
 5 

BULGARIAN ACADEMY OF SCIENCES 
 

CYBERNETICS AND INFORMATION TECHNOLOGIES  Volume 16, No 6 
Special issue with selection of extended papers from 6th International Conference on Logistic, 
Informatics and Service Science LISS’2016 

Sofia  2016 Print ISSN: 1311-9702; Online ISSN: 1314-4081 
DOI: 10.1515/cait-2016-0074 

 

 
 
 
The Algebraic Operations and Their Implementation Based  
on a Two-Layer Cloud Data Model 

Ying Li1, Baotian Dong2 
1Guangxi Colleges and Universities Key Laboratory of Scientific Computing & Intelligent Information 
Processing, Guangxi Teachers Education University, Nanning 530001, China  
2School of Traffic and Transportation, Beijing Jiaotong University, Beijing 100044, China   
Emails:    ling.ly@126.com     btdong@bjtu.edu.cn 

Abstract: The existing cloud data models cannot meet the management 
requirements of structured data very well including a great deal of relational data, 
therefore a two-layer cloud data model is proposed. The composite object is defined 
to model the nested data in the representation layer, while a 4-tuple is defined to 
model the non-nested data in the storage layer. Referring the relational algebra, the 
concept of SNO (Simple Nested Object) is defined as basic operational unit of the 
algebraic operations; the formal definitions of the algebraic operations consisting 
of the set operations and the query operations on the representation layer are 
proposed. The algorithm of extracting all SNOs from a CAO (Component-Attribute-
Object) set of a composite object is proposed firstly as the foundation, and then as 
the idea; the pseudo code implementation of algorithms of the algebraic operations 
on the storage layer are proposed. Logic proof and example proof indicate that the 
definition and the algorithms of the algebraic operations are correct.  

Keywords: Cloud database; data model; algebraic operation; key-value; structured 
data. 

1. Introduction 

A cloud database is a kind of cloud computing technology, which has been 
developed with the conception of “Software-as-a-Service” [1]. The existed cloud 
data models are key-value model and cloud relational data model. Cloud databases 
using key-value model are BigTable [2], SimpleDB [3], PNUTS [4], HBase [5], 
Amazon DynamoDB [6], HugeTable [7], MongoDB [8], CouchDB [9], and so on; 
while those using cloud relational model are Amazon relational database service 



 6 

[10], GaianDB [11], SQL Azure [12], and so on. Cloud relational model is still 
relational model logically but its storage method is changed. Conceptions of row set 
and table set are used to store data in the cloud in order to process data parallel and 
improve the efficiency of the join operation. The merits of cloud relational model 
include: simple data structure, so distributed storage can be implemented easily; 
relational algebra and query language have been provided, so complex query can be 
implemented; SQL language is simple and easy to learn, so average user can use it 
easily. The shortcomings include: implementing the join operation in the cloud is 
expensive and difficult; a database is hard to expand because the capacity of the 
database is limited depending on the joined operation; artificial intervention cost 
will be increased because associated tables should be stored in the same data node. 
Key-value model is a kind of storage model in which a record is a value without 
data structure and key is an index of the value. Databases using key-value model are 
more like a file system. The merits of the key-value model include: data has no 
structure, so distributed storage and parallel processes can be implemented easily; 
access data by using a record as a unit and a key as an index, so it is easy to obtain 
high access performance and good expansibility. The shortcomings include: it 
cannot be used to represent structured data, so the application domain is limited; 
query algebra and query language have not been provided, so complex query cannot 
be implemented; data analysis has to be done by programming, so it is hard to be 
used by average users without programming technology. It was indicated that a 
great deal of structured data including relational data needs to be stored in the cloud 
to be read/write online, analysed and mined in references [13-16]. Thus a kind of 
cloud databases which have high performance of data access, good expansibility, 
good usability and powerful query capability are in need to manage the relational 
data and other structured data. The existing cloud data models are not suitable for 
such cloud databases; therefore a new type of cloud data model is needed. 

The contribution of this paper is shown below. 
(1) A two-layer cloud database model is proposed. The composite object is 

defined to model the nested data in the representation layer; the concept of CAO 
(Component Attribute Object), schema and a 4-tuple are defined to model the non-
nested data on the storage layer.  

(2) The formal definitions of the algebraic operations consisting of the set 
operations and the query operations on the representation layer are proposed. The 
Simple Nested Object (SNO) is defined as the basic operational unit of the algebraic 
operations. The definition of attribute-tree is proposed to be applied in the query 
operations. Example validation is done to verify the correct of the definition of 
these algebraic operations. 

(3) The idea and the pseudo code implementation of algorithms of the 
algebraic operations on the storage layer are proposed. The CAO set of a SNO is 
proposed as the basic operational unit of the algebraic operations on the storage 
layer. The algorithm of extracting all SNOs in their CAO form from the CAO set of 
a composite object is proposed to be the foundation of all algorithms of the 
algebraic operations. The definition of parents-child relation and the definition of 



 7 

CAO-tree are also proposed and applied in extracting SNO. Logic validation and 
example validation are done to verify the correctness of the algorithms. 

2. The two-layer data model 

2.1. The representation layer 

Definition 2.1. Atomic object. A set which consists of A:V is called an atomic 
object. A:V is called a component. A is an attribute and V is a value which is a 
simple data type such as integer and string. Such A:V is an atomic component and A 
is an atomic attribute. A is a composite attribute if V is not a simple data. Such A:V 
is called a composite component.  

Definition 2.2. Recursive definition of a composite object. An object is a set 
of A:V, and a) if an object is atomic, it is a composite one; or b) given  
O= {(Ai: [Oi1, Oi2,..., Oim])|i=1, 2,..., n; nN, mN}, if Oij, 1≤ j ≤m, and it is a 
composite object, then O is a composite object. An atomic object and a composite 
object are called an object. 

[Oi1, Oi2,..., Oim] means an array of objects in the definition above. A pair of 
curly braces represents a layer of a composite object; and it also represents a nested 
object. A component is called a key component if it is the one which can uniquely 
identify a nested object. 

Example 1. A composite object. 
{“personSetID”: “01”, “authors”: [{ “authorID”: “01”, “firstName”: “Isaac”, 

“lastName”: “Asimov”, “books”: [{“bookID”: “01”, “bookname”: “Fantastic 
Voyage”, “publishinghouse”: “Bantam Doubleday Dell Publishing Group”}, 
{“bookID”: “02”, “bookname”: “End of Eternity”, “publishinghouse”: “Grafton 
Books”}]}, {“authorID”: “02”, “firstName”: “Tad”, “lastName”: “Williams”, 
“books”: [{“bookID”: “03”, “bookname”: “Empire of the Ants”, 
“publishinghouse”: “Bantam Doubleday Dell Publishing Group”}, {“bookID”: 
“04”, “bookname”: “Le Papillon DES Etoiles”, “publishinghouse”: “Librairie 
generale francaise”}]}], “musicians”: [{“musicianID”: “01”, “firstName”: “Eric”, 
“lastName”: “Clapton”, “instrument”: “guitar”}, {“musicianID”: “02”, “firstName”: 
“Sergei”, “lastName”: “Asimov”, “instrument”: “piano”}]} 

Components whose form like “authorID”: “**”, “bookID”: “**” and 
“musicianID”: “**” are the key components in the example above.   

