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Abstract: Steam generator level control system is a vital control system for the 

Pressurized Water Reactor (PWR). However, the steam generator level process is a 

highly nonlinear and non-minimum phase system, the conventional Proportional-

Integral-Derivative (PID) control scheme with fixed parameters was difficult to 

obtain satisfactory control performance. The Radial Basis Function (RBF) Neural 

Networks based PID control strategy (RBFNN-PID) is proposed for the steam 

generator level control. This method can identify the mathematical model of the 

steam generator via the RBF neural networks, and then the PID parameters can be 

optimized automatically to accommodate the characteristic variation of the process. 

The optimal number of the hidden layer neurons is also discussed in this paper. The 

simulation results shows that the PID controller designed based on the RBF neural 

networks has good control performance on the steam generator level control.  

Keywords: PID controller, radial basis function, neural networks, steam generator, 

water level control. 

1. Introduction 

Steam Generator (SG) is the principle interface for the exchange of heat between 

the primary and secondary side of a Pressurized Water Reactor. Maintain the steam 

generator level within allowable limits is critical to the safety and economical 

operation of a nuclear power plant [1]. The level control of the steam generator is 

vital to achieving the abovementioned goal. However, to improve the control 

performance of the steam generator level control is a challenging task for the below 

factors: firstly, the dynamics of the steam generator are highly nonlinear; secondly, 

the steam generator has non-minimum-phase characteristics, which is called “swell 

and shrink” phenomena [2, 3].  

To address the steam generator level control problems, various control 

schemes have been designed and analyzed. Some promising control schemes have 

been proposed and established. For example, I r v i n g, M i o s s e c  and T a s s a r t  
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[4] have proposed a model reference adaptive PID level controller; F e l i a c h i  and 

B e l b e l i d i a  [5] have proposed a suboptimal controller based on linear output 

feedback control. With the development of modern computer technology and 

control theories, various advanced control schemes have been developed to improve 

the control performance of the steam generator further. Typical works reported in 

the literature including robust control [6], model predictive control [1, 7], dynamic 

sliding mode control [8] and intelligent control [9] et al. 

In spite of many advanced control methods proposed for the steam generator 

level control, the controllers widely used in the steam generator level control are 

still PID controllers. The PID controller is the most commonly used controller in 

the industrial control field. It has the advantages that it is simple, stable, robust and 

easy for implementation [10]. The advanced control methods are always 

complicated and difficult to implement on the real industries. So, there is still a 

need for higher performance controller which could retain the advantages of the 

PID controllers as more as possible. 

The conventional PID controllers with fixed control parameters have their 

disadvantages as the parameters are difficult to optimize and they are not suitable 

for time-varying and nonlinear process. To address the abovementioned problem 

and design a satisfactory controller, one possible way is to adjust the conventional 

PID controller structure, and make the parameters of the PID controller to be 

automatic tuning. The Radial Basis Function (RBF) neural network, which is able 

to approach a nonlinear function arbitrarily, can be used to identify online steam 

generator model with high accuracy. In this paper, the RBF neural networks based 

PID controller has been proposed.  

The rest of this paper is organized as follows: Section 2 focuses on the steam 

generator model. Section 3 introduces the steam generator level control system 

structure and presents the detail descriptions of the RBF neural networks based PID 

control scheme. Section 4 illustrates the simulation results of the RBFNN based 

PID and compares the results with the conventional PID controller, the optimal 

hidden layer neutrons selection is also analyzed. At last, Section 5 concludes the 

paper. 

2. Steam generator model description 

To design and verify the control scheme that we proposed, an effective model for 

the steam generator level process is necessary. The steam generator model, which is 

proposed by I r v i n g, M i o s s e c  and T a s s a r t  [4], is used in this paper. This 

model can capture the essential dynamics of a steam generator, and is simple for 

control system design. The transfer function of the model is as follows: 
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where Y(s) represents the narrow range water level of the steam generator, Qe(s) is 

the feedwater flow rate, and Qv(s) is the steam flow rate; T is the period of the 

mechanical oscillation, 
1  and 

2  are the damping time constant; G1 is the 
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magnitude of the mass capacity effects; G2 is the magnitude of the swell and shrink 

phenomena; G3 is the magnitude of the mechanical oscillation.  

For this model, the parameters at different power levels had been identified 

from experimental data by I r v i n g, M i o s s e c  and T a s s a r t  [4], and they are 

given in Table 1. It can be seen that the steam generator level process is 

complicated and nonlinear.  

