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Abstract: While SIFT (Scale Invariant Feature Transform) features are used to 

match High-Resolution (HR) remote sensing urban images captured at different 

phases with large scale and view variations, feature points are few and the 

matching accuracy is low. Although replacing SIFT with fully affine invariant 

features ASIFT (Affine-SIFT) can increase the number of feature points, it results in 

matching inefficiency and a non-uniform distribution of matched feature point 

pairs. To address these problems, this paper proposes the novel matching method 

ICA-ASIFT, which matches HR remote sensing urban images captured at different 

phases by using an Independent Component Analysis algorithm (ICA) and ASIFT 

features jointly. First, all possible affine deformations are modeled for the image 

transform, extracting ASIFT features of remote sensing images captured at different 

times. The ICA algorithm reduces the dimensionality of ASIFT features and 

improves matching efficiency of subsequent ASIFT feature point pairs. Next, coarse 

matching is performed on ASIFT feature point pairs through the algorithms of 

Nearest Vector Angle Ratio (NVAR), Direction Difference Analysis (DDA) and 

RANdom SAmple Consensus (RANSAC), eliminating apparent mismatches. Then, 

fine matching is performed on rough matched point pairs using a Neighborhood-

based Feature Graph Matching algorithm (NFGM) to obtain final ASIFT matching 

point pairs of remote sensing images. Finally, final matching point pairs are used to 

compute the affine transform matrix. Matching HR remote sensing images captured 

at different phases is achieved through affine transform. Experiments are used to 

compare the performance of ICA-ASFIT and three other algorithms (i.e., Harris-

SIFT, PCA-SIFT, TD-ASIFT) on HR remote sensing images captured at different 
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times in different regions. Experimental results show that the proposed ICA-ASFIT 

algorithm effectively matches HR remote sensing urban images and outperforms 

other algorithms in terms of matching accuracy and efficiency. 

Keywords: Remote sensing image matching, Independent component analysis, 

SIFT, Affine transform. 

1. Introduction 

Matching remote sensing images refers to image processing procedures that match 

two or more images of the same scenario, captured using different sensors at 

different phases under different views. It is a key pre-processing step for remote 

sensing data fusion, variation detection, and object detection [1]. Existing 

technologies are effective at matching multi-temporal remote sensing images that 

have small parallax and scale variations. Yet, it still remains a challenge to match 

multi-temporal remote sensing images that have large parallax and scale variations. 

In urban areas that consist of many buildings and facilities, solar altitudes and 

imaging angles of satellite sensors can vary, thus ground objects (e.g., buildings) 

are prone to rotation, distortion, and drift; shadow distribution is distinctive, key 

points at different heights are asynchronous, and affine deformation is apparent. 

Traditional local feature descriptors (e.g., S u s a n  and B r a d y  [2], H a r r i s  and 

S t e p h e n  [3], SURF [4], SIFT [5]) are barely robust to affine deformation, so 

they can only extract fewer feature point pairs from multi-temporal remote sensing 

images that have large affine deformations, resulting in poor matching accuracy. 

Although the ASIFT algorithm [6] can extract fully affine invariant features, it 

generates too many ASIFT feature points, which leads to slow matching speed and 

a non-uniform distribution of feature point pairs. Traditional matching algorithms 

(e.g., Harris-SIFT [7-8], PCA-SIFT [9]) have a good matching efficiency, but their 

matching accuracy is difficult to be guaranteed. Given rough data on exterior 

orientation elements of oblique images and accurate camera capturing angles, H-

SIFT [10], PIF [11], and AIF[12] can match large-inclination aerial images 

accurately and efficiently. But it is infeasible for remote sensing images to estimate 

exterior orientation elements and to determine an accurate camera capturing angle. 

Given the large impact of estimation accuracy on the matching process, these 

algorithms are unsuitable for matching multi-temporal remote sensing images. To 

address these problems, this paper proposes a novel matching method, ICA-ASIFT, 

to match High-Resolution (HR) multi-temporal remote sensing urban images by 

jointly using Independent Component Analysis (ICA) and ASIFT features to 

achieve higher matching accuracy and efficiency. 

