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Abstract: Sparse coding is currently an active topic in signal processing and 

pattern recognition. MetaFace Learning (MFL) is a typical sparse coding method 

and exhibits promising performance for classification. Unfortunately, due to using 

the l1-norm minimization, MFL is expensive to compute and is not robust enough. 

To address these issues, this paper proposes a faster and more robust version of 

MFL with the l2-norm regularization constraint on coding coefficients. The 

proposed method is used to learn a class-specific dictionary for facial expression 

recognition. Extensive experiments on two popular facial expression databases, i.e., 

the JAFFE database and the Cohn-Kanade database, demonstrate that our method 

shows promising computational efficiency and robustness on facial expression 

recognition tasks. 

Keywords: Sparse coding, metaface learning, sparse representation, facial 

expression recognition, robustness. 

1. Introduction 

Facial expression is the main manner of expressing and interpreting the affective 

states of human beings. Facial expression recognition focuses on distinguishing the 

human affective states by using facial expression. During the last two decades, 

facial expression recognition has become a hot research topic in pattern recognition, 

artificial intelligence and computer vision, owing to its important applications in 

human-computer interaction, artificial intelligence, security monitoring, social 

entertainment [1-3].  

As far as the classification task of facial expression is concerned, a variety of 

conventional classification methods have been applied so far for facial expression 

recognition, such as Hidden Markov Model (HMM), Artificial Neural Network 

(ANN), Support Vector Machines (SVM), K-Nearest Neighbor (KNN), and so on. 

In recent years, a new type of classification method called Sparse Representation 

based Classification (SRC）[4] has been used successfully for face recognition. 

However, SRC directly employs all the training samples to construct the dictionary, 
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resulting in lots of redundancy, noise, and trivial information in the pre-defined 

dictionary. In addition, when the training samples grow, SRC will suffer from the 

computation bottleneck since it uses the l1-norm sparsity constraint on coding 

coefficients. In recent years, Y a n g  et al. [5] developed a MetaFace Learning 

(MFL) method to learn a class-specific dictionary, in which metafaces are learned 

from the original images and then used as the dictionary to represent the input query 

image. It has been found in [5] that MFL is more effective than SRC and it also 

brings performance improvement over SRC.  

However, it is noted that MFL has two shortcomings. First, similar to SRC, 

MFL also uses the l1-norm sparsity constraint on coding coefficients, which needs 

to be solved by a time-consuming iteration process. Second, in MFL the coding 

fidelity is measured by the l1-norm of coding residual under the assumption that the 

coding residual follows the Gaussian distribution. However, in practice this 

assumption may not hold well in noisy environment, where the coding residual may 

not conform to the Gaussian distribution. To overcome these drawbacks of MFL, 

we modify the objection function of MFL and derive its analytical solution with the 

l2-norm regularization constraint on coding coefficients. This solution gives rise to a 

faster and more robust version of MFL, which is called FR-MFL. The effectiveness 

of the proposed FR-MFL method is verified on facial expression recognition tasks. 

The remainder of this paper is organized as follows. In Section 2, the original 

MFL is reviewed briefly. The proposed FR-MFL is described in detail in Section 3. 

Section 4 gives the experiment results and analysis. Finally, conclusions are drawn 

in Section 5. 

2. Metaface learning  

MetaFace Learning (MFL) [5] aims to learn a class-specific dictionary for each 

object from the original training samples and then uses the learned dictionary to 

represent the input query image. 

Suppose the training samples are denoted by D = [X1, X2, …, Xc]  Rd×N where 

Xc  Rd×N
c  is the subset of all the Nc vector-represented training samples from class 

c, and d is the feature dimension, 
1

c

ii
N n


  is the total number of samples.  

In SRC, a new test sample xRd  can be sparsely coded by the following  

l1-minimization optimization problem: 

(1)    
2

2 1
arg min ,x



     D  

where  is a positive scalar number which is used as a tradeoff between the 

reconstructed error and the coefficients’ sparsity. 

In MFL, a class-specific dictionary Di is learned by  

(2)     
2

2 1
,

, arg min ,
i i

i i i i i i  
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s.t. 
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where Xi  Rd×N
i  denotes all the training samples from the i-th class, dj

i represents 

the j-th column of the i-th class-specific sub-dictionary Di = [d1
i
, …, dK

i
]  Rd×K, and 

1iA  is the summation of l1-norm of all the columns of Ai = [1
i
, …, Ni

i
]  Rd×Ni, 

i.e., 
1 1

.
iN i

i jj
A  

In Equation (2), a joint optimization problem of the metafaces D and the 

representation coefficient matrix A needed to be solved. As a multi-variable 

optimization problem, Equation (2) can be solved by optimizing D and A 

alternatively, as described below. 

