| |FV , , , NS , SFD .

X X T X S X X X

Y Y T S Y YY Y




 

Define addition of BSFVs as 
(5)        SFV SFV , , , N , ,S SFDY X N T S   

where N=|X|+|Y|; T=T(X)+T(Y); S={Ai, i∈i|Ci=|N|}; NS={Ai, i∈i|0<Ci<|N|}; 
SFD=|NS|/(N× |S|). 

Theorem 1. BSFV Additivity Theorem. Given n objects, X and Y are two 
sets of objects that have no intersection, and: 

          
          

     

SFV , , , NS , SFD ,

SFV , , , NS , SFD

| |

| |

( ) (| |

,

SFV , , , NS , SFD ,
SFV SFV , , , NS, S

( ) ( ) ( ) ( )
F .

)
D

X X T X S X X X

Y Y T Y S Y Y Y

X Y X Y T X Y S X Y X Y X Y
X Y N T S





      

 

 

Then 
(6)     SFV SFV S) .( FVX Y X Y    

P r o o f:  
Since X and Yare two sets of objects that have no intersection, numbers of 

objects are |Y| and |X|, then the union set X∪Y contains |X|+|Y| objects, so  
| | | | .| |N X Y X Y     

Let X={x1, x2, ..., x|X|}, Y={y1, y2, ..., y|Y|}, each object is described by attributes 
A1, A2,…, Am. Jij(X) denotes the value of attribute Ai for object xj, Jij(Y) denotes the 
value of attribute Ai for object yj. C1(X), C2(X), ..., Cm(X) denote the times of each 
attribute valuing 1 for all objects in X, C1(Y), C2(Y), ..., Cm(Y) denote the times of 
each attribute valuing 1 for all objects in Y. By Definition 2 (ACV): 

| | | | | | | |

1 1 2 2
1 1 1 1

| | | |

1 1

( ) ( ) ( ( ) ( ), ( ) ( ),

..., ( ) ( )).

X Y X Y

j j j j
j j j j

X Y

mj mj
j j

T X T Y J X J Y J X J Y

J X J Y

   

 

   



   

 

 

Since X and Y have no intersection, then 
| | | |

1 1

(X Y) ( ) ( ) , {1, 2,..., }.
X Y

i ij ij
j j

C J X J Y i m
 

     

So     1 2( ( ) ( ) ( ), ,  .), mT X T Y C X Y C X Y C X Y T        
Using Reduction to Absurdity, assume ∃Ai*∈S is subject to Ci*(N)≠|N|. By 

Definition 3 (BSFV): 
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*1 *2 *| |( ) ( ) ... ( ) 1.i i i NJ X J X J X     
By Definition 2 (ACV)  

| |

* *
1

(N) ( ) | | 1 | |,
N

i i j
j

C J N N N


   
 

which is contradictory to the assumption, so: 
, |{ | ;}i iS A i i C N    

similarly,  
NS , 0 | .{ |}i iA i i C N     

By Definition 1 (SFD) 
 SFD NS / | | .N S   

Q.E.D. 

2.3. Subtraction of BSFV 

Definition 5. Subtraction of BSFVs. Given n objects, each object is described by 
attributes A1, A2,…, Am; X is a set of objects, Y is a proper subset of X, the SFVs are: 

          
          

SFV , , , NS , SFD ,

S

| |

| |FV , , , NS , SFD .

X X T X S X X X

Y Y T Y S Y Y Y




 

Define Subtraction of BSFVs as 
(7)       SFV SFV ,  ,  ,  NS,  SFD ,Y X N T S   

where N=|X| – |Y|; T=T(X) – T(Y); S={Ai, i∈i |Ci=|N|}; NS={Ai, i∈i|0<Ci<|N|}; 
SFD=|NS|/(N×|S|). 