2. ASIFT principles and ICA 

2.1. ASIFT principles 

SIFT [5] is an invariant-based feature detection algorithm proposed by Lowe in 

1999. It is invariant to image scales, rotations, and translations, but it is barely 
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robust to affine deformations, thus being ineffective at extracting image features in 

the case of large angle variations. M o r e l  and G u o s h e n  [6] proposed ASIFT in 

2009. Compared to SIFT, which is only invariant to scales, rotations, and 

translations, ASIFT is also invariant to the two parameters (longitude and latitude 

angles) that determine the direction of the camera’s axis besides that of SIFT, and 

can achieve affine invariance transformation in a larger scale. This algorithm is 

suitable for many applications and can match images with large viewing angle 

variations. Fig. 1 shows the affine camera model [6], where the image u is a planar 

real object, the small parallelogram at the top right represents where the camera 

views u, and ϕ and θ represent longitude and latitude angles of the camera’s axis, 

respectively. The third angle ѱ is the camera’s rotation parameter and λ is a scaling 

parameter. If the edge of the object is segment-wise smooth, then image distortions 

caused by viewing angle variation can be locally modelled using an affine plane 

transform. While capturing the front face of the object, the variation of the axis 

direction may cause distortion. The basic principle of ASIFT [6] is shown in Fig. 2, 

where the two squares represent images A and B to be matched and nearby 

quadrangles represent modelled images. 

         
Fig. 1. Model of affine camera                               Fig. 2. Principle of ASIFT 

In ASIFT, an image transformation is achieved by modelling all possible 

affine transforms, which are dependent on φ and θ [11]. A certain number of angles 

φ and θ are sampled, and an affine transform matrix is generated for each sample 

point to model image direction and inclination variations, that is, to model all 

viewing angle variation between two images as far as possible. Finally, SIFT 

matching (128-dimension) is performed on all modelled images using the Nearest 

Neighbour Distance Ratio method (NNDR) [12]. The ASIFT algorithm that uses 

NNDR alone is called TraDitional ASFIT (TD-ASIFT) and can match images with 

large affine deformation more effectively than the original SIFT algorithm, but is 

slow and barely robust [11]. Owing to the large data of HR remote sensing images, 

the efficiency and stability of ASIFT-based feature extraction and matching of HR 

remote sensing images need to be improved. 

2.2. Independent component analysis 

Independent Component Analysis (ICA) is a method for data processing and signal 

analysis based on Blind Source Separation (BSS). ICA is usually used to linearly 

decompose a received signal into statistically independent components [13]. In 
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ICA, the source signals can be restored from the observed signal using only basic 

statistical features of the input source signals, without knowing the instantaneous 

aliasing parameters of the received signals [14]. The fast fixed-point algorithm 

(FastICA) is a BBS-based feasible variant of ICA proposed by Hyvarinen. Lots of 

related experiments showed that this algorithm has a desired convergence rate and 

is thus widely used for feature extraction and dimensionality reduction of high-

dimensional data. Principal Component Analysis (PCA) and ICA are two common 

methods for dimensionality reduction of high-dimensional data. Unlike ICA, PCA 

assumes that the samples follow a Gaussian distribution and relies only on second-

order statistics, based on the covariance matrix to yield excellent performance for 

large samples. But in ICA, samples are assumed to be mutually independent and 

higher-order statistics are exploited to ensure that the number of samples has little 

influence on the results [16]. The PCA constraint is that each component is 

uncorrelated, while ICA requires components to be strictly independent. The ICA 

constraint is stronger than that for PCA, resulting in better feature extraction. 

However, feature extraction in ICA is more complicated than in PCA, especially for 

large samples. So, ICA is not superior to PCA in terms of operating speed [16, 17]. 

3. ICA-ASIFT-Based matching of HR remote sensing urban images 

The matching process of ICA-ASIFT-Based multi-temporal HR remote sensing 

urban images is shown in Fig. 3. 

 
Fig. 3. The matching process of ICA-ASIFT-Based multi-temporal  

HR remote sensing urban images 
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3.1. ASIFT-based feature extraction and ICA-based dimensionality  

Due to significant noise in the original HR remote sensing images, it is necessary to 

perform geometrical and radiometric correction, along with smoothing and edge 

enhancement before feature extraction and matching. A bilateral filter can eliminate 

noise, while maintaining the edges. It consists of two functions, whose coefficients 

depend on geometric distance and pixel difference. In this paper, a bilateral filter is 

used to remove burrs and small holes from images, and to enhance edges of 

artificial objects in urban regions. 