When fixing D, the objective function in Equation (2) can be reduced to  

(3)    
2

2 1
arg min .

i

i i i i i  
A

A X D A A  

That equation is a convex optimization methods and can be obtained by quadratic 

programming, such as the iterative 1l -regularized least squares ( 1l -ls) [6] algorithm. 

Fixing A , D  can be updated by solving the following objection function 

(4)    
2

2
arg min ,

i

i i i i 
D

D X D A  

s.t. 
2

1, 1, 2,..., .i

jd j K   

That equation can be solved by using the Langrage multiplier, the final analytical 

solution is 

(5)    
T T

2
/ ,j j jd Y Y   

where .l l

l j

Y X d


   When updating dj, all the other columns of D, i.e., dl,  

l ≠ j, are fixed. 

3. The proposed FR-MFL method  

3.1. Motivation 

There are two drawbacks of the original MFL, as described below. 

First, like SRC, MFL [5] imposes the l1-sparsity constraint in Equation (2) on the 

representation coefficients to regularize the solution. Nevertheless, the  

l1-minimization takes a time-consuming iterative process due to its large 

computation cost. Therefore, it is desirable to decrease the computation cost in 

MFL.  

Second, In MFL the coding fidelity is measured by the l1-norm of coding 

residual under the assumption that the coding residual follows the Gaussian 

distribution. However, images usually contain some additive noise, so this 

assumption may not hold well in noisy environment. Recently, it has been proved in 

[7] the l2-norm could be used to characterize the data fidelity for an optimal 

maximum a posterior estimation when the observed image contains some additive 

Gaussian noise.  
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3.2. Our method 

Based on the abovementioned two points, by modifying the objection function of 

MFL, we can get a Faster and more Robust MFL (FR-MFL) algorithm. In detail, 

the objection function in Equation (2) can be rewritten as  

(6)     
2 2

2 2
,

, arg min ,
i i

i i i i i i  
D A

D A X D A A  

s.t., 
2

1, 1, 2,..., ,i

jd j K   

where 
2

2
 is the l2-norm. 

Like MFL, the proposed FR-MFL also needs to solve a joint optimization for the 

metafaces D and the representation coefficient matrix A. In other words, D and A in 

Equation (6) can be obtained by optimizing D and A alternatively, as described 

below. 

When fixing D, based on the l2-norm regularization constraint, A can be solved 

by using the Langrage multiplier, and the final obtained analytical solution is 

(7)     = (XTX + I)–1XT. 

Fixing A, D can be updated by solving Equation (4), as done in MFL. 

It’s worth pointing out that this step of optimizing A in the proposed FR-MFL 

method is different from MFL. First, with the aid of the l2-norm regularization 

constraint we can directly derive the analytical solution, and hence avoid the 

expensive computation in original MFL. Second, the l2-norm is more effective in 

characterizing the data fidelity in noisy environment. It makes the proposed  

FR-MFL yield more robust feature representations than MFL. The advantages of 

FR-MFL are verified in the following experiments. 

4. Experiments 

4.1. Experiment setup 

To validate the proposed FR-MFL, we performed facial expression recognition 

experiments on two popular facial expression databases, i.e., the JAFFE database 

[8] and the Cohn-Kanade database [9].  

The JAFFE database has 213 images of female facial expression. Each image 

has a resolution of 256×256 pixels. The Cohn-Kanade database contains 100 

university students. Each image has a resolution of 640×490 pixels. As done in 

[10], on the Cohn-Kanade database we selected 320 image sequences from 96 

subjects, with 1 to 6 emotions per subject. For every sequence, the neutral face and 

one peak frames were employed for prototypic expression recognition, giving in 

total 470 images (32 anger, 100 joy, 55 sadness, 75 surprise, 47 fear, 45 disgust and 

116 neutral). Figs 1 and 2 separately show some sample images from the JAFFE 

database and the Cohn-Kanade database. 

Two experiments are performed with different configurations. The first one 

classifies facial expressions with the popular Local Binary Patterns (LBP) [10-13] 

features extracted from original clean images without any corruption. In this case, 
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according to the normalized value of the eye distance, a resized image of 110×150 

pixels was cropped from original images before performing LBP operators, as done 

in [10]. The second one recognizes facial expressions on corrupted images to verify 

the robustness of the proposed method. In this case, all images are resized into 

32×32 pixels and then the random pixel corruption is implemented to generate 

corrupted images. 

