
 29

BULGARIAN ACADEMY OF SCIENCES

CYBERNETICS AND INFORMATION TECHNOLOGIES Volume 16, No 4

Sofia 2016 Print ISSN: 1311-9702; Online ISSN: 1314-4081

DOI: 10.1515/cait-2016-0065

Ontologies for Platform as Service APIs Interoperability

Darko Andročec, Neven Vrček

Faculty of Organization and Informatics, University of Zagreb, Pavlinska 2, 42000 Varaždin, Croatia

Emails: dandrocec@foi.hr nvrcek@foi.hr

Abstract: Ontologies can be used to describe common cloud functionalities and

enable common terminology to assist in cloud interoperability. In this work, we

have developed the ontology for resources and operations and the ontology of

interoperability problems. The aim is to clearly describe and categorize the existing

functionalities, features and specificities of commercial platform as a service offers.

The first ontology also provides data type mappings among different PaaS storages

and cross-PaaS data types used in inputs and outputs of the remote API operations

to provide a common layer for information exchange and data migration among

different PaaS providers. The ontologies were evaluated by tools and by human

experts. Furthermore, the ontologies were used in cloud interoperability prototype

to show their practical applicability.

Keywords: Cloud ontology, interoperability, platform as a service, remote APIs,

interoperability problems.

1. Introduction

Cloud computing is nowadays becoming a popular paradigm for the provision of

computing infrastructure that enables organizations to achieve financial savings. On

the other hand, there are some known obstacles, among which vendor lock-in stands

out. The aforementioned problem is characterized by time-consuming and costly

migration of application and data to alternative cloud solutions offered by different

vendors, the inability or limited ability to use some computing resources,

applications or data outside the selected cloud computing service and the

dependence on a specific programming language used by the selected cloud

computing vendor. The numerous heterogeneities among different vendors make

cloud interoperability an interesting and complex research and practical problem.

Cloud computing ontologies are predominantly applied in the description,

discovery and selection of the best service alternative in accordance with users’

requirements. The existing cloud computing ontologies are mostly general and

detailed ontologies of each cloud computing layer (software as a service, platform

as a service and infrastructure as a service) are still missing. The most mature

ontology is mOSAIC [1] ontology, but it is focused on infrastructure as a service

model and SLA.

 30

The ontologies presented in this paper are focused on remote operations of

PaaS providers’ APIs and interoperability problems among different platform as a

service offers. Previously, we have published a draft of possible platform as a

service ontology [2] that lists some sample cloud API operations and resources. We

have built on our mentioned previous work and have completely redesigned the

ontology by changing class hierarchy and including complete API operations of

three platforms as service providers (Microsoft, Google, and Salesforce).

Additionally, the ontology of PaaS resources, remote operations, and data types

presented in this work supports data mappings among the heterogeneous APIs. The

offerings of platform as a service often use proprietary and non-standard databases

(relational and non-relational). Representing these data models by means of

ontology can provide a common layer for information exchange. Furthermore, we

have also developed the additional ontology that lists the technical and semantic

interoperability problems of commercial platform as a service offers. On the end,

the two new ontologies have been evaluated by tools and human experts, and have

been refined according to evaluation results.

This paper proceeds as follows. First, in Section 2, the related work is listed. In

Section 3 we show the development of our ontologies. Section 4 deals with

evaluation of the developed ontologies. Our conclusions are provided in the final

section.

2. Related work

2.1. Cloud ontologies

There are several existing studies involving cloud computing ontologies. One of the

first attempts was introduced in Y o u s e f f, B u t r i c o and D a S i l v a [3]. They

presented an ontology which differentiates five main layers of cloud computing

(applications, software environments, software infrastructure, software kernel and

hardware). W e i n h a r d t et al. [4] proposed a cloud business ontology model to

classify current cloud services and their pricing models into three layers:

infrastructure as a service, platform as a service and application as a service. D e n g

et al. [5] introduced a formal catalogue of cloud computing services modelled by

means of ontological representation. T a k a h a s h i, K a d o b a y a s h i and

F u j i w a r a [6] applied the ontology for cyber security to cloud computing.

M a r t i n e z, E c h e v e r r i and S a n z [7] used the ontology for malware and

intrusion detection based on cloud computing and created an ontological model for

reaction rules that could form the prevention system.