3.2. ASIFT-based feature extraction and ICA-based dimensionality reduction 

This paper employs ASIFT to extract features from reference and target images, 

obtaining the coordinate positions of ASIFT feature points, SIFT feature descriptors 

(128-dimensional vector), and major directions in each image. The 128-dimensional 

feature vectors are reduced to 20-dimensional new feature vectors using FastICA. 

3.3. Coarse  matching of ASIFT feature points 

ASIFT feature points are coarsely matched using the Nearest Vector Angle Ratio 

(NVAR) method, Direction Difference Analysis (DDA) method, and Random 

Sample Consensus (Ransac) method, respectively. 

3.3.1. Two-direction coarse matching of ASIFT feature points based on NVAR 

Let A and B be the reference and object images to be matched, NA and NB the 

number of feature points in A and B, and DA and DB the set of 20-dimensional 

feature vector sets of A and B. The angle θij between DA and DB can be computed as: 

(1)   θij=arccos(DA(i)·DB(j)),  i=1, ..., NA，j=1, ..., NB.  

where θi is the set of angles between DA(i) and all feature vectors in DB. We sort the 

NB values of θi in ascending order and compute the ratio of the largest value θ(i, j1) to 

the second largest value θ(i, j2), ratio(i) can be computed as: 

(2)   ratio(i)=θ(i, j1)/θ(i, j2),    j1, j2=1, ..., NB.  

Let matchAB represent the set of matching points in B corresponding to all 

feature points in A. If ratio(i) is larger than the threshold T1, then points 

corresponding to DA(i) and DB(j1) meet the matching condition, that is, 

matchAB[i]=j1; otherwise, matchAB[i]=0. In this paper, threshold T1 is set to 0.8. In 

this way, we can obtain the set of matching points in B corresponding to all feature 

points in A. But many-to-one cases may occur in this matching strategy. Similarly, 

we can also obtain the set of matching points in A corresponding to all feature 

points in B, matchBA. Many-to-one cases are likely to occur here as well. The 

intersection of matchAB and matchBA is computed to eliminate many-to-one or one-

to-many cases and obtain the set of coarse matched point pairs set, match1. 
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3.3.2. Coarse matching of ASIFT feature points based on DDA 

Let A and B be the reference and target images to be matched. Even after coarse 

matching of ASIFT feature points based on NVAR, there may be mismatches in A 

and B. Suppose that after NVAR coarse matching, the resulting set match1 contains 

the following five point pairs: (A1, B1), (A2, B2), (A3, B3), (A4, B4), and (A5, B5). The 

distribution of these pairs is shown in Fig. 4. 

 
Fig. 4. Distribution of matching points from match1 in A and B 

Fig. 4 shows that there is a mismatch in match1. For example, the slope of the 

connecting line (A4, B4) greatly deviates from the average of other slopes. In this 

paper, we eliminate abnormal pairs whose direction greatly deviates from the 

average direction by analyzing the direction difference of pair-wise connecting 

lines. Let the slope deviation if  be a measure of the direction difference of pair-

wise connecting lines, which can be computed as: 
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where fi is the slope of the pair-wise connecting line in match1 (fi=tan βi, i=1,..., n1,  

n1 is the number of point pairs in match1; βi is the angle between the pair-wise 

connecting line and the X axis) and f  is the average slope of pair-wise connecting 

lines. 

The feature point pair whose if  exceeds threshold T2 will be removed, where 

T2=2 in this paper. As shown in Fig. 4, the slope of the connecting line  

(A4, B4) is larger than the average f  and if >T2. Thus, it is a mismatch and should 

be removed. Eliminating mismatches from match1 yields a set of matched point 

pairs set, match2. 

3.3.3. Coarse matching of ASIFT feature points based on ransac 

Although DDA has the ability to obtain match2 by removing visually obvious 

mismatches from match1, it is ineffective for invisible mismatches. Hence, Ransac 

is used to address invisible mismatches in match2, yielding a new set of matched 
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point pairs set, match3. After this phase, the coarse matching for ASIFT feature 

points ends. 