2.2. The storage layer 

Definition 2.3. Component-Attribute-Object, CAO. Take a key component (for 
short C) from a nested object x, take an attribute (for short A) from x, and take all 
the atomic components of one value of A to form an atomic object (for short O). C, 
A and O forms a 3-tuple which is called a CAO of A.  

A has only one CAO if its value is an object; A has more than one CAO if its 
value is an array of objects. A composite object can have more than one CAO. 

Definition 2.4. The schema of a composite object. Given a composite object 
{(Ai: [Oi1, Oi2,..., Oim])|i=1, 2,…, n; nN, mN}. Its schema is a set in which an 



 8 

element is a map from an attribute to its data type, expressed as  
={A->(A1, A2,..., Ar) or A->basic data type|A{Ai}; Ak{Ai}; i=1, 2,…, n;  
k=1, 2,..., r, r ≤ n}; A is the pre-image of map A->(A1, A2,…, Ar), and (A1, A2,..,. Ar) 
is the image of the map. 

Definition 2.5. The 4-tuple instance of a composite object. Suppose a 
composite object O, the storage instance of O is (O0, T0,  ,  ). O0 is the set of 
atomic components in the top level; T0 is the set of composite attributes in the top 
level;   is the set of CAO; and   is the schema of O. 

Example 2. A 4-tuple instance corresponding to the composite object in 
Example 1. 

Answer: O0=  ;  
T0= {“authors”,“musicians”}; 
 ={“authors”-> (“firstName”, “lastName”, “books”), “books”-> 

(“bookName”, “publishinghouse”), “musicians”->(“firstName”, “lastName”, 
“instrument”), “firstName”-> String, “lastName”-> String, “bookname”-> String, 
“publishinghouse”-> String, “instrument”-> String)}; 

 = {( “personSetID”: “01”, “authors”, { “authorID”: “01”, “firstName”: 
“Isaac”, “lastName”: “Asimov”}), (“personSetID”: “01”, “authors”, { “authorID”: 
“02”, “firstName”: “Tad”, “lastName”: “Williams”}), (“personSetID”: “01”, 
“musicians”, {“musicianID”: “01”, “firstName”: “Eric”, “lastName”: “Clapton”, 
“instrument”: “guitar”}), (“personSetID”: “01”, “musicians”, { “musicianID”: “02”, 
“firstName”: “Sergei”, “lastName”: “Asimov”, “instrument”: "piano”}), 
(“authorID”: “01”, “books”, {“bookID”: “01”, “bookName”: “Fantastic Voyage”, 
“publishinghouse”: “Bantam Doubleday Dell Publishing Group”}), (“authorID”: 
“01”, “books”, {“bookID”: “02”, “bookname”: “End of Eternity”, 
“publishinghouse”: "Grafton Books”}), (“authorID”: “02”, “books”, { “bookID”: 
“03”, “bookname”: “Empire of the Ants”, “publishinghouse”: “Bantam Doubleday 
Dell Publishing Group”}), (“authorID”: “02”, “books”, {“bookID”: “04”, 
“bookname”: “Le Papillon DES Etoiles”, “publishinghouse”: “Librairie generale 
francaise”})} 

2.3. The method to transform a CAO to a pair of key-value 

The key-value model is used to storage data in the two-layer data model because it 
supports high expansibility. Each CAO will be converted to a storage unit after a 
composite object being converted to a CAO set. How to transform a CAO to a pair 
of key-value can refer to literature [17]. 

2.4. Data transforming methods between the representation layer and the storage 
layer 

CAO plays a key role in the data converting between representation layer and 
storage layer. A composite object can concert to more than one CAO, and vice 
verse. The bidirectional converting algorithms between the representation layer and 
the storage layer can refer to literature [17]. 



 9 

3. The formal definition of algebraic operations and their 
implementation in the representation layer 

3.1. Relevant definitions 

Definition 3.1. Attribute-tree. Given the 4-tuples (O0, T0,  ,  ) of composite 
object O, create a tree whose root node is an attribute of T0, and create other nodes 
according to maps in  .The pre-image of a map is a parents node and the images 
of this map are child nodes. Such a tree is called an attribute-tree of the composite 
object.  

The node set of all attribute-trees is the set of attributes of O; and the edge set 
of these trees is the map set of O except those maps whose pre-images are atomic 
attributes. 

One or more attribute-trees can be created from a 4-tuple of a composite 
object, and the number of attribute-trees is equal to the number of elements in T 0. 
Attribute-trees (a) and (b) in Fig. 1 are attribute-trees of X in Example 1. 

Fig. 1. Two attribute-trees of X in Example 1 

Definition 3.2. Simple Nested Object, SNO. Given a composite object O, 
extract an object from O. If this object meets the conditions: a) it has only one top 
attribute; b) the value of any attribute is basic data type or another object but not an 
array; c) its attribute-tree is one of the attribute-trees of O, then this object is called 
a simple nested object, for short SNO. 

The attributes of a SNO can form only one attribute-tree. SNO is the basic 
operational unit of set operations and query operation. It is just logic operational 
unit, and the physical one is CAO set of SNO in fact. 

3.2. The set operations 

The set Operations consist of intersection operation, union operation and difference 
operation. Given two composite objects X and Y; Xs is the set of SNO of X, and Ys is 
that of Y; X and Y cannot participate in the operations directly. They should be 
converted to SNO sets which take part in the operations. The operational result 
which is the set of SNO should be converted to a composite object. The formal 
definitions of intersection operation, union operation and difference operation are 
below. 

authors

firstName lastName genrebooks

bookName publishhouse

musicians

firstName lastName instrument

(b)(a)



 10 

(1) Intersection: X and Y share at least an attribute-tree, and the result of 
intersection operation of Xs and Ys is a set of SNO which shares by Xs and Ys, 
expressed as Xs Ys, calculated by formula  
(3.1)   Xs Ys={Os|OsXsOsYs}.  

(2) Union: The union of Xs and Ys is a set of SNO which belong to Xs or belong 
to Ys, expressed as Xs Ys, calculated by formula  
(3.2)   Xs Ys={Os|OsXsOsYs}. 

(3) Difference: X and Y share at least an attribute-tree. The difference of Xs and 
Ys is a set of SNO which belong to Xs but not belong to Ys, expressed as Xs–Ys, 
calculated by formula  
(3.3)   Xs－Ys={Os|OsXsOsYs}. 

Use the intersection operation as an example to illustrate how to calculate the 
set operations on the representation layer. 

Example 3. Suppose composite object X={“personSetID”: “01”, “authors”: 
{“authorID”: “01”, “firstName”: “Isaac”, “lastName”: “Asimov”, “genre”: “science 
fiction”, “books”: [{“bookID”: “01”, “bookname”: “Fantastic Voyage”, 
“publishinghouse”: “Bantam Doubleday Dell Publishing Group"}, {“bookID”: 
“02”, “bookname”: “End of Eternity”, “publishinghouse”: “Grafton Books ”}]}}; 

Y={“personSetID”: “01”, “authors”: {“authorID”: “01”, “firstName”: “Isaac”, 
“lastName”: “Asimov”, “genre”: “science fiction”, “books”: [{ “bookID”: “01”, 
“bookname”: “Fantastic Voyage”, “publishinghouse”: “Bantam Doubleday Dell 
Publishing Group”}, {“bookID”: “05”, “bookname”: “The Mysterious Island”, 
“publishinghouse”: “Signet Classics”}]}}, calculate X Y. 