The concepts of the mOSAIC’s cloud ontology [1] were identified by

analyzing standards and the existing cloud interoperability and integration works

from literature. This ontology is used for retrieval and composition of cloud

services in mOSAIC’s usage scenarios. B e r n s t e i n and V i j [8] developed a

mediator to enable collaboration among different cloud vendors. They defined the

ontology of cloud computing resources using RDF. H a n and S i m [9] presented a

cloud service discovery system with ontology determining the similarities among

different cloud offers. They created agent-based discovery system to assist users in

 31

searching the available cloud services. K a n g and S i m [10] proposed cloud

ontology to define the relationship between different cloud services. They used

similarity reasoning of concepts, object properties, and data properties. In the same

paper, they presented their own search engine that uses the defined ontology to

retrieve cloud service compatible with user’s requirements. D a s t j e r d i,

T a b a t a b a e i and B u y y a [11] presented an ontology-based discovery

architecture providing QoS-aware deployment of virtual appliances on

infrastructure as a service. M a, S c h e w e and W a n g [12] presented clouds

formalism by a description of cloud services in the form of ontology. These

descriptions contain service types, pre- and post-conditions, and keywords that

describe the functionality of the annotated service.

2.2. Ontology anomalies and ontology evaluation

There are some ontology anomalies and pitfalls that can arise during ontology

modelling. P o v e d a-V i l l a l ó n, S u á r e z-F i g u e r o a and G ó m e z-P é r e z [13]

manually inspected pitfalls in ontologies of 26 students. They have identified 24

pitfalls and classified them into [13]: consistency (creating polysemous elements,

defining wrong inverse relationships, including cycles in the hierarchy, merging

different concepts in the same class, misusing “allValuesFrom”, misusing “not

some” and “some not”, specifying wrong the domain or the range, swapping

intersection and union, using recursive definitions), completeness (unconnected

ontology elements, missing basic information, missing domain or range in

properties, missing equivalent properties, missing inverse relationships, misusing

primitive and defined classes), and conciseness (creating synonyms as classes,

creating the wrong relationship, specializing a hierarchy too much, using a

miscellaneous class). In their other work [14], the same authors presented a web

based tool called OOPS! that can detect the mentioned anomalies in OWL

ontology. B a u m e i s t e r and S e i p e l [15] explored anomalies in ontologies used

with rule extensions. They distinguish four categories of anomalies: circularity

(exact circularity in taxonomy and rules, circularity between rules and taxonomy,

circular properties), redundancy (identity errors, redundancy by repetitive

taxonomic definition, rule subsumption, redundant implication, redundant

implication of transitivity or symmetry, redundancy in the antecedent of a rule,

etc.), inconsistency (partition error in taxonomy, incompatible rule antecedent, self-

contradicting rule, contradicting rules, multiple functional properties), deficiency

(lazy class/property, chains of inheritance, lonely disjoint class, property clump).

The evaluation of ontology was discussed in many of the existing works.

Ontology can be evaluated by itself, with some context, within an application, and

in the context of an application and a task [16]. G o m e z-P e r e z [17] divides

ontology evaluation into ontology verification and ontology validation.

V r a n d e č i ć [16] analyzed the ontology quality criteria, and summarized them

into the following important criteria: accuracy (the axioms of the ontology must

comply to the domain expert’s knowledge; classes, properties, and individuals must

be correctly defined), adaptability (the ontology can be extended and specialized

without the need to remove the existing axioms), clarity (ontology should clearly

 32

communicate the meaning of its elements by using concise element names and

documentation), completeness (the domain of the ontology must be appropriately

covered), computational efficiency (the reasoning complexity and the ability of

tools to efficiently work with the ontology), conciseness (only essential ontology

elements should be defined, irrelevant or redundant elements should be removed),

consistency (there are no contradictions in the ontology), and organizational fitness

(how easily an ontology can be used within an organization). Competency questions

are defined to describe what knowledge the specific ontology must possess [16].

These questions can be formalized in a semantic query language.

B r a n k, G r o b e l n i k and M l a d e n i ć [18] differentiate four main ontology

evaluation approaches: comparison of the ontology to the gold standard, using

ontology in an application and evaluating the results, comparison to the data about

the domain and human evaluation. Ontology is a complex structure, so B r a n k,

G r o b e l n i k and M l a d e n i ć [18] propose evaluation separately on each level

of the ontology: lexical layer; hierarchy; other semantic relations; context or

application level; syntactic level; and structure, architecture and design level.

A m i r h o s s e i n i and S a l i m [19] listed three main approaches for ontology

evaluations: gold standard evaluation (comparison with benchmark ontology), task-

based evaluation (Can the ontology complete the pre-defined tasks?), and criteria-

based evaluation (human evaluation based on some criteria).