Theorem 2. BSFV Subtractivity Theorem. Given n objects, X is a set of 
objects, Y is a proper subset of X, and: 

          
          
          
     

SFV , , , NS , SFD ,

SFV , , , NS , SFD ,

SFV , , , NS , SFD ,

SFV SFV , , , NS, S

| |

D

|

F

|

.

|

|

X X T X S X X X

Y Y T Y S Y Y Y

X Y X Y T X Y S X Y X Y X Y

X Y N T S





      

 

 

Then  
(8)       SFV SF SFV .VX Y X Y    

P r o o f:  
Since Y is a proper subset of X, numbers of objects are |Y| and |X|, then the 

difference set X-Y contains |X|-|Y| objects, so N=|X-Y|=|X|-|Y|. 
Let X={x1, x2, ..., x|X|}, Y={y1, y2, ..., y|Y|}, each object is described by attributes 

A1, A2,…, Am; Jij(X) denotes the value of attribute Ai for object xj; Jij(Y) denotes the 
value of attribute Ai for object yj; C1(X), C2(X), ..., Cm(X) denote the times of each 
attribute valuing 1 for all objects in X; C1(Y), C2(Y), ..., Cm(Y) denote the times of 
each attribute valuing 1 for all objects in Y. By Definition 2 (ACV): 
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| | | |

1 1
1 1

| | | | | | | |

2 2
1 1 1 1

( ) ( ) ( ( ) ( ),

( ) ( ),..., ( ) ( )).

X Y

j j
j j

X Y X Y

j j mj mj
j j j j

T X T Y J X J Y

J X J Y J X J Y

 

   

  

 

 

   
 

Since Y is a proper subset of X, then 
| | | |

1 1

(X Y) ( ) ( ) , {1, 2,..., }.
X Y

i ij ij
j j

C J X J Y i m
 

      

So           1 2, ,  , .mT X T Y C X Y C X Y C X Y T        
The rest is the same as in the proof of Theorem 1 (BSFV Additivity Theorem). 

Q.E.D. 

2.4. Parameter adjustment of bidirectional CABOSFV 

SFD threshold b is the predetermined parameter of CABOSFV clustering. In order 
to take advantage of the reversibility of Bidirectional CABOSFV, the clustering 
process with parameter adjustment is proposed, which will further reduce the 
influence of clustering order on clustering quality during the separation and re-
aggregation of objects and clusters. 

Definition 6. Adjustment of SFD threshold b. Given n result clusters and the 
parameter SFD threshold b form previous clustering, bʹ is the new parameter, bʹ≠b. 
Taking the n result clusters as initial sets to perform the clustering with the 
parameter bʹ is defined as an adjustment of SFD threshold b.  

2.5. Steps and example of B-CABOSFV clustering 

Classic CABOSFV clustering needs to start over for each adjustment, whereas  
B-CABOSFV makes use of the previous results, since it is a bidirectional clustering 
algorithm. 

2.5.1. Three-layered structure 

The procedures of B-CABOSFV clustering can be described with a three-layered 
structure (Fig. 1). In the t-th adjustment, St,1

(0), St,2
(0), ..., St,k

(0) are the result sets from 
previous adjustment with a SFD threshold of b(t-1) (upper layer). St,1

(1), St,2
(1), ..., 

St,k+1
(1) are new sets-to-cluster, which are generated by subtraction of BSFV after 

SFD threshold decreased to bt (mid layer). St,1
(2), St,2

(2), ..., St,k
(2) are present result 

sets merged by applying addition of BSFV to new sets-to-cluster (lower layer). 
Specifically, when the SFD threshold decreased from bt–1 to bt, check the SFD 

of each previous result sets successively. If SFD(St,1
(0))>bt, cull off the last  

object (Xn) of St,1
(0); if the SFD is still greater than bt, continue to cull off objects  

(Xn–1, Xn–2,…) of the set until it drop below bt. Then regard S't,1(0)
 and {Xn}, {Xn–1}, 

{Xn–2}, … , along with others previous result sets as new sets-to-cluster. 
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Fig. 1. Plot of three-layered structure of B-CABOSFV 

2.5.2. Example 

As shown in Table 1, X1, X2,…, X6 are 6 clients, A1, A2,…, A8 are the attributes of 
clients corresponding the orders of 8 kinds of products, values 1 if ordered and 0 if 
not. To cluster these clients by order status is a clustering problem of 6 objects of 8 
attributes. 