Answer: Exact the SNO set Xs from X, and t exact the SNO set Ys from Y 
firstly. Next calculate Xs Ys. Last convert Xs Ys to a composite object. 

Xs ={{“personSetID”: “01”, “authors”: {“authorID”: “01”, “firstName”: 
“Isaac”, “lastName”: “Asimov”, “genre”: “science fiction”, “books”: {“bookID”: 
“01”, “bookname”: “Fantastic Voyage”, “publishinghouse”: “Bantam Doubleday 
Dell Publishing Group”}}}, {“personSetID”: “01”, “authors”: {“bookID”: “01”, 
“firstName”: “Isaac”, “lastName”: “Asimov”, “genre”: “science fiction”, “books”: 
{“bookID”: “02”, “bookname”: “End of ternity”, “publishinghouse”: “Grafton 
Books”}}}}; 

Ys ={{“personSetID”: “01”, “authors”: {“authorID”: “01”, “firstName”: 
“Isaac”, “lastName”: “Asimov”, “genre”: “science fiction”, “books”: {“bookID”: 
“01”, “bookname”: “Fantastic Voyage”, “publishinghouse”: “Bantam Doubleday 
Dell Publishing Group”}}}, {“authors”: {“authorID”: “01”, “firstName”: “Isaac”, 
“lastName”: “Asimov”, “genre”: “science fiction”, “books”: {“bookID”: “05”, 
“bookname”: “The Mysterious Island”, “publishinghouse”: “Signet Classics”}}}}; 

Xs Ys = {{“personSetID”: “01”, “authors”: {“firstName”: “Isaac”, 
“lastName”: “Asimov”, “genre”: “science fiction”, “books”: {“bookname”: 
“Fantastic Voyage”, “publishinghouse”: “Bantam Doubleday Dell Publishing 
Group”}}}}; 

X Y ={“personSetID”: “01”, “authors”: {“firstName”: “Isaac”, “lastName”: 
“Asimov”, “genre”: “science fiction”, “books”: {“bookname”: “Fantastic Voyage”, 
“publishinghouse”: “Bantam Doubleday Dell Publishing Group”}}}. 



 11 

3.3. The query operation 

3.3.1. The projection operation 
Projection is to filter some components of a composite object and create a new 
composite object. Given composite object O and its attributes number k, the 
projection of O on attributes 

1l
A ,…,

mlA  (m ≤ k; l1,…,lm are integers between 1 and 

k; and the m attributes can form an attribute-tree; 
1l

A ,…,
mlA  is the projection 

attribute set) is done by projecting on the SNO set (suppose Os) of O. Use symbol 
s

1,..., ( )
ml lP O  to represent the projection operation. The formal definition of 

projection is defined as  
(3.4)   

1 1

s s

1,..., { | ( )( ) ( [ ] [ ]) ... ( [ ]( )
mj j jml lP O O C C C           

1 1
[ ]) ( ) ( ), { ,..., } { ,..., }, },

m mj j j l lkC D D R R C C C C m k           
where   and   are both SNOs; [ ]

ij
C  and [ ]

ij
C , i =1,…, m, represent atomic 

component 
ij

C  of   and   respectively. ( D , R ) and ( D , R ) represent the 

attribute-tree of  and   respectively. ( ) ( )D D R R       indicates that the 
attribute-tree of   is a sub-tree of that of  . Equation (3.4) means that the 
projection on the SNO set is to select some components of a composite object. If 
the attributes in the projection set cannot form an attribute-tree according to the 
schema of O, expand the projection set until the attributes in it can form an 
attribute-tree before doing the projection operation. 

Example 4. Given composite object X and its SNO set Xs in Example 3, 
calculate Pauthors, lastname, books, bookname(O). 

Answer: First, calculate Pauthors, lastname, books, bookname(Xs)= {{“authors”: 
{“lastName”: “Asimov”, “books”: {“bookname”: “Fantastic Voyage”}}}, 
{“authors”: {“lastName”: “Asimov”, “books”: {“bookname”: “End of ternity”}}}}. 

Second, Convert the result to a composite object: {“authors”: [{“lastName”: 
“Asimov”, “books”: {“bookname”: “Fantastic Voyage”}}, {“authors”: 
{“lastName”: “Asimov”, “books”: {“bookname”: “End of ternity”}}]}. 

3.3.2. The selection operation 

Suppose composite object X, and a selection condition F. There are two ingredients 
in F, one is operand, and another is operator. Operand can be constants or atomic 
attributes. These attributes belong to an attribute-tree or are shared by several 
attribute-trees. Such specification will make these attributes appearing in every 
SNO of a SNO set. Operators include comparing symbol (<, ≤, ≥, >, ≠, =) and logic 
symbols (∧, ∨). The comparison operator is called CS, and the logical operator is 
called LS. Conditional expressions can be expressed as “(attribute1 CS value1) 
LS(attribute2 CS value2)…LS(attributen CS valuen)”. The result of the selection 
operation of X under F is also a composite object. The selection operation is 



 12 

expressed as s( )F X . Given the SNO set of X, Xs = {Oi
s|i=1, 2,..., n}(Oi

s is a SNO), 
the selection result is calculated by formula  
(3.5)  F(Xs) = {

j

s
xO

|(Ox
s
jXs) (F(Ox

s
j)=true), 1≤ xj ≤ n, j=1, 2,..., m; 1≤ m ≤n}.   

4. The implementation of algebraic operations on the storage layer 

The basic operational unit of the set operation and the query operation are logically 
SNO on the representation layer, but the implementations of these operations are 
done on the CAO sets on the storage layer. A composite object consists of more 
than one SNO in the representation layer and the composite object is decomposed to 
more than one CAO in the storage layer, so a SNO can consists of one or more 
CAOs. Therefore how to extract all SNOs from the CAO set of a composite object 
is the foundation of implementing algebra operations on the storage layer. In 
addition, the set operation and the query operation need to determine whether two 
CAO sets are equal and whether two CAOs are equal. 

4.1. Relevant algorithms 

4.1.1. The algorithm for extracting all SNO sets from a CAO set 

Definition 4.1. Parents-child relation of CAO. Given two CAOs: X1 and X2, X1 is 
the parents of X2 and X2 is the child of X1 if getKeyCon(X1.O) = X2.C. 

Function getKeyCon(t) is to get the key component of t which is an atomic 
object. (“personSetID”: “01”, “authors”, {“authorID”: “01”, “firstName”: “Isaac”, 
“lastName”: “Asimov”}) and (“authorID”: “01”, “books”, {“bookID”: “01”, 
“bookName”: “Fantastic Voyage”, “publishinghouse”: “Bantam Doubleday Dell 
Publishing Group”}) in Example 2 is a pair CAO which has a parents-child relation, 
and the former is the parents of the latter, the latter is the child of the former. 

Definition 4.2. CAO-tree. Given a CAO set of a composite object, take a 
CAO whose A is a composite attribute of the top level as the root node of a tree, and 
then take the children of the CAO to be the child nodes of the root, and add other 
CAOs as the parents nodes and their children as the children nodes to the tree. Such 
tree is called a CAO-tree. 