3. Development of the ontologies

3.1. Selected ontology development methodology, tool and language

For the purpose of this research, the Ontology Development 101 [20] methodology

was selected. This methodology was chosen among others, because it is the

simplest and it is really focused on the results, i.e., building the first ontology

version very fast and then refining it according to requirements. Ontology

Development 101 is designed as a simple iterative methodology and a starting guide

for new ontology designers to develop their own ontologies. Furthermore, it is also

well aligned with the used tool (Protégé) and it provides working examples for this

ontology editor. The open-source tool Protégé was selected because it is free and

currently most used tool for ontology development. As an illustration, Protégé has

more than 240,000 registered users at the moment. Protégé has many useful plug-

ins, including the ones for semantic queries, ontology reasoning and ontology

visualizations. Web Ontology Language (OWL) was chosen because it has the

needed expressive power and is most widely used language for ontologies in the

papers in the field of computer science and research projects related to this field of

study.

Now, the main steps of the selected ontology will be listed. N o y and

M c G u i n n e s s [20] claim that the development of the ontology includes defining

classes and their hierarchy, defining their properties and instances. The ontology

development process is iterative: an initial version is built, this version is checked in

applications or by experts, and it is refined until usable ontology is obtained. There

are seven steps in Ontology Development 101 methodology [20]:

 33

1. Determine the domain and scope of the ontology – first step includes

defining ontology’s domain and scope by using competency questions (questions

that the ontology should be able to answer).

2. Consider reusing the existing ontologies – checking whether the existing

ontologies can be refined and extended.

3. Enumerate important terms in the ontology – write down all the possible

relevant terms without worrying about the overlap between concepts.

4. Define the classes and the class hierarchy – using top-down or bottom-up

approach, or the combination of the two, to define classes and their hierarchy.

5. Define the properties of classes – slots – here the internal structure of

concepts is defined using data and object properties.

6. Define the facets of the slots – the value type, allowed values, domain,

range, and cardinality of slots should be defined.

7. Create instances – the individual instances of classes should be defined and

their slot values should be filled.

As part of their published document, N o y and M c G u i n n e s s [20] showed

how to create sample Wine ontology using the above mentioned steps. In the next

chapter, the Ontology Development 101 methodology is used to create ontology of

PaaS resources, remote operations and data type mappings.

3.2. Ontology of PaaS resources, remote operations, and data types

For the purpose of this research, the domain and scope of the model should be

limited as in the first step of Ontology Development 101 [20] guide. The

representation of resources and operations in APIs of platform as a service is

determined as the domain of the ontology. This ontology will be used to

semantically annotate API operations of platform as a service offers. The

information in the ontology should provide answers to the following questions:

What are the main resources of the platform as a service model of cloud

computing? What are the most important remote operations on PaaS resources?

How to support mappings of data types among the heterogeneous APIs? The aim of

the ontology is to describe clearly and to categorize the existing functionalities and

features of commercial providers of platform as a service.

First, the work of the other authors was considered and checked if there was a

possibility to refine and extend the existing ontologies for the domain and scope

determined in the previous step. The most important previous work related to cloud

and PaaS ontologies is listed in Section 2.1. There is no complete ontology that is

focused on remote operations providers of commercial platform as a service and

data type mappings among them, but some concepts from our previous work [2],

mOSAIC ontology [1] and D e n g et al. [5] were used as important terms for

development of this ontology.

Excel spreadsheets were used to list all relevant terms, one sheet per one

relevant document. Initially, the concepts in this ontology were derived from the

existing cloud ontologies (mostly from mOSAIC project), PIM4Cloud [21]

metamodel from REMICS project, OASIS Reference Ontology for Semantic

Service Oriented Architecture [22], relevant related works from literature ([3]),

 34

remote cloud functions specified in the API documentation of the most prominent

commercial providers of platform as a service (Google App Engine, Microsoft

Azure, Salesforce), standards for Semantic Web services such as OWL-S and

WSMO, relevant cloud computing standards (OCCI, TOSCA, CDMI), and using

personal experience in building applications for platform as a service. Experimental

remote APIs are not included, because they are subject to frequent change, and

providers do not guarantee that they will keep these operations in the next versions

of their APIs. Terms obtained from these sources are listed in Table 1. The list of

terms was incrementally updated during the whole research.