Table 1. Client order status 

Client Product 
ordered 

Attribute vector 
A1 A2 A3 A4 A5 A6 A7 A8 

X1 2, 4, 6, 8 0 1 0 1 0 1 0 1 

X2 1, 4, 6, 8 1 0 0 1 0 1 0 1 

X3 1, 2, 4, 6, 8 1 1 0 1 0 1 0 1 

X4 3, 5, 6, 7, 8 0 0 1 0 1 1 1 1 

X5 3, 5, 7, 8 0 0 1 0 1 0 1 1 

X6 1, 2, 4, 8 1 1 0 1 0 0 0 1 

To solve this problem, the steps of first and second adjustment of  
B-CABOSFV clustering are as followed. 

Steps of the first adjustment 

Step 1. Set the initial SFD threshold b1=1;  
Step 2. Create a set-to-cluster for each client, denote as S1,i

(0), i∈{1, 2, ..., 6}; 
Step 3. Calculate the SFDs. Apparently, as the first adjustment, we have 

(1)
1, 1SFD( ) 0 {1, 2,..., 6},iS b i    

all of which are not greater than b1, no need to subtract. Regard all the sets as new 
set-to-cluster, denote as St,i

(1), i∈{1, 2, ..., 6}, then go to Step 5; 
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Step 4. Skipped; 
Step 5. Merge sets-to-cluster and manage the SFD after merging to be no 

greater than SDF threshold b1. The result sets are S1,1
(2)={X1, X2, X3, X4}, 

S1,2
(2)={X5}, S1,3

(2)={X6}. SFDs of the sets are SFD(S1,1
(2))=0.75, SFD(S1,2

(2))=0, 
SFD(S1,3

(2))=0; 
Step 6. Not satisfied with the results, need another adjustment.  
Steps of the second adjustment 

Step 1. Reset the SFD threshold to b2=0.5; 
Step 2. Create a set for each previous result sets as S2,1

(0)={X1, X2, X3, X4}, 
S2,2

(0)={X5}, S2,3
(0)={X6};  

Step 3. Since SFV(S2,1
(0))=0.75>b2, we cull off the last client in the set (X4), 

denote the remaining part as S2,1
(1). Create a new set for X4, denote as S2,4

(1); 
Step 4. Calculate the SFD of set S2,1

(1):  
(1) (0)

2,1 2,1 4 2
| NS | 2SFD( ) SFD( { }) 0.22 .

| | 3 2
S S X b

N S
     

 
 

At this point, the new sets-to-cluster are S2,1
(1)={X1, X2, X3}, S2,2

(1)={X5}, 
S2,3

(1)={X6}, S2,4
(1)={X4}, SFDs are all below b2;  

Step 5. Merge new sets-to-cluster, obtain the result sets of the second 
adjustment (Table 2);  

Step 6. Finish.  

Table 2. Clustering result of the example 
Clients All ordered  Partial ordered SFD 

X1, X2, X3, X6 1, 8 2, 3, 4 0.375 
X4, X5 5, 6, 7, 8 2 0.125 

In this example, B-CABOSFV clustering made use of the results of the previous 
adjustment, which saved two addition operations. 

3. Simulated annealing optimization 

The optimization of SFD threshold b combination is crucial to CABOSFV 
clustering. Different from classic CABOSFV, Bidirectional CABOSFV can make 
use of the results of previous adjustment, which decreases the time complexity 
greatly and improves the feasibility of iterative optimization. 

Simulated Annealing is derived from the Metropolis algorithm [25]. It has 
been used to solve large-scale combinatorial problems by K i r k p a t r i c k  et al. 
[17]. The authors created an analogy between combinatorial optimization and the 
annealing of solids. In this process, an atomic configuration for a solid must be 
found such that it minimizes internal energy. In optimization cases, a solution to the 
problem is compared to an atomic configuration, and the internal energy to the 
objective function. 