According to the definition of CAO-tree, all CAOs in the path from the root 
node to a leaf node are all the CAOs of a SNO. A set of all SNOs which belong to 
the same attribute-tree can be acquired by traversing all the nodes on the path from 
the root node to all the leaf nodes. The CAO-tree can be stored with one-
dimensional array. The structure of CAO and that of the CAO-tree are defined 
below. 

TYPE CAO=RECORD 
     C: String; 
     A: String; 
     O: ARRAY[1..maxlen] OF String; 
END; 



 13 

TYPE tnode=RECORD 
 data: CAO; 
    parents: CAO; 
END; 
TCAO =ARRAY[1..p] OF tnode. 
Construct a CAO-tree first, and then use depth-first-traversal method to 

traverse the tree to acquire all CAO sets of all SNOs. The CAO-tree is stored in 
array TCAO. The CAO set of a composite object is stored in array OCAO. The 
composite attributes set on the top level of a composite object are stored in array 
LA.  

Function createCAOTree (LA, OCAO) is used to construct a CAO tree, and its 
pseudo code is shown below. 
FUNC createCAOTree(LA:ARRAY[1.. n] OF String, OCAO: ARRAY[1.. m] OF 
CAO) :ARRAY[1..p] OF tnode; 

TCAO: ARRAY[1..p] OF tnode; 
i:=1; 
WHILE i<=m DO 
 【TCAO [i].data:=OCAO [i]; i:=i+1;】 
i:=1; 
WHILE i<=n DO  {these double loops set the parents of a CAO whose 

attribute is the top composite attribute to be NIL} 
【a:= LA[i]; j:=1; 

WHILE j<=m DO 
IF TCAO [j].data.A=a THEN 

【TCAO [j].parents=NIL; break;】 
            ELSE j:=j+1;  

】 
i:=1; 
WHILE i<=m DO {these double loops find a child node of a CAO} 
【i=i+1; j=1; 
 WHILE j<=m DO 
    IF (getKeyCon(c[i].data.O)= TCAO [j].data.C)  

THEN TCAO [j].parents= TCAO [i].data; 
    ELSE j=j+1; 
】 
RETUREN TCAO; 

ENDF. 
Create the CAO-trees of the composite object in Example 2. These trees are 

showed in Fig. 2. There are four CAO-trees which can form 6 CAO sets of SNO. 
These CAO-trees are stored in a two dimensional array, as shown in Table 1. 

 



 14 

( “personSetID”: “01”, 
“authors”,{ “authorID”: 

“01”, …})

(“personSetID”: “01”, 
“authors”,{ “authorID”: 

“02”, ...})

(“authorID”: “01”, 
“books”,{“bookID”: 
“01”, …})

(“authorID”: “01”, 
“books",{“bookID”: 
“02”, …})

( “authorID”: “02”, 
“books”,{ “bookID”: 
“03”, …})

(“authorID”: “02”, 
“books”,{ “bookID”: 
“04”, …})

(“personSetID”: “01”, 
“musicians”,{ “musicianID”: 
“01”,…})

(“personSetID”: “01”, 
“musicians”,{ “musicianID”: 
“02”,…})

(a) (b)

(c) (d)

Fig. 2. The CAO-trees of the composite object of Example 2 

Table 1. The CAO-trees of the composite object of example 2 are stored in a two dimensional array 
(“personSetID”: “01”, “authors”, { “authorID”: 
“01”, …}) NIL 

(“personSetID”: “01”, “authors”,{“authorID”: 
“02”, …}) NIL 

(“personSetID”: “01”, “musicians”, 
{“musicianID”: “01”,…}) NIL 

(“personSetID”: “01”, “musicians”, 
{“musicianID”: “02”,…}) NIL 

(“authorID”: “01”, “books”,{“bookID”: “01”, 
…}) 

(“personSetID”: “01”, “authors”, { “authorID”: 
“01”, …}) 

(“authorID”: “01”, “books”,{“bookID”: “02”, 
…}) 

(“personSetID”: “01”, “authors”, { “authorID”: 
“01”, …}) 

(“authorID”: “02”, “books”, {“bookID”: “03”, 
…}) 

(“personSetID”: “01”, “authors”, { “authorID”: 
“02”, …}) 

(“authorID”: “02”, “books”, {“bookID”: “04”, 
…}) 

(“personSetID”: “01”, “authors”, { “authorID”: 
“02”, …}) 

Given the two dimensional array of the CAO-tree of a composite object TCAO, 
stack S1 storing the root node, stack S2 storing a CAO set of a SNO in which an 
element is a CAO, set SCAO storing the CAO sets of SNOs, The data structures of 
CAO stack and CAO set are defined respectively below. 

TYPE CAOstack=RECORD 
 data: ARRAY[1..n] OF CAO; 
    top: integer; 
END; 
TYPE CAOSet=RECORD 
 data: ARRAY[1.. length] OF CAO; 
END; 



 15 

Function extractSNOfrCAOSet(TCAO) is used to extract the SNOs in their 
CAO form from a CAO set of a composite object, and its pseudo code is shown 
below. 
FUNC extractSNOfrCAOSet(TCAO: ARRAY[1..p] OF tnode) :ARRAY[1..p] OF 
tnode; 

i:=1;  SCAO: ARRAY[1..p] OF CAOSet;  S1, S2: CAOstack; 
WHILE i<=p DO 

IF TCAO[i].parents=NIL THEN  
【push(S1, TCAO[i].data); delete(TCAO[i]); p:=p–1; i:=i+1;】 

WHILE S1.top≠0 DO 
【    p:=pop(S1);  push(S2, p);  

WHILE S2.top≠0 DO 
  【   p:=S2.data[S2.top]; i:=1; 

WHILE i<=p DO   {This loop finds one child node of p} 
IF CAO equal(TCAO[i].parents, p) 

THEN  【push(S2, TCAO[i].data); break;】 
{TCAO[i].data is one child node of p} 

       ELSE i:=i+1; 
IF getChild(p)=NIL THEN    {p has no one child node, and p is a 

leaf node} 
【  readAllElement(S2, CAOtmp); { Read all the elements in S2 

to CAOtmp } 
addElementToSet(SCAO, CAOtmp); { Add CAOtmp to SCAO } 
delete(TCAO, p);    { Delete the i-th element from TCAO } 
p:=p–1; 
pop(S2); 

】 
             ELSE  

IF CAOequal(p, S2.data[1])=FALSE THEN {p is not the 
bottom element of S2.} 

                 【 delete(TCAO, p);  p:=p–1; pop(S2);】 
】  

】 
RETURN SCAO; 

ENDF. 
Use the function CAOequal(a, b) in Section 4.1.2 to determine whether two 

CAOs are equal. Function getChild(p) acquires one child node of p. If the child 
node is NIL, p is a leaf node. All CAOs on the path from the root node to a leaf 
node are found when finding a leaf node. These CAOs are all CAOs of a SNO. 
These CAOs can be put into set CAOtmp, and then put CAOtmp into SCAO. If 
getChild(p) is not NIL and no a child node of p can be found in TCAO, p cannot be a 
CAO of any SNO. Therefore, p should be popped from stack S2, and the node 
whose “data” field is equal to p should be deleted from TCAO if p is not the bottom 
element of S2. All the SNOs belonging to the same attribute-tree have been found if 



 16 

S2 is empty. All root nodes of all the CAO-trees are stored in stack S1. All the SNOs 
of all the attribute-trees of a composite object have been found if S1 is empty, 
therefore the result SCAO can be output. If p is the bottom element of S2, it need not 
be deleted from TCAO because it is in S1 but not in TCAO. 