3.4. Fine matching of ASIFT feature points 

Obvious mismatches can be eliminated through coarse matching. But unobvious 

mismatches need to be removed through fine matching. In this paper, the 

Neighbourhood-based Feature Graph Matching (NFGM) method is used for fine 

matching, which further removes mismatches from match3. Each feature point in 

match3 is regarded as a node in a graph. NFGM determines a mismatch by checking 

the similarity between neighbourhood topologies of two corresponding nodes in 

each coarse matched point pair in match3. 

Consider that the set match3 contains two matched subsets of points, one from 

reference images and another from target images. The two subsets have the same 

number of points. We can construct two feature graphs according to the 

neighbourhood relationship between feature vectors corresponding to each element 

of the respective subset: Graph X and Graph Y, as shown in Fig. 5, where i=1,..., n, 

j=1,..., n, and n is the number of coarse matched point pairs in match3. 

 
Fig. 5. NFGM-based fine matching of ASIFT feature points 

Let matrices DX(i, j) and DY(i, j) denote the length of the directed edges from 

node i to node j in Graph X and Graph Y respectively, and their values equal 

Mahalanobis distance between the vectors of feature points i and j in Graph X and 

Graph Y respectively. Let βX(i, j) and βY(i, j) denote the direction angles of the 

directed edges from node i to node j in Graph X and Graph Y respectively, and their 

values equal the difference between the two direction angles of the ASIFT feature 

points i and j respectively. Due to the symmetry of these matrices, we only need to 

compute half their elements, that is, DX(i, j)=DX(j, i),DY(i, j)=DY(j, i),  

βX(i, j)=180+ βX(j, i), and βY(i, j)=180+βY(j, i). We normalize DX, DY, βX, and βY and 

sort elements in each row of these matrices in ascending order, then select the top m 

(m<n) elements in each row of these matrices and yield the new sorted matrices D'X, 

D'Y, β'X, and β'Y. In this paper, the neighborhood features of node i in Graph X and 

Graph Y can be described effectively by the length vectors (D'X(i) and D'Y(i)) and 

the direction angle vectors( β'X, and β'Y) of the m edges starting from node i, that is, 

node i in Graph X corresponds to feature vectors D'X(i) and β'X(i), while node i in Y 
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corresponds to feature vectors D'Y(i) and β'Y(i). Obviously, the value of m has a 

great influence on the matching accuracy and efficiency of NFGM, and the optimal 

value of m, that is threshold Tm, can be obtained by experiments. Related 

experiments show that NFGM has the best matching accuracy and good matching 

efficiency when Tm=6, so the optimal value of threshold Tm is 6 in this paper.  

Finally, we compute distance feature vector difference △D(i) and direction feature 

vector difference △β(i) of node i in X and Y (that is, the i-th coarse matching point 

pairs in match3), in order to determine whether it is a mismatch. △D(i) and △β(i) 

can be computed as follows, where Dot() is the vector dot product function: 

(4)  △D(i)=Dot(D'X(i), D'Y(i)), 

(5)   △β(i)=Dot(β'X(i), β'Y(i)).  

Obviously, under special condition, if the direction feature vector differences 

of the i-th node to other nearest m nodes in X and Y are consistent, that is, 

Sum(β'A(i))==0 and Sum(β'B(i))==0 (where Sum() is a 1D matrix summation 

function), then the i-th node in X and Y are a match. Generally, mismatches that are 

left in match3 can be removed by defining thresholds. If △D(i)>T3 and △β(i)>T4 (T3 

and T4 are thresholds), then the i-th node in X and Y are a match. In this paper, 

thresholds T3 and T4 are set to 0.3 and 0.4, respectively. The set of matched point 

pairs match_final is obtained after fine matching over match3 through NFGM. 

3.5. Affine transformation matrix calculation and image matching 

We extract ASIFT feature points from reference image A and target image B using 

the methods discussed in Sections 3.3 and 3.4, and obtain the final set of matched 

point pairs match_final. The transformation matrix H between A and B is computed 

based on match_final using the least squares method. The target image is 

reconstructed through bilinear interpolation (that is, B=AH) to achieve the final 

matching between A and B. 