Table 1. List of identified terms for PaaS ontology

Source Important terms

D e n g et al.
[5]

Service offering, composite offering

mOSAIC
ontology –
M o s c a t o
et al.[1]

API, data storage, replicated relational database, key value stores, distributed file
system, language, application, utility API, data management API, authentication
API, platform provider, cloud resources

OWL-S [23] Service, variable, parameter, input, output, result, precondition

WSMO [24] Web service, precondition, assumption, postcondition, effect

OCCI [25] Entity, resource, kind, action

TOSCA [26] Properties, capabilities, interfaces, operation, requirements

CDMI [27] Container, data object, queue object

Salesforce’s
APIs ([28],
[29]) – list of
remote
operations

Convert lead, create, delete, empty recycle bin, get deleted, get updated,
invalidate sessions, login, logout, merge, process, query, query all, query more,
retrieve, search, undelete, update, upsert, describe global, describe data category
groups, describe data categories group structures, describe layout, describe search
scope order, describe SObject, describe softphone layout, describe tabs, get
server timestamp, get user info, reset password, send email, send email message,
set password, deploy metadata, check deploy status of metadata, retrieve
metadata, create metadata, delete metadata, update metadata, check status of
metadata, describe metadata, list metadata

Google App
Engine APIs
([30], [31]) –
list of remote
operations

Put, get, delete, query, begin transaction, commit transaction, rollback
transaction, resize images, rotate images, flip images, crop images, logs, send
email, search application data, queues, fetch URL, authenticate users, send and
receive instant messages

Microsoft
Azure APIs
[32] – list of
remote
operations

Set table service properties, get table service properties, query tables, create table,
delete table, get table ACL, set table ACL, query entities, insert entity, merge
entity, replace entity, update entity, delete entity, list containers, set BLOB
service properties, get blob service properties, create container, get container
properties, get container metadata, set container metadata, get container ACL, set
container ACL, lease container, delete container, list blobs, put blob, get blob, get
blob properties, set blob properties, get blob metadata, set blob metadata, delete
blob, lease blob, snapshot blob, copy blob, abort copy blob, put block, put block
list, get block list, put page, get page ranges, set queue service properties, get
queue service properties, list queues, create queue, delete queue, get queue
metadata, set queue metadata, get queue ACL, set queue ACL, put messages, get
messages, peek messages, delete messages, clear messages, update message

REMICS
PIM4Cloud
[21]

PaaS resource, communication resource

 35

From the list created in the previous step, the terms describing independent

objects were selected to present classes in the ontology. In OWL, classes are used to

group individuals that have something in common and that represent sets of

individuals. A class can have subclasses, so the classes were organized into a

hierarchical taxonomy. A total of 146 classes were defined that are organized in 17

top level classes (Fig. 1).

Fig. 1. Top level classes of PaaS ontology

The properties of classes describe the internal structure of concepts. Properties

specify how the instances of a class relate to other instances. Property cardinality

 36

defines how many values a property can have. The allowed classes for a property

instance are called a range of a property, and the classes that the property describes

are called the domain of the property [20]. Apart from having a domain and a range,

an object property may have super- and sub-properties, inverse properties,

equivalent properties and property chains. A total of 34 object properties were

defined in the first ontology. Additionally, instances can be described by data

values. For this purpose, OWL provides data type properties that relate instances to

data values (instead of relating them to other instances). A total of 30 data

properties were defined. The last step in the methodology devised by N o y and

M c G u i n n e s [20] is filling in the values for instances. It requires the creation of

individual instances of each relevant class. For now, a total of 426 individuals were

created. This number is obtained from ontology documentation created by using

OWLDoc plugin in Protégé, and DL Query was used to obtain the number of

instances per each OWL class. Most of the created instances are used for data type

mappings between cloud storage of different PaaS vendors. For example, OWL

class DataTypeMapper has 178 instances, and CloudStorageDataType has 124

instances. Our ontology is publicly available at

https://github.com/dandrocec/PaaSInterop/blob/master/PaaSOntology5/PaaSO

ntologyv5.owl.

3.3. Ontology of platform as service interoperability problems

The second ontology was also developed using Ontology Development 101

methodology [20], OWL and Protégé tool. The domain of this ontology is the

representation of the technical and semantic interoperability problems of

commercial platform as a service offers. The ontology will be used in the

methodology for detecting interoperability problems among providers of platform

as a service as a comprehensive list of possible interoperability issues. The

information in the ontology should give answers to the following question: What

are the most important interoperability problems among different platform as a

service offers?

N a u d e t et al. [33] developed a general ontology of interoperability that can

be used as a starting point for this ontology of platform as service interoperability.

Their ontology is based on system theory and aims at defining interoperability in a

more formal way and it is the basis for allowing interoperability problem detection,

and suggesting solutions [33]. The general interoperability concepts from their

ontology that can be applied to platform as a service APIs interoperability (e.g.,

Interoperability, AprioriSolution, AposterioriSolution, Problem, etc.) and relations

between them will be directly used in our ontology.

Again, Excel spreadsheets were used to list all the relevant terms. The

concepts of the ontology of interoperability problems were derived from Naudet et

al.’s ontology of interoperability [33], interoperability problems between different

databases listed in the literature ([34-37]) metadata interoperability problems [38],

interoperability problems of web services ([39], [40]) the ATHENA Interoperability

Framework [41] and problems identified by the author of this dissertation when

working on use cases. Terms obtained from these sources are listed in Table 2.