The main features of the method are Temperature (T) and Temperature Length 
(TL). In order to achieve the best atomic configuration, the solid temperature must 
be slowly reduced. In the optimization case, the temperature variable determines the 
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chances of acceptance of a solution. The Probability of Acceptance (PoA) is a 
function of temperature and the Objective Function Value (OFV), and is calculated 
by 
(9)  PoA(OFV, T) = e–OFV/T. 
ΔOFV denotes the difference between the OFV of current solution and the new 
solution. If a new solution is better than the current, it is automatically accepted. If 
it is worse, it still has a chance of acceptance. When temperature is high, these 
chances are also high and more uphill moves are accepted. Such strategy leads to 
local minima avoidance, preventing premature stagnation in non-optimal solutions. 
The temperature must remain the same for a given number of moves before it is 
reduced. That given number of moves is represented by the TL. A schedule for 
temperature reduction must be set. After all the allowed moves are performed in a 
temperature level, it is reduced according to 
(10)  Tk+1 = Tk, 
where T is the current temperature; k is the current iteration; α is a decreasing rate 
parameter. 

3.1. Objective function 
We use two clustering validity indexes as objective function. 

3.1.1. Internal clustering validity index CVISFD 

CVISFD [26], which is proposed based on DB*, is used to evaluate the clustering 
results: 

(11)  c
c 1

c

1 1max SFD SFD
1CVISFD( )

min SFD
i i

i jj j in i j

i
x yx C y C

n n
n

n





 

 
 

 
 

 
,

,
,

,
 

where nc is the number of result clusters; Ci is the i-th cluster; ni is the number of 
objects of Ci; SFDi is the sparse feature dissimilarity of Ci; SFDx,y is the sparse 
feature dissimilarity of object x and y. 

A lower value of CVISFD indicates the lower dissimilarity in each clusters, 
and higher dissimilarity between clusters, and vice versa. Thereby reflects the 
quality of clustering. 

As an internal criterion, CVISFD has no requirement of prior knowledge. 

3.1.2. External clustering validity index Averaged Accuracy (AA) 

Table 3 shows the four possible cases on the objects. 

Table 3. Cases on objects 

Desired categories 
Result categories 
Same  Different  

Same  a b 
Different  c d 
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Positive Accuracy (PA):  
(12)  PA / ( ).a a c   

Negative Accuracy (NA): 
(13)  NA / ( ).d b d   

Averaged Accuracy (AA): 

(14)  
PA NA / ( ) / ( )AA .

2 2
a a c d b d   

   

AA takes both positive and negative accuracy into consideration to evaluate the 
clustering quality with objectivity and comprehensiveness. 

As an external criterion, AA can help to verifying the performance and 
theoretical limits of the algorithm. 

3.2. Data pre-processing: Weighted sorting 

Definition 7. Weighted sorting with uncorrelated sequences. Given n objects, 
object i is described by attributes Ai1, Ai2,…, Aim, uncorrelated sequence  
M=(M1, M2,…, Mm)，the uncorrelated sequence index of object i is  
(15)  1 1 2 2 ... ,i i i m imq M A M A M A     

Sorting the objects by qi is defined as Weighted Sorting with Uncorrelated 
Sequences. 

Pre-process the input data with this method would decrease the input order 
sensibility and improve the quality of CABOSFV clustering [16]. 

3.3. Combinatorial optimization 

Definition 8. Parameter Vector, PV. Given n parameters for multiple adjustments, 
define PV(n) = (b1，b2，…, bn) as PV. 

Strategy 1. Multi-adjustment Clustering. Given PV(n) = (b1，b2，…, bn) is 
the input parameter of one iteration, consecutively perform adjustment clustering 
(Definition 6) with SFD threshold b1，b2，…, bn, initial clusters of each 
adjustment are the result of previous adjustment. Thus n times of adjustments are 
regarded as one iteration. 

Definition 9. Parameter Selection Vector, PSV. Given n parameters for 
multiple adjustments, n-1 parameter selection indexes s1, s2, …, sn-1, define 
PSV(n)=(s1, s2, …, sn-1) as Parameter Selection Vector. 