3.6. Evaluation of matching results 

Currently, metrics for performance evaluation of digital image matching include the 

total number of correct matches, uniformity of distribution of correct matches, 

proportion of correct matches, and matching efficiency. A large number of correct 

matches and uniform distribution of correct matches implies that matching is 

effective. The proportion of correct matches refers to the ratio of correct matches to 

the total number of matches. A high proportion of correct matches mean that 

matching is accurate. Matching efficiency is the time required of the matching 

process, also known as time complexity. Small time consumption means that 

matching is efficient. 

4. Experimental results and discussion 

4.1. Basic data of the experiment 

Our experiment was conducted on WorldView2 images of Shenzhen captured in 

November 2011 (phase 1) and August 2013 (phase 2). The two images included 
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three wavebands (RGB) at a resolution of 0.5 m respectively. The former was taken 

as the reference images (phase 1) and the latter was used as the target images  

(phase 2). From these two images, we select two typical experimental areas (that is, 

experimental areas 1 and 2) corresponding to each other, whose size was 

1796×1721 and 2280×1824, respectively. WorldView2 images of the two areas 

captured at different phases are given in Fig. 6, which shows that inside the two 

areas there was green vegetation, road, bare land, and permanent and temporary 

buildings. Buildings were distributed in the images unevenly, exhibiting diversity in 

size, color and distribution. Colors on the roofs of buildings were distinct and edges 

of buildings were blurred. There were some shadows and walls near the buildings at 

phase1. Due to the difference in the solar altitude and the imaging angle of the 

satellite sensors, the images of the two experimental areas captured at different 

phases both had significant distortions. Especially in the urban districts including 

dense buildings and artificial facilities, buildings had obvious rotations, distortions, 

and translations. The distribution of shadows was very distinct, and key points at 

different heights varied asynchronously, making it difficult to match images using 

traditional methods. 

 
(a)                                                                (b) 

 
(c)                                                             (d) 

Fig. 6. WorldView2 remote sensing images of two experimental areas at different phases: Image of 

experimental area 1 at phase 1 (a); image of experimental area 2 at phase 1 (b); image of experimental 

area 1 at phase 2 (c); image of experimental area 2 at phase 2 (d) 
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4.2. Pre-processing and noise elimination 

After obtaining HR WorldView2 images of the two experimental areas, we first 

pre-process the images through geometrical and radiometric correction. Next, a 

bilateral filter is used to remove burrs and small holes and enhance edges of 

artificial objects in urban districts. Here, we take the reference and target images of 

experimental area 1 as an example to illustrate noise elimination via the bilateral 

filter. Fig. 7a and c shows corresponding districts (that is, RegA and RegB) of the 

reference and target images in experimental area 1 before noise elimination. Fig. 7b 

and d shows the result images corresponding to Fig. 7a and c after noise elimination 

using the bilateral filter. 

Compared with Fig. 7a and c, buildings and roads in Fig. 7b and d have more 

distinct edges and the surface of ground objects is smoother. Burrs and small holes 

in the original images are mostly removed, and walls at the sides of buildings in 

original images are alleviated. Therefore, the bilateral filter is effective in removing 

noise from HR images in these experimental areas. 

 

 
(a)                                                         (b)  

 
(c)                                                                  (d)  

Fig. 7. Comparison of the images in parts of experimental area 1 before and after noise 

elimination: Original image of RegA (a); image of RegA after noise elimination (b); original image of 

RegB (c); image of RegB after noise elimination (d) 
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4.3. Extraction of ASIFT feature points and dimensionality reduction with ICA 

We extract ASIFT features for the reference and target images of the two 

experimental areas that have been pre-processed and denoised, which yields 

coordinate positions of the ASIFT feature points, SIFT feature descriptors  

(128-dimensional vectors), and major directions. To speed up the matching process 

of subsequent ASIFT feature points, FastICA is used to reduce the dimensionality 

of SIFT feature vectors from 128 to 20. 

4.4. Coarse and fine matching of ASIFT feature points 

Coarse matching is conducted on ASIFT feature points by NVAR, DDA, and 

Ransac sequentially to eliminate mismatches. Fine matching is done via NFGM to 

obtain the final set of ASIFT matched point pairs for the two images. Fig. 8 shows 

the distribution and matching of the final set of ASIFT matched point pairs for the 

reference image (phase 1) and target image (phase 2). In Fig. 8, red and green 

crosses represent the location of ASIFT feature points for the reference and target 

images, respectively. Blue lines represent the connecting line for two matching 

point pairs. From the matching results of two experimental areas in Fig. 8, it can be 

observed that the proposed ICA-ASIFT provides more correct matches (1920 and 

2897 pairs) and the matched point pairs are uniformly distributed, demonstrating 

the effectiveness of the algorithm. 