 37

Table 2. List of identified terms for PaaS interoperability ontology

Source Important terms

N a u d e t et al.

[33]

InteroperabilitySolution, Indicator, InteroperabilityProblem,

InteroperabilityExistenceCondition, Model, ConformancePoint,

AntiPattern, InteroperabilitySolution, AprioriInteroperabilitySolution,

AposterioriInteroperabilitySolution, Incompatibility, Misalignment,

Heterogeneity, actsOnApi, actsOnModel, actsOnRepresentation,

canInduceNewProblem, concernsApi, concernsModel,

concernsRepresentation, definesCondition, existsIf, solvesProblem

P a r k and R a m

[34]

DataLevelConflict, DataValueConflict, DataRepresentationConflict,

DataUnitConflict, DataPrecisionConflict, SchemaLevelConflict,

NamingConflict, EntityIdentifierConflict,

SchemaIsomorphismConflict, GeneralizationConflict,

AggregationConflict, SchematicDiscrepancies

Cloud4SOA [42] Different data models, different APIs, different query languages

H a s l h o f e r

and K l a s [38]

Metadata heterogeneities, structural heterogeneities, domain

representation conflicts, abstraction level incompatibility, multilateral

correspondences, meta-level discrepancy, domain coverage, element

definition conflicts, naming conflicts, identification conflicts,

constraints conflicts, semantic heterogeneities, domain conflicts,

terminological mismatches, scaling/unit conflicts, representation

conflicts

P a r e n t and

S p a c c a p i e t r a

[36]

Generalization/specialization conflicts, description conflicts, structural

conflicts, fragmentation conflicts, metadata conflicts, data conflicts

S h e t h and

K a s h y a p [35]

Domain definition incompatibility, naming conflicts, data

representation conflicts, data scaling conflicts, data precision conflicts,

default value conflicts, attribute integrity constraint conflicts, entity

definition incompatibility, database identifier conflicts, union

compatibility conflicts, schema isomorphism conflicts, missing data

item conflicts, data value incompatibility, known inconsistency,

temporary inconsistency, acceptable inconsistency, aggregation

conflicts, generalization conflicts, data value attribute conflict, attribute

entity conflicts, data value entity conflicts

P o n n e k a n t i

and F o x [39]

Structural, value, encoding and semantic incompatibilities, missing

methods, extra fields, missing fields, facet mismatches, cardinality

mismatches

Z h u et al. [37]

Naming synonyms, naming homonyms, different composite structure,

different value representation, differences in semantic meaning,

differences between data models, changes over time of the structure

and the representation of attributes and values, different query

languages, different transaction mechanisms

AIF [41]

Interoperability at enterprise/business level, interoperability of

processes, interoperability of services, interoperability of

information/data

 38

Again, from the list created in the previous step, the terms that describe

independent objects were selected, because they present classes in the ontology. A

total of 78 classes were defined. Also, a total of 14 object properties were defined.

For now, the ontology does not contain any data properties. Our PaaS

interoperability OWL ontology is publicly available at

https://github.com/dandrocec/PaaSInterop/blob/master/InteroperabilityProble

msOntology.owl.

4. Evaluation of the ontologies

Ontology evaluation gathers information about some properties of the ontology,

compares the results with a set of requirements, and assesses the suitability of the

ontology for some specified purpose [43]. Ontology Development 101 methodology

does not have an explicit evaluation step and it lacks evaluation procedure and

recommendations, but evaluating the ontologies is useful to refine the ontologies

and see whether they can be used in applications as expected. The question of

choosing the ontology evaluation method is still one of the biggest problems in

ontology engineering. There is no consensus on the best ontology evaluation

approach and there exist no universally agreed metrics for ontology evaluations

[43], but evaluating the ontology systematically during its whole lifecycle will

certainly raise its quality. Ontology anomalies and main approaches to tackle

ontology evaluation are presented in Section 2.2 of this work. N e u h a u s et al.

[43] claim that ontology evaluation should be incorporated into all ontology

development lifecycle phases based on carefully identified ontology requirements.

Due to a lack of gold standards and corpus of data, the evaluation by humans and

application-based evaluation was chosen. Additionally, some tools were used to

eliminate OWL syntax errors and known ontology anomalies. In the next

subsections, the evaluation process of developed ontologies will be shown.

4.1. Evaluation by tools

First, the logical consistency of the developed ontologies was checked by means of

the Pellet reasoner that checks hierarchies, domains, ranges, conflicting disjoint

assertions and calculates the resulting inferred hierarchy and other properties. Pellet

uses logic to draw inferences from the facts and axioms defined in the OWL

ontology. Pellet reasoner plug-in for Protégé 4 was installed and executed, and no

consistency problems were found.