Strategy 2. Parameter Selection. Given PV(n)=(b1, b2, …, bn),  
PSV(n)=(s1, s2,…, sn-1), select parameters by 

(16)  
0,adopt ,

ignore , 0,
i i

i i

b s
b s





 

to produce the selected parameter vector PVʹ(m)=(b1, b2, …, bm), 1 ≤ m ≤ n. 
Use both PV and PSV as input of SA optimization. By Strategy 1 and  

Strategy 2, we are able to optimize the number and parameters of adjustments, 
thereby achieve the optimal clustering result. 
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3.4. Algorithm steps 

The steps of the p-th iteration are as followed in Fig. 2. 

Check SFD

No greater 
than bt

Merge sets
(Addition)

Y

Cull off object
(Subtraction)

N

N

Adjustment clustering

Y
Stopping 
criteria

End

Eveluate CVISFD / AA

SA optimization

Adjustments 
completed

NY

Generate PV & PSV

Start

 
Fig. 2. Plot of steps of B-CABOSFV with SA 

Step 1. Generate new PV and PSV by SA, thereby specify the number of 
adjustment times T, and SFD threshold bt for each adjustment; 

Step 2. Create a set for each of the n objects or sets from the previous result as 
the initial sets of the t-th adjustment (1 ≤ t ≤ T), denote as St,i

(0), i∈{1, 2, ..., n}; 
Step 3. Calculate the SFD of each set. Obviously, set contains only one object 

has a SFD of 0. If the SFD of all sets are no greater than bt, add 1 to the superscripts 
of sets, denote as St,i

(1), i∈{1, 2, ..., n}, regard as new sets-to-cluster and go to  
Step 5; if SFV(St,i*

(0)) is greater than bt, cull off the last object in the set, denote 
S't,i*(0) as St,i*

(1). Create a new set-to-cluster for the object culled off, denote as 
St,n+1

(1), then go to Step 4; 
Step 4. By Subtraction of BSFV, calculate  

       1 0 0 0 0
, * , , 1

( )) ( )
, ,

( )
1

( ) ) (SFV SFV SFV SFV ,t i t i t n t i t nS S S S S      
then go back to Step 3; 

Step 5. Similar to classic CABOSFV clustering, by addition of BSFV, merge 
sets-to-cluster and manage the SFD after merging to be no greater than SDF 
threshold bt, obtain the clustering result denoted as St,i

(2), i∈{1, 2, ..., k}. If the 
adjustment number t reaches T, go to Step 6; else, t→t+1, go back to Step 2; 
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Step 6. Use cluster validity index to evaluate the result, if it reaches the 
stopping criteria of SA, terminate the process; else, p→p+1, go back to Step 1. 

3.5. Time complexity 

Considering addition and subtraction of BSFVs have the same complexity, the time 
complexity of one B-CABOSFV iteration is  

(17)  
1

,
t

i i
i

T O m k q


 
  

 
  

where m is the number of the attributes; t is the total number of adjustments; ki is 
the number of result clusters after the i-th adjustment. qi is the number of initial 
clusters before the i-th adjustment, which is given by 

(18)  
1

, 1,
1, 2,..., ,

, 1,i
i i

n i
q i t

k p i


 

 
 

where n is the number of objects in data set, pi is the number of objects culled off in 
the i-th adjustment.  

Apparently, in classic CABOSFV clustering, qi=n, i∈{1, 2,..., t}. So the ratio 
of the time complexity of B-CABOSFV to classic CABOSFV is  

(19)  ratio 1
1 1

( ) / .
t t

i i i i
i i

T k p k nk

 

    

With the increasing of the times and precision of the adjustments, the total 
time B-CABOSFV clustering takes is far less than classic CABOSFV clustering. 

4. Experiments 

4.1. Experimental method 

Test on 2 UCI data sets (Table 4) with the objective function of CVISFD and AA. 
The length of initial PV is 5. 