Table 1. Parameter of the steam generator under typical different power levels 

Parameters 
Power level  (P/Pn), % 

5 15 30 50 100 

G1 (mm.s)/kg 0.058 0.058 0.058 0.058 0.058 

G2  (mm.s)/kg 9.63 4.46 1.83 1.05 0.47 

G3  (mm.s)/kg 0.181 0.226 0.310 0.215 0.105 

1 , s 41.9 26.3 43.4 34.8 28.6 

2 , s 48.4 21.5 4.5 3.6 3.4 

T, s 119.6 60.5 17.7 14.2 11.7 

Qv, kg/s 57.4 180.8 381.7 660 1435 

In order to modeling the steam generator level process with MATLAB  

S-Function, the transfer function model in (1) has been converted to the equivalent 

state space form: 

(2) ( ) ( ) ( ) ( )( ( ) ( ))x t A p x t B p u t d t   , 

)()()( tDutCxty  , 

where p is the power level, u(t) denotes the Qe(s), d(t) denotes the Qv(s). 

The coefficients matrix of (2) is as follows: 
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(5)  ( ) 1 1 1 0 ,C p   

(6)  ( ) 0 0 .D p   

The water level change in the steam generator is governed by the balance 

between the flow rates of the incoming feedwater and the exiting steam. Fig. 1 
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shows the steam generator level response at two different cases. The response 

characteristics shows the  “swell and shrink” phenomena of the steam generator. 
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(1)                                                                            (2)  

Fig. 1. Steam generator water level response:  The step in feedwater flow (1); the step in steam  

flow (2) 

The main goal of the steam generator level control is to maintain the steam 

generator water level at a desired value. The complex dynamics of the steam 

generator significantly complicate the design of the level controller. 

3. PID controller, based on RBF neural networks 

The typical structure of the steam generator level control system is shown in Fig. 2. 

The controller that is widely used in the nuclear power plant is the PID controller. 

However, the conventional PID controller has fixed control parameters and is 

difficult to obtain satisfactory control performance.  
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Fig. 2.  The structure of the steam generator level control system 

An improved PID controller based on the RBF neural networks is proposed. 

With this method, the control parameters are tuned adaptively according to the 
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dynamics of the steam generator. The scheme of the controller is shown in  

Fig. 3. 
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Fig. 3.  The structure of the PID control system based on the RBF neural networks 

3.1. RBF neural networks 

RBF Neural Networks (RBFNN) is presented by J. Moody and C. Darken (see  

[12, 13]). It is a three-layer feed-forward neural networks with single hidden layer. 

The mapping from input to output is nonlinear, but from hidden layer to output 

layer is linear. It has been proved that the RBF network has the ability of 

approximating any continuous function with any arbitrary accuracy. The learning 

rate is quickened greatly and the problem of local minimum is avoided. The RBF 

neural networks configuration for the steam generator control system is shown in 

Fig. 4. 
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Fig. 4.  The structure of the BF neural networks 
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Suppose the input vector of the RBF neural networks is  
T

1 2, , , ,nx x x x  

the neurons at the hidden layer is activated by a radial basis function. Suppose the 

radial vector is  
T

1 2, , , ,mh h h h  where hj is Gaussian function with the 

following mathematical relation: 

(7) 
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The center vector of the network at node j is 
T

1 2, , , , , , 1, 2, , .j j j ji jnC c c c c i n     Suppose the radial width vector is 

 
T

1 2, , , ,mB b b b  where bj is the radial parameter of node j, and bj>0. The 

weight vector of the network is W and  
T

1 2, , , .mW w w w  

The output of the RBF networks can be calculated as following: 

(8)   T

1 1 2 2 .m m my k W h w h w h w h      

The performance index function is 

(9)       
21
,

2
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where y(k) is the output of the system at k. 

According to the gradient descent algorithm, the iterative algorithm of output 

width, center joint and joint base width is as follows: 

(10)        ,j m jw k y k y k h    

(11)           1 1 2 ,j j j j jw k w k w k w k w k         

(12)       
2

3
,

j

j m j j

j

X C
b k y k y k w h

b



    

(13)         1 1 2 ,j j j j jb k b k b b k b k        

(14)        2
,

j ji

ji m j

j

x c
c k y k y k w

b



    

(15)         1 1 2 ,ji ji ji ji jic k c k c c k c k         

where   is the learning rate,   is the momentum factor. In this project,  

=0.05 , =0.25 . 

The Jacobian algorithm is 

(16) 
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3.2. RBFNN based PID controller 

The incremental PID controller is adopted. The control error is 

(17)      de k y k y k  . 

The three inputs of the controller are as follows: 

(18)      1 1xc e k e k   , 

(19)    2xc e k , 

(20)        3 2 1 2xc e k e k e k     . 

Then the incremental PID control algorithm is 

(21)              1 2 1 + 2p i du k k e k e k k e k k e k e k e k               . 

Neural network-tuning of indicators is as follows: 

(22)    
21

2
E k e k . 

The control parameters of the PID controller are adjusted based on the gradient 

descend method are as follows: 
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where 
y

u




 is the Jacobian information of controlled steam generator level 

process, and it can be identified by the RBF neural networks. 