Next, the DL Query was used to check whether the ontology meets the basic

requirements. DL Query is a Protégé 4 plug-in [44], and the supported query

language is based on Manchester OWL syntax. For example, DL Query

“Operation” can be executed to get all subclasses, descendant classes and

individuals of the Operation class. Then vendor’s documentation of their remote

API operations can be observed, and it should be checked if all the relevant

operations were included in the ontology. Other relevant DL Query can be

 39

“DataTypeMapper” to check whether all relevant data type mappings are present as

individuals in our ontology.

Furthermore, the web based tool called Ontology Pitfall Scanner! (OOPS!)

[14] was used to detect possible ontology anomalies. The mentioned tool can

currently identify 40 ontology pitfalls. The two ontologies in this dissertation were

evaluated using publicly available OOPS! tool. One critical (swapping intersection

and union) and three important (untyped property) pitfalls were found and

eliminated.

4.2. Evaluation by humans

Ontology was also evaluated by four human experts working in the field of cloud

computing interoperability and related science projects (Contrail [45],

mOSAIC [1]). The questionnaire was sent to four cloud researchers. They were sent

a brief ontology description document with figures of class hierarchy, and asked to

answer the following questions:

1. Completeness

Do the ontologies cover the major concepts regarding PaaS API operations and

PaaS interoperability problems? Are there any concepts/terms that you recommend

to add to the ontologies and where?

2. Conciseness

Can you identify some redundant or ambiguous concepts in the ontologies? Do

you think that some concepts should be removed and why?

3. Consistency

Can you identify some inconsistencies (for example, contradictions, semantic

duplication, or circular definitions) in the provided ontologies?

4. Flexibility

Can new concept/s be included into the ontologies without revising their

existing structures?

Their feedback was used to refine the ontology. After their initial feedback, the

ontologies were revised and improved, and contact was kept (by email) with the

experts which offered more comments on newer versions of the ontologies. Several

pitfalls were found by four experts. The findings, together with the actions taken,

are shown in Table 3.

4.3. Application based evaluation

The aim was to validate the usability of these ontologies to semantically annotate

remote vendors’ PaaS API operations, to enable mapping between their inputs and

outputs, and to enable mappings of different types between different PaaS storages.

The prototype was developed in Java and it uses Jena library to work with the

ontologies. The developed prototype demonstrates the feasibility of applying the

ontologies to semantically annotate API operations, find interoperability problems,

and try to find solution for the problems found. The source code of the prototype is

publicly available at

https://github.com/dandrocec/PaaSInterop

 40

Table 3. Summary of ontology evaluation by experts

Expert’s comments Actions taken

 Authentication describes authT towards the PaaS

portal? AuthT against application developed within the

PaaS? If second, maybe alternative (e.g., ×509)

authentication operations can be added (there is

GetPublicCert operation)?

 You could add RegistrationOperation in parallel to

AuthenticationOperation

 I have not seen any operations/concepts related to

accounting/monitoring/billing/alerting. How is that? Is this

maybe included in some operation?

 However, I believe that your concepts cover most of

the operations

 New operations can be added without revising other

concepts in the ontology

 AddServiceCertificateOperation

and

DeleteServiceCertificateOperation

were added

 RegistrationOperation is added

to the ontology

 MonitoringOperation,

ResourceUsageOperation,

BillingOperation,

UpdateAlertRuleOperation,

ListAlertRulesOperation,

GetAlertRuleOperation,

DeleteAlertRuleOperation,

CreateAlertRuleOperation were

added to the ontology

 The ontology seems pretty extensive and consistent to

me, although slightly different from the one developed in

mOSAIC

 None

 My first impression is that the ontologies are too

abstract, i.e., not very “practical”

 The best way to proceed would be to include some

instance data in Protégé and prepare some SPARQL

queries that would be useful in your given context – that

would demonstrate its usage

 More instance data was

included

 I would suggest inspecting Cloud API-s such as Dasein

Cloud API, Apache jclouds, etc, where standardization has

been performed for accessing clouds in a provider-

independent way

 I saw some potential anomalies, such as e-mail address

being a concept/class

 Go through the instances to add more assertions

 What about mappings between complex types?