Table 4. Date sets for experiments 
Data set #Instances #Attributes #Categories 

Zoo 101 16 7 

Small soybean 47 35 4 

Since each iteration includes multiple adjustments, we use Equivalent Iteration 
Time (EIT) to compare the time efficiency between bidirectional and unidirectional 
CABOSFV: 
(20)  

1
EIT( ) ( / ),n

i ii
n T t


  

where n is the number of iterations; Ti is the time cost of the i-th iteration; ti is the 
adjustments times of the i-th iteration. Mean Equivalent Iteration Time (MEIT) is 
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(21)  
1

1MEIT( ) ( / ).n
i ii

n T t
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Apparently, to unidirectional CABOSFV, the value of ti is always and only can 
be 1. 

4.2. Results 

Tables 5 and 6 and Figs 3 and 4 show the results with the objective function of AA. 

Table 5. Result on data set Zoo (AA) 
Input length 

 of PV 
Number of optimal  
adjustment times AA Mean adjustment times  

per iteration MEIT (ms) 

1 1 92.9% 1 60.9 

2 2 98.9% 1.94 36.3 

3 3 99.1% 2.61 34.2 

4 3 99.1% 2.90 33.6 

5 3 99.1% 2.95 33.6 

 

  
a) Equivalent iteration time b) Mean equivalent iteration time 

Fig. 3. Time cost on data set Zoo 

Table 6. Result on data set Soybean (AA) 
Input length 

 of PV 
Number of optimal  
adjustment times AA Mean adjustment times  

per iteration MEIT (ms) 

1 1 91.3% 1 31.0 

2 2 98.5% 1.93 22.4 

3 3 100% 2.58 19.7 

4 3 100% 2.84 19.3 

5 3 100% 2.83 19.7 
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a) Equivalent iteration time b) Mean equivalent iteration time 

Fig. 4. Time cost on data set Soybean 

Table 7 shows the result with the objective function of CVISFD. 

Table 7. Result with CVISFD 

Input length 
 of PV 

Zoo Soybean 
Number of optimal  
adjustment times CVISFD AA Number of optimal  

adjustment times CVISFD AA 

1 1 0.062 91.9% 1 0.019 78.9% 
2 2 0.042 96.9% 2 0.013 78.4% 
3 3 0.035 98.5% 3 0.008 75.6% 
4 4 0.031 79.7% 3 0.008 75.6% 
5 5 0.030 86.1% 3 0.008 75.6% 

4.3. Discussion 

Discussions of the experimental results are as followed: 
In SA iterations, Bidirectional CABOSFV adjustments have an obvious 

advantage on iterative time than classic CABOSFV, which indicates Bidirectional 
CABOSFV adjustment’s ability of making full use of previous results can reduce 
considerable number of repeated clustering process. This provides a reference for 
further extending Bidirectional CABOSFV based on iterative optimization. 

MEIT decreases with the increase of adjustment times, but the rate of change 
decreases gradually. The reason seems to be, that in a probabilistic sense, the length 
of SA selected parameter vector tends to the median, reducing the influence of 
higher adjustment number on MEIT. Therefore MEIT can be further reduced as the 
length of initial PV increases. 

According to both internal and external criteria results, the lengths of optimal 
PVs, the optimal adjustment times, are all greater or equal to 3, validated the 
improvement on clustering quality of multi-adjustment clustering. 

The internal criteria result of dataset Zoo is ideal, but the internal criteria result 
of Soybean is relatively low, consider the internal clustering validity index is still to 
be improved. Meanwhile, the external criteria results of both datasets are 
remarkably good, proved that the theoretical limit of clustering quality has been 
improved. Also, with proper clustering validity index, the requirement of initial 
parameter determination can be circumvented by the algorithm. 
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5. Conclusion 

A method of multi-adjustment clustering is proposed on the base of parameter 
adjustment method and parameter selection method. To approach the optimal 
solution of multi-adjustment clustering, Simulated Annealing is used with the object 
function of clustering validity indexes. Both, time complexity analysis and 
experiments on UCI datasets prove that the proposed algorithm has a fine 
computational tractability through iterations, the clustering quality is improved, and 
the requirement of initial parameter determination can be circumvented. In general, 
the attainable clustering quality is higher by multi-adjustment clustering, which 
indicates that the sensibility of clustering order has been reduced through separation 
and re-aggregation of the objects. 

In addition, how to design a more reliable internal clustering validity index 
remains to be studied further. 
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