Example 5. Extract all the SNOs on their CAO form from the CAO set of X in 
Example 2. 

Answer: 
SCAO={{(“personSetID”: “01”, “authors”, {“authorID”: “01”, “firstName”: 

“Isaac”, “lastName”: “Asimov”}), (“authorID”: “01”, “books”, {“bookID”: “01”, 
“bookName”: “Fantastic Voyage”, “publishinghouse”: “Bantam Doubleday Dell 
Publishing Group”})}, {(“personSetID”: “01”, “authors”, { “authorID”: “01”, 
“firstName”: “Isaac”, “lastName”: “Asimov”}), (“authorID”: “01”, “books”, 
{“bookID”: “02”, “bookname”: “End of Eternity”, “publishinghouse”: “Grafton 
Books”})}, {(“personSetID”: “01”, “authors”, {“authorID”: “02”, “firstName”: 
“Tad”, “lastName”: “Williams”}), (“authorID”: “02”, “books”, {“bookID”: “03”, 
“bookname”: “Empire of the Ants”, “publishinghouse”: “Bantam Doubleday Dell 
Publishing Group”})}, {(“personSetID”: “01”, “authors”, {“authorID”: “02”, 
“firstName”: “Tad”, “lastName”: “Williams”}), (“authorID”: “02”, “books”, 
{“bookID”: “04”, “bookname”: “Le Papillon DES Etoiles”, “publishinghouse”: 
“Librairie generale francaise”})}, {(“personSetID”: “01”, “musicians”, 
{“musicianID”: “01”, “firstName”: “Eric”, “lastName”: “Clapton”, “instrument”: 
“guitar”})}, {(“personSetID”: “01”, “musicians”, {“musicianID”: “02”, 
“firstName”: “Sergei”, “lastName”: “Asimov”, “instrument”: “piano”})}}. 

4.1.2. The algorithm to determine whether two CAOs are equal 
Given two CAOs: u1=(C1, A1, O1) and u2=(C2, A2, O2), u1 and u2 are equal if  
(u1.C1= u2.C2)∧(u1.A1= u2.A2)∧(u1.O1= u2.O2). Function CAOequal(u1, u2) is used 
to determine whether two CAOs are equal, and its pseudo code is shown below. 
FUNC CAOequal (var u1: CAO, u2: CAO ): boolean; 

IF u1.C= u2.C THEN 
【 IF u1.A= u2.A THEN 
 【i:=1; 
  WHILE i< getLength(u1.O) DO 
  【t1:= u1.O[i]; i=i+1; c:= u2.O; j:=1; 
    WHILE j< getLength(c) DO 
   【  t2:=c[j]; j:=j+1; 
    IF (t1.A≠t2.A) or (t1.V≠t2.V) THEN RETURN 

FALSE; 
】 

】 
RETURN TRUE; 

】ELSE RETURN FALSE; 
】ELSE RETURN FALSE; 

ENDF. 



 17 

4.1.3. The algorithm to determine whether two CAO sets of SNO are equal 

Given two SNOs X1 and X2, the CAO set of X1 is a, and that of X2 is b. a and b are 
equal if: (1) the number of element of each set is equal; (2) for any element in a, 
there is an element in b to be equal to it. Use the function in Section 4.1.2 to 
determine whether two CAOs are equal. Function SimNetObjEq(a, b) is used to 
determine whether two CAO sets of SNO are equal, and its pseudo code is shown 
below. 
FUNC SimNetObjEq (var a: ARRAY[1.. n] OF CAO, b: ARRAY[1.. m] OF CAO): 
boolean; 

IF n=m THEN 
 【i:=1; 
  WHILE i<=n DO 
  【t1:=a[i]; i=i+1; j:=1; 
    WHILE j<= m DO 
   【t2:=b[j]; j=j+1; IF CAOequal(t1, t2)=FALSE THEN 

RETURN FALSE;】 
】 
RETURN TRUE; 

】ELSE RETURN FALSE; 
ENDF. 

4.2. The implementing algorithm of the set operations 

The set operations are dual operations. There are two composite objects taking part 
in the set operations, and the result is also a composite object. The set operation 
done on the storage layer needs to compare two CAO sets of SNO. Suppose two 
composite objects O1 and O2 taking part in the set operation. Set SCAO1 stores the 
SNOs in CAO form extracted from the CAO set of O1, and SCAO2 is that of O2. In 
implementing the algorithms of the set operations, use the function in Section 4.1.3 
to determine whether two CAO sets of SNO are equal.  

4.2.1. Implementing algorithm of the union operation 

When implementing the union operation SCAO1∪SCAO2, read all the elements of 
SCAO2 and put them into set SCAO3, then get an element (suppose t) from SCAO1 and 
compare t with all elements in SCAO2. Add t to set SCAO3 if there is no an element in 
SCAO2 to be equal to t. Get other elements in SCAO1 and compare them with elements 
in SCAO2 and add suitable element to SCAO3 until SCAO1 is empty, here SCAO3 is the 
result. Function union(SCAO1, SCAO2) is used to merge two CAO sets of SNO, and its 
pseudo code is shown below. 
FUNC union(var SCAO1: ARRAY [1..n] of CAOSet, SCAO2: ARRAY [1..m] of 
CAOSet): ARRAY [1..p] of CAOSet; 

i:=1; k:=0; SCAO3:= SCAO2;  
WHILE i<=n do 
【 t1:= SCAO1[i]; 



 18 

 i:=i+1; 
            j:=1; 
           flag=true; 
           WHILE j<= m do 

【   t2:= SCAO2[j];  j:=j+1; 
                      IF SimNetObjEq(t1, t2) THEN 【break; flag=false;】 
                 】 
            IF flag THEN    【k:=k+1; SCAO3[k] := t1;】 

】   
RETURN SCAO3; 

ENDF. 

4.2.2. Implementing algorithm of the intersection operation 

When implementing the intersection operation SCAO1∩SCAO2, get an element 
(suppose t) from SCAO1, compare t with all the elements in SCAO2. Add t to set SCAO3 
if there is an element in SCAO2 to be equal to t. Get element from SCAO1 and compare 
it with elements in SCAO2 and add suitable element to SCAO3 until there is no element 
in SCAO1, here SCAO3 is the result. Function intersection(SCAO1, SCAO2) is used to get 
the common elements of two CAO sets of SNO, and its pseudo code is shown 
below. 
FUNC intersection (var SCAO1: ARRAY [1..n] of CAOSet, SCAO2: ARRAY [1..m] of 
CAOSet): ARRAY [1..p] of CAOSet; 

i:=1; k:=0; SCAO3: ARRAY [1..p] of CAOSet; 
WHILE i<=n do 
【 t1:= SCAO1[i];  i:=i+1;  j:=1; flag:=true; 

             WHILE j<= m do 
【   t2:= SCAO2[j];  j:=j+1; 

                  IF SimNetObjEq(t1, t2) THEN 【break; flag=false;】 
             】 
              IF flag=false THEN 【k:=k+1; SCAO3[k] := t1;】 

】   
RETURN SCAO3; 

ENDF. 