 With respect to ontology sources I suggest to also look

at the REMICS-related metamodels

 Also, please unify the naming of classes and properties

 You model all data structures of specific PaaS

solutions in the ontology with dedicated entities instead of

defining cross-PaaS concepts – why was this choice

made? This means that in order to add support for other

PaaS' you need both – extend the ontology and create new

mappings, while with cross-PaaS conceptualization

creation of new mapping might suffice

 Additional ontology sources

were inspected

 Email class is removed from the

ontology because it was an

anomaly

 More instance assertions were

added

 Complex types mappings were

listed in the PaaS ontology

 The naming of classes and

properties were unified

 In the final version of PaaS

ontology, cross-PaaS concepts are

used to model simple and complex

data types of services’ inputs and

outputs

 41

5. Conclusion

This work described the development of two ontologies. The mentioned ontologies

describe functionalities, features and interoperability problems among APIs of

different providers of platform as a service. The first ontology provides data type

mapping among different PaaS storages and cross-PaaS data types used in inputs

and outputs of the operations. This functionality provides a common layer for

information exchange and data migration among different PaaS providers. The

logical consistency of the ontologies was checked and four human experts evaluated

the ontologies. Furthermore, the ontologies were used in cloud interoperability

prototype to show their practical applicability.

Key indicators of the existence of interoperability problems among the

available platform as a service APIs can be found in the description of the

subclasses of InteroperabilityProblem OWL class in the second shown ontology.

The developed ontologies improve the understanding of PaaS offers, their

operations and data type, and enable mappings to overcome their differences.

Identified cross-PaaS concepts of operation, input and output data types, as well as

defined PaaS storage data types and their mappings improve the understanding of

platform as a service model in more detail than other models and ontologies in the

existing literature. These concepts also enable semantic annotations with aim to

solve known interoperability problems.

Three prominent commercial offers of platform as a service (Google App

Engine, Salesforce and Microsoft Azure) were used to define main types of API

functions in the ontology. Their APIs represent most of the functionalities found

today in platform as a service offers, but it would be certainly beneficial to also

include other providers. The ontology is designed to be easily extended with

additional API operations, data types and mappings of data types. Another direction

for future work could be to extend the ontology to support API functions and

interoperability problems of the other two main models of cloud computing

(software as a service and infrastructure as a service). Generally, the interoperability

of platform as a service and cloud computing in general are very complex and

important issues, and hopefully, the ontologies presented in this work will extend

the knowledge of cloud APIs and their interoperability problems and allow for

gradual resolution of cloud interoperability problems.

Acknowledgments: This work has been fully supported by the Croatian Science Foundation under the

project IP-2014-09-3877.

R e f e r e n c e s

1. M o s c a t o, F., R. A v e r s a, B. D i M a r t i n o, T.-F. F o r t i s, V. M u n t e a n u. An Analysis

of mOSAIC Ontology for Cloud Resources Annotation. – In: Proc. of Federated Conference

on Computer Science and Information Systems, Szczecin, 2011, pp. 973-980.

2. A n d r o č e c, D., N. V r č e k. Platform as a Service API Ontology. – In: Proc. of 12th European

Conference on eGovernment, Barcelona, 2012, pp. 47-54.

 42

3. Y o u s e f f, L., M. B u t r i c o, D. D a S i l v a. Toward a Unified Ontology of Cloud Computing.

– In: Grid Computing Environments Workshop (GCE’08), Austin, Texas, 2008, pp. 1-10.

4. W e i n h a r d t, C., A. A n a n d a s i v a m, B. B l a u, J. S t o s s e r. Business Models in the

Service World. – IT Professional, Vol. 11, March 2009, No 2, pp. 28-33.

5. D e n g, Y., M. R. H e a d, A. K o c h u t, J. M u n s o n, A. S a i l e r, H. S h a i k h. Introducing

Semantics to Cloud Services Catalogs. – In: IEEE International Conference on Services

Computing (SCC’2011), Washington, DC, 2011, pp. 24-31.

6. T a k a h a s h i, T., Y. K a d o b a y a s h i, H. F u j i w a r a. Ontological Approach Toward

Cybersecurity in Cloud Computing. – In: Proc. of 3rd International Conference on Security

of Information and Networks (SIN’10), Rostov-on-Don, Russian Federation, 2010, p. 100.

7. M a r t i n e z, A. C., G. I. E c h e v e r r i, A. G. C. S a n z. Malware Detection Based on Cloud

Computing Integrating Intrusion Ontology Representation. – In: IEEE Latin-American

Conference on Communications (LATINCOM’10), Bogota, 2010, pp. 1-6.

8. B e r n s t e i n, D., D. V i j. Intercloud Directory and Exchange Protocol Detail Using XMPP and

RDF. – In: 6th World Congress on Services (SERVICES-1 2010), Miami, Florida, 2010,

pp. 431-438.

9. H a n, T., K. M. S i m. An Ontology-Enhanced Cloud Service Discovery System. – In: Proc. of

International MultiConference of Engineers and Computer Scientists 2010, Hong Kong,

Vol. I, 2010, pp. 644-649.