       

(a)                                                                       (b) 

Fig. 8. Matched points distribution for reference and target images: Experimental area 1 (1920 

matched point pairs)  (a); experimental area 2 (2897 matched point pairs) (b) 

4.5. Affine transform 

Let A1 and B1, A2 and B2 be the reference and target images for experimental areas 1 

and 2 respectively. First, we compute the transformation matrices H1 and H2 of the 

two areas based on the final sets of matched point pairs using the least squares 

method. Next, target images B1 and B2 are reconstructed for the two areas through 

bilinear interpolation, that is, B'1=B1H1 and B'2 =B2H2, achieving the final matching 

of A1 with B1 and A2 with B2. Image matching of the two experimental areas is 

shown in Figs 9 and 10. 
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(a)                                            (b)                                        (c)  

Fig. 9. Image matching for experimental area 1: Reference image A1 (a); target image B1 (b);  

B1 after being matched (c) 

 
(a)                                            (b)                                              (c)  

Fig. 10. Image matching for experimental area 2: Reference image A2 (a); target image B2 (b);  

B2 after being matched (c) 

Figs 9 and 10 show that, after the affine transform, the difference between the 

reference and target images caused by rotation, distortion, or drift is alleviated. 

Reference images match well with target images for the two experimental areas. 

4.6. Comparison and matching performance evaluation 

Multi-temporal HR remote sensing images for the two experimental areas are 

matched using ICA-ASIFT, Harris-SIFT,PCA-SIFT and TD-ASIFT respectively. 

Matching results are compared each other for performance evaluation. Table 1 

shows matching accuracy and efficiency of ICA-ASIFT, Harris-SIFT, PCA-SIFT, 

and TD-ASIFT. Figs 11 and 12 show the distribution of matching point pairs for 

multi-temporal HR remote sensing images for the two experimental areas using the 

four algorithms. 

Table 1.  Comparison of matching accuracy and efficiency for different algorithms 

Experimental 

area 

Matching 

algorithms 
All-matches/mismatches  

Proportion of correct 

matches, % 

Matching 

time, s 

Experimental 

area 1 

ICA-ASIFT 1920/104 94.58 272 

Harris-SIFT 433/48 88.91 238 

PCA-SIFT 523/55 89.48 215 

TD-ASIFT 1148/97 91.55 916 

Experimental 

area 2 

ICA-ASIFT 2897/181 93.75 281 

Harris-SIFT 501/58 88.42 259 

PCA-SIFT 1221/140 88.53 222 

TD-ASIFT 1229/105 91.46 965 
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Based on Table 1, Figs 11 and 12, we evaluate the performance of the four 

algorithms above in terms of total number of matches, distribution of matches, 

proportion of correct matches, and matching efficiency. 

(1) Total number of matches 

Table 1 implies that ICA-ASIFT provides the greatest number of matches, 

followed by TD-ASIFT, while PCA-SIFT and Harris-SIFT lag far behind. This is 

because compared with SIFT and Harris, ASIFT has the ability to extract more 

feature points by modelling all viewing angle variations in the two images. But the 

matching strategy in TD-ASIFT is NNDR, where the ratio between nearest 

neighbour distance and second nearest neighbour distance cannot be higher than a 

set threshold (typically 0.36). The matching strategy of TD-ASIFT achieves a high 

proportion of correct matches, but it removes many correct matches and is unable to 

eliminate mismatches caused by excessive similarity between textures. 

(2) Distribution of matches 

Figs 11 and 12 show that matches from ICA-ASIFT are the most evenly 

distributed, followed by TD-ASIFT. PCA-SIFT and Harris-SIFT provide the least 

uniformity. This can be explained by the fact that TD-ASIFT uses NNDR as its 

matching strategy. It removes many correct matches, causing the final matches to 

be unevenly distributed. Additionally, SIFT is not a fully affine invariant itself, 

making it difficult to match feature point pairs in urban districts with many 

buildings that have large inclination and viewing angle variations. 