4.2.3. Implementing algorithm of the difference operation 

When implementing the difference operation SCAO1 – SCAO2, get an element (suppose 
t) from SCAO2, compare t with all element in SCAO1. If there is an element in SCAO1 to 
be equal with t, delete this element from SCAO1. Get element from SCAO2 and 
compare it with elements in SCAO1 until there is no element in SCAO2, there SCAO1 is 
the result. Function difference(SCAO1, SCAO2) is used to get the different elements 
between SCAO1 and SCAO2, and its pseudo code is shown below. 
FUNC difference (var SCAO1: ARRAY [1..n] of CAOSet, SCAO2: ARRAY [1..m] of 
CAOSet): ARRAY [1..p] of CAOSet; 



 19 

SCAO3:= SCAO1; i:=1; k:=0; 
WHILE i<=n do 
【 t1:= SCAO3[i];  i:=i+1; j:=1; flag=true; 

            WHILE j<= m do 
【   t2:= SCAO2[j];  j:=j+1; 

                      IF SimNetObjEq(t1, t2) THEN 【break; flag=false;】 
                 】 
            IF flag=false THEN deleteElementfromSet(SCAO1, t1); {delete element t1 

from set SCAO1} 
】   

RETURN SCAO1; 
ENDF. 

Example 6. Given composite objects X and Y in Example 3, calculate X∩Y on 
the storage layer. 

Answer: (1) firstly calculate the CAO set of SNO for X and Y respectively and 
the results are below. 

SCAOX={(“personSetID”: “01”, “authors”, {“authorID”: “01”, “firstName”: 
“Isaac”, “lastName”: “Asimov”, “genre”: “science fiction”}), (“authorID”: “01”, 
“books”, {“bookID”: “01”, “bookname”: “Fantastic Voyage”, “publishinghouse”: 
“Bantam Doubleday Dell Publishing Group”}), (“authorID”: “01”, “books”, 
{“bookID”: “02”, “bookname”: “End of Eternity”, “publishinghouse”: “Grafton 
Books”})}; 

SCAOY={(“personSetID”: “01”, “authors”, {“authorID”: “01”, “firstName”: 
“Isaac”, “lastName”: “Asimov”, “genre”: “science fiction”}), (“authorID”: “01”, 
“books”, {“bookID”: “01”, “bookname”: “Fantastic Voyage”, “publishinghouse”: 
“Bantam Doubleday Dell Publishing Group”}, (“authorID”: “01”, “books”, 
{“bookID”: “05”, “bookname”: “The Mysterious Island”, “publishinghouse”: 
“Signet Classics”})}; 

(2)Secondly calculate the intersection of SCAOX and SCAOY. 
SCAOX∩SCAOY={(“personSetID”: “01”, “authors”, {“authorID”: “01”, 

“firstName”: “Isaac”, “lastName”: “Asimov”, “genre”: “science fiction”}), 
(“authorID”: “01”, “books”, {“bookID”: “01”, “bookname”: “Fantastic Voyage”, 
“publishinghouse”: “Bantam Doubleday Dell Publishing Group”})} 

4.3. The implementing algorithm of query operations 

Query operations are unary operation. There is only one composite object (suppose 
O) taking part in the query operations. Suppose that all the SNOs in CAO form 
extracted from the CAO set of O is SCAO.  

4.3.1. The implementing algorithm of the projection operation 

Suppose composite object O and projecting attribute-set EP. If there is a leaf node in 
the tree created according to EP to be a composite attribute, expand EP according the 
schema of O until all the leaf nodes are atomic attributes, and suppose the expanded 
result EP1. When implementing projection operation, for a CAO (suppose x) of a 



 20 

SNO, if x.A does not belong to EP1, delete this CAO; if x.A belongs to EP1, delete 
from x.O those components whose attributes does not belong to EP1. The structure 
of a map in the schema of a composite object is defined below. 

TYPE map=RECORD 
    pre-image: String; 

image: ARRAY[1.. length] OF String; 
END. 
The structure of a node of attribute-tree is defined below. The algorithm for 

constructing an attribute-tree can refer to that of Section 4.1.1. 
TYPE tattrnode=RECORD 
 data: String; 
    parents: String; 
END. 
Function expandAttrTree(EP, mapSet) is used to expand an attribute-tree, and 

its pseudo code is shown below. 
FUNC expandAttrTree (var Tattr: ARRAY [1..n] of tattrnode, mapSet: ARRAY 
[1..m] of map): ARRAY [1..p] of String; 

i:=1; flag:=true; 
WHILE i<=n DO  {for each attribute in Tattr, determine whether it is a leaf 

node} 
 【    x:= Tattr.data[i]; i:=i+1; j:=1; 
                     WHILE j<=n DO 
    【 y:= Tattr.parent[j]; j:=j+1 ; 

IF x=y THEN 【flag:=false; break;】{x is not a leaf node  
because it is the parents of a node } 

】 
IF flag THEN {If x is a leaf node, determine whether it is a composite 

attribute.} 
【 k:=1; 
  WHILE k<=m DO 
  【  z:= mapSet [k].pre-image; k:=k+1; 

IF x=z THEN Sattr:=getAttrDescend(x); {x is a 
composite attribute, get its all descendants} 

】  
】  

】 
i:=1; 
WHILE i<=n DO 【EP1[i]:= EP[i]; i:=i+1;】{get all attributes from EP to EP1} 
la=length(Sattr); j:=1; 
WHILE j<= la DO 【EP1[i]:= Sattr [j]; i:=i+1; j:=j+1;】{ get all attributes from 

Sattr to EP1} 
RETURN EP1; 

ENDF. 



 21 

In the pseudo code above, function getAttrDescend(Tattr, x) acquires all the 
descendant attributes of x. Stack S1 and S2 store the temporary data. S1 stores the 
sub-attributes of each attribute, while S2 stores all the descendants of x. Find all sub-
attributes of x from Tattr, and then push them into S1. Pop an element of S1, and push 
it into S2, find the sub-attributes of this element, then push the sub-attributes of this 
element into S1. Repeat this procedure and all the descendants of x can be found. 
The data structure of the stacks is defined below. 

TYPE Attributestack=RECORD 
 data: ARRAY[1..n] OF String; 
    top: integer; 
END. 
The pseudo code for function getAttrDescend(Tattr, x) is shown below. 