The proposed FR-MFL is compared with linear SVM, SRC, and MFL, 

respectively. For SRC and MFL, the l1-norm minimization is solved by using the 

iterative l1-regularized least squares (l1-ls) [6] algorithm. A five-fold cross validation 

scheme is implemented in all facial expression recognition experiments, and the 

average recognition results are reported. The experiment platform is Intel  

CPU 2.10 GHz, 1G RAM memory, MATLAB 2012a.  
 

 

Fig. 1. Examples of facial expression images from the JAFFE database 

 
Fig. 2. Examples of facial expression images from the Cohn-Kanade database 

4.2. Experiments without corruption 

As used in [10], we employed the 59-bin operator LBPP,

u

R
2, and divided the cropped 

images of 110×150 pixels into 18×21 pixels regions, yielding a feature vector 
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length of 2478 (59×42) represented by the LBP histograms. Tables 1 and 2 give the 

recognition performance of all used methods, including SRC, MFL, and FR-MFL 

on the JAFFE database and the Cohn-Kanade database, respectively. The results are 

summarized in Tables 1 and 2. From the tables it is easy to observe that FR-MFL 

obtains an accuracy of 85.71% and 98.09% on the two databases, respectively. It 

performs better than MFL and SRC, and significantly outperforms the baseline 

SVM. This shows that l2-norm regularization constraint is more effective for 

classification than l1-norm sparsity constraint since l2-norm can give higher ability 

to avoid overfitting than l1-norm. 

Table 3 presents a comparison of computation time between FR-MFL and 

MFL to evaluate their computation efficiency. Computation time is represented by 

the whole operation time for training and testing when performing classification for 

all face images in the corresponding face database. From Table 3, it can be 

observed that FR-MFL is about 2.39 times faster than MFL on the JAFFE database 

and about 2.46 times faster on the Cohn-Kanade database, respectively. This 

validates the advantages of inducing an analytical solution in FR-MFL with the  

l2-norm regularization constraint. 
 

Table 1. Recognition accuracy (%) of different methods on the JAFFE database 

Method FR-MFL MFL SRC SVM 

Accuracy  85.71 84.76 84.76 79.88 

 

Table 2. Recognition accuracy (%) of different methods on the Cohn-Kanade database 

Method FR-MFL MFL SRC SVM 

Accuracy  98.09 97.57 97.14 95.24 

 

Table 3. Comparison of computation time between FR-MFL and MFL 

Dababase JAFFE Cohn-Kanade 

Method FR-MFL MFL FR-MFL MFL 

Computation 

time (s) 
167.862 402.341  250.777  617.993  

Speed-up 2.39 times 2.46 times 

4.3. Experiments with corruption 

In this section, we evaluate the robustness of the proposed FR-MFL method on 

facial expression recognition. The percentage of image pixels are randomly selected 

from each testing image and then replaced by random values in the range of [0, pj], 

where pj denotes the maximum value of pixels in the j-th test image. In our 

experiments, we change the percentage of corrupted pixels from 0 up to 90%. Fig. 3 

gives an example of corrupted image on the Cohn-Kanade database. In the figure, 

the original image is resized to 32×32 pixels, and then is performed with 50% 

random pixel corruption.  

Figs 4 and 5 show the recognition results of different methods under different 

percentage of pixel corruption. From the results, we can observe that recognition 

accuracies of all methods are dropped with the increase of pixel corruption. 

Nevertheless, the proposed FR-MFL constantly outperforms the other methods such 
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as SRC, SVM, and MFL. The advantage of FR-MFL over MFL clearly validates 

that the introduced l2-norm regularization constraint produces better robustness to 

image noise. 

 
Fig. 3. An example of corrupted image in the Cohn-Kanade database: Original image of 640×490 

pixels (a); resized image of 32×32 pixels (b); 50% corrupted image (c) 
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Fig. 4. Recognition accuracy under different percentage corrupted on the JAFFE database 
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Fig. 5. Recognition accuracy under different percentage corrupted on the Cohn-Kanade database 

5. Conclusion 

This paper presents a faster and more robust version of MFL (FR-MFL) for facial 

expression recognition via the l2-norm minimization. The proposed FR-MFL 

(a)                                                   (b)                                             (c) 
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method outperforms MFL, SRC, and SVM on facial expression recognition. More 

importantly, the proposed FR-MFL is much more effective than MFL in 

computation. This can be attributed to two aspects. Firstly, l2-norm regularization 

constraint in FR-MFL is more effective for classification than 
1
l -norm sparsity 

constraint since l2-norm can give higher ability to avoid overfitting than 
1
l -norm. 

Secondly, l2-norm regularization constraint in FR-MFL presents an analytical 

solution of the objective function.  
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