(3) Proportion of correct matches 

Table 1 shows that ICA-ASIFT has the highest matching accuracy of 94.58% 

for experimental area 1 and 93.75% for experimental area 2. TD-ASIFT is ranked 

second, followed by PCA-SIFT and Harris-SIFT. TD-ASIFT relies on the strict 

matching strategy of NNDR to eliminate mismatches only once. On the contrary, 

ICA-ASIFT eliminates mismatches progressively. That is, ICA-ASIFT first 

performs coarse matching on ASIFT feature points using NVAR, DDA, and 

Ransac. Next, NFGM is applied for fine matching, further removing mismatches 

from the coarse matching results. Furthermore, compared with PCA, ICA can 

maintain original features better, while reducing dimensionality of the 128-

dimensional vectors. Commonly, ICA-ASIFT outperforms PCA-SIFT in terms of 

matching accuracy. Compared with ASIFT, SIFT and Harris are not affine invariant 

for feature extraction, and Harris is not scale invariant. Hence, while being used to 

match HR remote sensing urban images captured at different phases with large 

scale and viewing angle variations, Harris-SIFT provides a high proportion of 

mismatches and low overall matching accuracy. 

(4) Matching efficiency 

Table 1 implies that ICA-ASIFT uses slightly more time than PCA-SIFT and 

Harris-SIFT, but less than 30% of TD-ASIFT running time. For ICA-ASIFT, its 

number of correct matches is about twice that of TD-ASIFT on average and its 

matching steps are more than TD-ASIFT. But TD-ASIFT reduces the 

dimensionality of SIFT features from 128 to 20 through ICA, thus speeding up its 

matching process over TD-ASIFT. 

The analysis above shows that for HR remote sensing urban images captured 

at different phases, our proposed ICA-ASIFT outperforms TD-ASIFT, PCA-SIFT, 
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and Harris-SIFT in terms of the number of correct matches, distribution of matches, 

matching accuracy, and efficiency. 

 

     
(a)                                                                              (b) 

     
(c)                                                                             (d) 

Fig. 11. Distribution comparison of matches for images in experimental area 1:  

ICA-ASIFT (a); Harris-SIFT (b); PCA-SIFT (c); TD-ASIFT (d) 

     
(a)                                                         (b)  

     
(c)                                                           (d)  

Fig. 12. Distribution comparison of matches for images in experimental area 2: ICA-ASIFT (a); 

Harris-SIFT (b); PCA-SIFT (c); TD-ASIFT (d) 
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5. Analysis and discussion 

Matching multi-temporal HR remote sensing images is a complicated problem that 

has not yet to be addressed. There may be large differences between reference and 

target images due to the influence of weather, lighting conditions, shooting angle 

and time of satellite and camera, sensor type, and uncertainty in remote sensing 

data. There will be more influences if the research area is enlarged. Thus, a single 

transformation model alone cannot address this problem. ICA-ASIFT is proposed 

for affine transform (e.g., inclination, rotation, and viewing angle variation) of 

multi-temporal HR remote sensing images, and addresses the problem by taking 

many factors into account. Our proposed ICA-ASIFT has several limitations. First, 

ICA is used for dimensionality reduction of 128-dimensional features, without 

further investigation into more effective dimensionality reduction methods. Second, 

key points are only described with SIFT feature vectors, which are not combined 

with other features to optimize the selection of features. Finally, a bilateral filter is 

used to eliminate noise and alleviate the impact of shadows and walls on image 

matching. Shadows and walls still have a large influence on matching results. We 

have not found a complete solution to these problems. In future work, we will 

consider these problems jointly to try to devise a more efficient, accurate, and 

effective method for matching HR remote sensing urban images captured at 

different phases. 

6. Conclusions 

This paper proposes a novel scheme, ICA-ASIFT, for matching HR remote sensing 

urban images captured at different phases. First, ASIFT and ICA are applied to 

reference and target images for feature extraction and dimensionality reduction. 

Next, coarse matching is performed on ASIFT feature points using NVAR, DDA 

and Ransac. NFGM is used for fine matching to obtain the final set of matches for 

the two images. Comparison of experimental results shows that our proposed ICA-

ASIFT outperforms TD-ASIFT, PCA-SIFT, and Harris-SIFT in terms of the 

number of correct matches, distribution of matches, matching accuracy, and 

efficiency. 
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