FUNC getAttrDescend (var Tattr: ARRAY [1..n] of tnode, x: String): ARRAY [1..p] 
of String; 

i:=1; S1, S2: ARRAY[1..maxlen] OF Attributestack;  
Sattr: ARRAY[1.. maxlen] OF String; 
WHILE i<=n DO {Find the sub-attribute of x and push them into S1.} 
【 y:= Tattr [i].parent; i:=i+1；IF x==y THEN push(Tattr [i].data, S1); 】 
WHILE S1.top>0 DO  {this loop finds other descendants of x.} 
【 j:=1; a=pop(S1); push(a, S2); {transfer the top element of S1 to S2.} 

  WHILE j<=n DO  {find the sub-attributes of a} 
  【 y:= Tattr [j].parent;  

IF a=y THEN push(Tattr [j].data, S1); {push the sub-
attribute of a into S1} 

】 
】 
j:=1; 
WHILE j<= S2.top DO Sattr[j]:= S2.data[j]; {read the attributes from S2 to Sattr.} 
RETURN Sattr; 
ENDF. 
Function projection(EP, SCAO) is used to project EP on SCAO, and its pseudo 

code is shown below. 
FUNC projection (EP1: ARRAY[1..m] OF String, SCAO: ARRAY[1..m] OF 

CAOSet) :ARRAY[1..m] OF CAOSet; 
i:=1; SCAO: ARRAY[1..p] OF CAOSet; tSNO: ARRAY[1..p] OF CAO; lt:=0; 
WHILE i<=m DO 
【  bSNO:=SCAO [i]; i:=i+1; lb:=length(bSNO); j:=1; 
    WHILE j<=lb DO  

【   x:=b[j]; j:=j+1; 
     IF elementInSet(x.A, EP1) THEN {If the A field of x is in EP1, modify 

its O field.} 
     【   k:=1; lxo=length(x.O); { get the length of x.O } 
          WHILE k<= lxo DO {This loop modify the O field of x.} 
          【   c:=x.O[k]; k:=k+1; 



 22 

               IF keyComponent(c)=false and elementInSet (attr(c), EP1)=false 
THEN  delete(x.O, c); { If c is not a key component and 
its attribute is not in EP1, delete c from x.O.} 

】 
lt:= lt+1; tSNO [lt] :=x; {put x in tSNO after modifying x.} 

】 
】 

】RETURN tSNO; 
ENDF. 

In the pseudo code above, bSNO and tSNO are the CAO sets of SNO. Function 
attr(c) is to get the attribute of c. 

4.3.2. The implementing algorithm of the selection operation 
The conditional expressions defined in the representation layer is “(attribute1 CS 
value1) LS(attribute2 CS value2)…LS(attributen CS valuen)”. CS is the shorthand of 
comparing symbol (<, ≤, ≥, >, ≠, =) and LS is that of logic symbols (∧, ∨).  When 
determining whether a SNO can meet the conditional expression, for each attribute 
which appears in the expression, find it in the “O” field of the CAO in the CAO set 
of the SNO, and then use the value of the attribute to replace itself in the 
expression, last calculate the expression after all the attributes are replaced by their 
values. If the value of the expression is true, keep the SNO, otherwise, discard the 
SNO. The data structure of the unit of the conditional expression is defined below. 
The LS in the first expression unit is null. 

TYPE ExpressionUnit=RECORD 
 LS: String; 
     attribute: String; 
     CS: String; 
     Value: String; 
END. 
Function selection (F, SCAO) is used to do selection on SCAO using condition 

expression F, and its pseudo code is shown below. 
FUNC selection (F: ARRAY[1..n] OF ExpressionUnit, SCAO: ARRAY[1..m] OF 
CAOSet): boolean; 

i:=1; 
WHILE i<=m DO  {this loop is to replace all the attribute in F with its value in 

SCAO.} 
【 xSNO:= SCAO [i];  {read the ith SNO} 

             lSNO:=length(xSNO);  {get the length of xSNO. The length is also the number of 
CAO in xSNO.} 

 j:=1; 
 WHILE j<= lSNO DO 
 【 yCAO :=xSNO [j]; {read the j-th CAO of xSNO.} 
  k:=1;  lO:=length(yCAO.O); {get the length of yCAO.O. } 



 23 

  WHILE k<= lO DO 
【     c:= yCAO.O [k]; {read the k-th component of yCAO.O.} 

p:=1; 
       WHILE p<=n DO 
     【 exp:=F[p]; 

IF exp.attribute:=getAttr(c) THEN { getAttr (c) is to get the 
attribute of c.} 

F[p].attribute:=getVal(c) ; { getVal (c) is to get the value of c.} 
    IF exp.LP=“∧” THEN exp.LP:=“and”; 
    ELSE exp.LP:=“or”; 
    p:=p+1; 

】 
k:=k+1; 

】 
j:=j+1; 

】 
i=i+1; 

】 
i:=1; 
result1:=true;  {set the initial value for the previous expression unit} 
WHILE i<=m DO 
【 result2:=true; {set the initial value for the current expression unit} 

 CASE  
  F[i].CP=“>”: result2:= result2 and (strToVal(F[i].attribute> 
strToVal (F[i].value))); 

F[i].CP=“<”: result2:= result2 and (strToVal(F[i].attribute< strToVal 
(F[i].value))); 

F[i].CP=“>=”: result2:= result2 and (strToVal(F[i].attribute>= strToVal 
(F[i].value))); 

F[i].CP=“<=”: result2:= result2 and (strToVal(F[i].attribute<= strToVal 
(F[i].value))); 

F[i].CP=“=”: result2:= result2 and (strToVal(F[i].attribute= strToVal 
(F[i].value))); 

F[i].CP=“≠”: result2:= result2 and (strToVal(F[i].attribute≠strToVal 
(F[i].value)));  

{ strToVal () is to convert a string to a number} 
ENDC; 
CASE 
 F[i].LP=“and”:  result1:= result1 and result2; 
 F[i].LP=“or”:  result1:= result1 or result2; 
 F[i].LP=NIL:  result1:= result1 and result2; 
ENDC; 

】 
RETURN result1; 

ENDF. 



 24 

4.3.3. The implementing method of query operation including the projection 
operation and the selection operation 

The result of doing the projection operation firstly and doing the selection operation 
secondly is the same as the result of doing on contrary, but it is more effective to do 
the projection operation firstly. It is time consuming to extract SNOs from a CAO 
set, so the smaller of the CAO set the more effective of extracting SNO. 

Example 7. Given the composite object in Example 3, do projection operation 
and selection operation. The projecting attribute-set is EP={“authors”, “lastName”, 
“books”}, and the condition of selection operation is F=“bookName”: “Fantastic 
Voyage”. 

Answer: (1) do the projection operation. First, expand EP to be {“authors”, 
“lastName”, “books”, “bookName”, “publishinghouse”}; second, do the projection 
operation on SCAO of the composite object. SCAO is the same as that of Example 5. 
The projection result is shown below. 

SCAO1={{(“personSetID”: “01”, “authors”, {“authorID”: “01”, 
“lastName”:“Asimov”}), (“authorID”: “01”, “books”, {“bookID”: “01”, 
“bookName”: “Fantastic Voyage”, “publishinghouse”: “Bantam Doubleday Dell 
Publishing Group”})}, {(“personSetID”: “01”, “authors”, {“authorID”: “01”, 
“lastName”: “Asimov”}), (“authorID”: “01”, “books”, {“bookID”: “02”, 
“bookname”: “End of Eternity”, “publishinghouse”: “Grafton Books”})}, 
{(“personSetID”: “01”, “authors”, {“authorID”: “02”, “lastName”: “Williams”}), 
(“authorID”: “02”, “books”, {“bookID”: “03”, “bookname”: “Empire of the Ants”, 
“publishinghouse”: “Bantam Doubleday Dell Publishing Group”})}, 
{(“personSetID”: “01”, “authors”, {“authorID”: “02”, “lastName”: “Williams”}), 
(“authorID”: “02”, “books”, {“bookID”: “04”, “bookname”: “Le Papillon DES 
Etoiles”, “publishinghouse”: “Librairie generale francaise”})}} 

(2)Do the selection operation on SCAO1. There are 4 SNOs in SCAO1. Take each 
SNO from the set and use the conditional expression on each SNO. The procedure 
is shown below. 