The structure of PID controller based on the RBF neural networks is shown in 

Fig. 3. 

4. Simulation results and discussions 

All the simulations were conducted on the steam generator model that was built 

based on the MATLAB and Simulink according to (2)-(6). To test the effectiveness 

of the propose RBFNN based PID controller, the control performance of the 

RBFNN based PID was compared with the conventional PID in a qualitative and a 

quantitative way, respectively. Considering the number of the hidden layer neutrons 

has significant effect on the performance of the RBFNN based PID controller, the 

optimal hidden layer neutrons number was analyzed. 
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Without loss of generality, the level setpoint of the steam generator is set to  

0 mm. The disturbance transient is 10% step increase of steam flow, which occurs 

at the 1000 s of a simulation. 

4.1. Qualitative analysis  

Two cases were tested with different power levels. The 1st test was under 5% 

power level. For the 1st test, two simulations with different control schemes were 

implemented. The 2nd test was under 15% power level with two different 

simulations too. The water level response from the 1000 s, when the disturbance 

occurs, is shown in Fig. 5. 

The simulation results show that the propose RBF neural networks based PID 

is better than the conventional PID. The settling time of transient under the same 

power level is significantly decreased. The different water level responses indicated 

the nonlinearity of the steam generator. The good performance under different 

power levels ensured that the RBFNN based PID was adapted for the process 

nonlinear. 

 

(1)                                                                         (2) 

Fig. 5. Water level response with different control schemes: 5% power level (1); 15% power level (2) 

4.2. Quantitative analysis  

To further evaluate the performance of the RBF neural networks-based PID 

controller, quantitative analysis is needed. First of all, an index is needed for the 

evaluation.  

For a control system, regulation performance is often expressed in terms of the 

control error obtained for certain disturbances. Typical control evaluation index can 

be expressed as below: 

(26)  
0

,
mnI t e t dt



   

where the error is defined as  spe y y t  , spy  is the target and  y t  is the 

actual response. 
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In Table 2, the ITAE calculated results were summarized. The two 

comparative results at the same power level were obtained under the same 

conditions. The corresponding figure is Fig. 6. From the figure, it can be seen that 

the ITAE for the RBFNN-PID was much lower than the conventional PID at the 

same power level. The lower the ITAE index, the better the control performance. 

Table 2. ITAE comparison between conventional PID and the RBFNN-based PID 

Power Level ITAE of Conventional PID  ITAE of RBFNN-PID 

100% 1.91×106 2.31×105 

15% 4.01×105 1.62×103 

5% 5.52×105 1.14×104 

 
Fig. 6. Control performance comparison between conventional PID and the RBFNN-based PID 

4.3. Optimal hidden layer nodes number analysis 

The number of the hidden layer nodes has significant influence on the performance 

of the RBF neural networks based PID controller. The performance of the controller 

has two impacts: The control accuracy and the running time.  

Fig. 7 shows the water level transient response under different number of 

hidden layer nodes. Fig. 8 shows the ITAE trajectory under different hidden layer 

nodes. It can be seen from the figures that when the number of hidden layer nodes 

increases, the accuracy improves at the beginning; however, when the number was 

too large, the control accuracy got worse, the learning process of the controller 

began to oscillate and the settling time increased.  

Fig. 9 shows the running time of the RBFNN-PID at different number of 

hidden layer nodes. It is obvious that when the number of nodes increases, the 

running time of the controller increases nearly in proportional to the number of the 

nodes.  
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Fig. 7. Water level responses under the RBFNN-PID with different number of nodes 

 

 

Fig. 8. Control performance indicated by ITAE at different number of nodes 

 

Fig. 9. Running time of the RBFNN-PID at different number of nodes 
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According to these results, the optimal number of hidden layer nodes should 

be neither too large nor too small. Trade-offs should be made between the accuracy 

and the running time. In this project, the hidden layer nodes was optimized and set 

to five. 

5. Conclusion 

This paper focuses on the steam generator level control system, which was 

formulated based on the PID controller. The RBF neural networks based PID 

control strategy was designed and implemented on the steam generator level 

control. The RBF neural networks is used to identify the Jacobian information of 

the controlled level process. And the PID parameters was tuned based on the 

Jacobian information. The input of the RBF neural networks is selected as three, 

and the output of RBF neural network acts as traditional PID controller with self-

adaptive capability through the RBF neural networks learning and training. 

Therefore, combined both merits of PID controller and RBF neural network, the 

RBF neural networks based PID controller has excellent anti-disturbance and 

adaptively.  

The comparisons of the proposed controller with the conventional PID 

controller shows that the RBF neural networks based PID has better performance. 

Simulation results indicated the effectiveness of the RBF neural networks based 

PID controller.  
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