(a) {(“personSetID”: “01”, “authors”, {“authorID”: “01”, “lastName”: 
“Asimov”}), (“authorID”: “01”, “books”, {“bookID”: “01”, “bookName”: 
“Fantastic Voyage”, “publishinghouse”: “Bantam Doubleday Dell Publishing 
Group”})}; 

For this SNO, the value of “bookName” is “Fantastic Voyage”. Use the value 
to replace the attribute, and the same below. 

F: “bookName”=“Fantastic Voyage”-> “Fantastic Voyage”=“Fantastic 
Voyage” ->TRUE; 

(b) {(“personSetID”: “01”, “authors”, {“authorID”: “01”, “lastName”: 
“Asimov”}), (“authorID”: “01”, “books”, {“bookID”: “02”, “bookname”: “End of 
Eternity”, “publishinghouse”: "Grafton Books”})}; 

“bookName”=“Fantastic Voyage”-> “End of Eternity”=“Fantastic Voyage” -
>FALSE; 

(c) {(“personSetID”: “01”, “authors”, {“authorID”: “02”, “lastName”: 
“Williams”}), (“authorID”: “02”, “books”, {“bookID”: “03”, “bookname”: “Empire 
of the Ants”, “publishinghouse”: “Bantam Doubleday Dell Publishing Group”})}; 



 25 

“bookName”=“Fantastic Voyage”-> “Empire of the Ants”=“Fantastic 
Voyage” ->FALSE; 

(d) {(“personSetID”: “01”, “authors”, {“authorID”: “02”, “lastName”: 
“Williams”}), (“authorID”: “02”, “books”, {“bookID”: “04”, “bookname”: “Le 
Papillon DES Etoiles”, “publishinghouse”: “Librairie generale francaise”})}; 

“bookName”=“Fantastic Voyage”-> “Le Papillon DES Etoiles”=“Fantastic 
Voyage” ->FALSE ; 

For 4 SNOs in SCAO1, the first SNO meet the condition expression, and the 
result is shown below. 

SCAO2={{(“personSetID”: “01”, “authors”, {“authorID”: “01”, “lastName”: 
“Asimov”}), (“authorID”: “01”, “books”, {“bookID”: “01”, “bookName”: 
“Fantastic Voyage”, “publishinghouse”: “Bantam Doubleday Dell Publishing 
Group”})}}. 

5. Conclusion 

A cloud-oriented two-layer data model is proposed, in which the composite object 
is defined to model the nested data in the representation layer and the conceptions 
of CAO; the schema and a 4-triple are defined to model the non-nested data in the 
storage layer. The formal definitions of the algebraic operations consisting of the set 
operation and the query operation are proposed. The conception of SNO is proposed 
as the basic operational unit for the algebraic operations. Own to this conception, 
these operations have simple expression and can ensure a correct result. The 
attribute-tree is defined and is applied in the query operation to offer attributes 
selection. The ideas of implementing the algebraic operations on the storage are 
proposed; the implementing pseudo code of these algorithms is also designed. The 
algorithm of extracting all SNOs on their CAO form from the CAO set of a 
composite object is proposed as foundation of the algorithms of the algebraic 
operations. The conception of parent-child relation of CAO and that of CAO-tree 
are defined and applied in extracting SNO. Logic proof and example proof indicate 
that the formal definitions and the implementing pseudo code of the algebraic 
operations are correct. Implementing the two-layer cloud database management 
system based on these algebraic operations is seen as future work. 

Acknowledgements: This paper is supported by Scientific Research Foundation of the Higher 
Education Institutions of Guangxi, China (Grant No KY2015YB188), the National Natural Science 
Foundation of China (Grant No 61363074), and Guangxi Natural Science Foundation of China (Grant 
No 2015GXNSFAA139306). 

R e f e r e n c e s 

1. L i n, Z.-Y., Y.-X. L a i, C. L i n  et al. Research on Cloud Databases. – Journal of Software,  
Vol. 23, 2012, No 5, pp. 1148-1166. 

2. C h a n g, F., J. D e a n, S. G h e m a w a t  et al.  Bigtable: A Distributed Storage System for 
Structured Data. – ACM Trans. on Computer Systems, Vol. 26, 2008, No 2, pp. 1-26. 

 



 26 

3. Amazon SimpleDB – Simple Database Service.  
http://aws.amazon.com/cn/simpledb/ 

4. C o o p e r, B. F., R. R a m a k r i s h n a n, U. S r i v a s t a v a  et al. Pnuts: Yahoo!’s Hosted Data 
Serving Platform. – In: Proc. of VLDB Endowment, Vol. 1, 2008, No 2, pp. 1277-1288. 

5. APACHE HBASE.  
http://hbase.apache.org/ 

6. Amazon Dynamo. 
http://aws.amazon.com/cn/dynamodb/ 

7. Q i, J., L. Q i a n, Z. G. L u o. Distributed Structured Database System Huge Table. – In:  
M. G. Jaatun, G. S. Zhao, C. M. Rong, Eds. Proc. of 1st Int. Conf. on Cloud Computing 
(CloudCom’09), Berlin, Springer-Verlag, 2009, pp. 338-346. 

8. C h o d o r o w, M., D. B. M o n g o. The Definitive Guide Dirolf. Kristina O’Reilly Media, Inc., 
USA 2010, p. 9.  

9. A n d e r s o n, J. C., J. L e h n a r d t, N. S l a t e r. CouchDB: The Definitive Guide. O’Reilly 
Media, Inc., USA, 2010.2.3. 

10. Amazon Relational Database Service.  
http://en.wikipedia.org/wiki/Amazon_Relational_Database_Service 

11. G a i a n, D. B. Easily Accessing All Your Distributed Research Data.  
http://cmg.soton.ac.uk/events/event-610/ 

12. The Architecture of SQL Azure.  
http://zh.wikipedia.org/wiki/SQL_Azure 

13. G u o, X.-M., X.-G. H u o, Y. H e.  Cloud Database Design Base on the Requirement  
of Management Information Ontology. – Mathematics in Practice and Theory, 2014, No 44, 
pp. 117-122. 

14. L i u, Z., Z. W e n, H. Z h a n g. Cloud Computing and Cloud Data Management Technology. – 
Journal of Computer Research and Development, 2012, No 49, pp. 26-31. 

15. A b a d i, D. J. Data Management in the Cloud: Limitations and Opportunities. – In: Bulletin of the 
IEEE Computer Society Technical Committee on Data Engineering, 2009, pp. 1-10. 

16. Cloud Database of 2013 – Trends and Predictions.  
http://cloudtweaks.com/2013/06/cloud-database-of-2013-trends-and-predictions/ 

17. L i, Y., Y. L u. A Two-Layer Cloud Database Model and Its Bidirectional Conversion Algorithms. 
– In: Proc. of 2016 IEEE 7th International Conference on Software Engineering and Service 
Science, 2016, pp. 289-294. 

 