10. K a n g, J., K. M. S i m. Ontology and Search Engine for Cloud Computing System. – In:

International Conference on System Science and Engineering (ICSSE 2011), Macao, 2011,

pp. 276-281.

11. D a s t j e r d i, A. V., S. G. H. T a b a t a b a e i, R. B u y y a. An Effective Architecture for

Automated Appliance Management System Applying Ontology-Based Cloud Discovery.

– In: 10th IEEE/ACM International Conference on Cluster, Cloud and Grid Computing

(CCGrid’2010), Melbourne, Australia, 2010, pp. 104-112.

12. M a, H., K.-D. S c h e w e, Q. W a n g. An Abstract Model for Service Provision, Search and

Composition. – In: IEEE Asia-Pacific Services Computing Conference (APSCC’09),

Singapore, 2009, pp. 95-102.

13. P o v e d a-V i l l a l ó n, M., M. C. S u á r e z-F i g u e r o a, A. G ó m e z-P é r e z. A Double

Classification of Common Pitfalls in Ontologies. – In: Proc. of Workshop on Ontology

Quality (OntoQual’10), Co-Located with EKAW 2010, Lisbon, Portugal, 2010.

14. P o v e d a-V i l l a l ó n, M., M. C. S u á r e z-F i g u e r o a, A. G o m e z-P e r e z, A s u n c i o n.

Validating Ontologies with OOPS! – In: Proc. of 18th International Conference on

Knowledge Engineering and Knowledge Management (EKAW’12), Galway City, Ireland,

2012, pp. 267-281.

15. B a u m e i s t e r, J., D. S e i p e l. Anomalies in Ontologies with Rules. – Web Semantics: Science,

Services and Agents on the World Wide Web, Vol. 8, March 2010, No 1, pp. 55-68.

16. V r a n d e č i ć, D. Ontology Evaluation. PhD Thesis, Karlsruher Instituts Fuer Technologie (KIT),

Karlsruhe, 2010.

17. G ó m e z-P é r e z, A. Ontology Evaluation. – In: Handbook on Ontologies, S. Staab and

R. Studer, Eds. Berlin, Heidelberg, Springer, 2004, pp. 251-273.

18. B r a n k, J., M. G r o b e l n i k, D. M l a d e n i ć. A Survey of Ontology Evaluation Techniques.

– In: Proc. of Conference on Data Mining and Data Warehouses SiKDD 2005, Ljubljana,

Slovenia, 2005.

19. A m i r h o s s e i n i, M., J. S a l i m. OntoAbsolute as a Ontology Evaluation Methodology in

Analysis of the Structural Domains in Upper, Middle and Lower Level Ontologies. – In:

International Conference on Semantic Technology and Information Retrieval (STAIR’11),

Putrajaya, 2011, pp. 26-33.

20. N o y, N. F., D. L. M c G u i n n e s s. Ontology Development 101: A Guide to Creating Your First

Ontology. Stanford University, 2001.

21. SOFTEAM, SINTEF, Tecnalia. REMICS Deliverable D4.1 PIM4Cloud. REMICS Consortium,

Project Deliverable, March 2012.

22. D o m i n g u e, J., M. Z a r e m b a, B. N o r t o n, M. K e r r i g a n, A. M o c a n, A. C a r e n i n i,

E. C i m p i a n, M. H a i n e s, J. S c i c i l u n a, M. Z a r e m b a. Reference Ontology for

Semantic Service Oriented Architectures. OASIS, Public Review Draft 01, November 2008.

 43

23. M a r t i n, D., M. B u r s t e i n, J. H o b b s, O. L a s s i l a, D. M c D e r m o t t, S. M c I l r a i t h,

S. N a r a y a n a n, M. P a o l u c c i, B. P a r s i a, T. P a y n e, E. S i r i n, N. S r i n i v a s a n,

K. S y c a r a. OWL-S: Semantic Markup for Web Services. W3C Member Submission,

November 2004.

24. R o m a n, D., H. L a u s e n, U. K e l l e r, J. de B r u i j n, C. B u s s l e r, J. D o m i n g u e,

D. F e n s e l, M. H e p p, M. K i f e r, B. K ö n i g-R i e s, J. K o p e c k y, R. L a r a, E. O r e n,

A. P o l l e r e s , J. S c i c l u n a, M. S t o l l b e r g. D2v1.4. Web Service Modeling Ontology

(WSMO). WSMO Working Draft, February 2007.

25. P a h l, C., L. Z h a n g, F. F o w l e y. A Look at Cloud Architecture Interoperability through

Standards. – In: 4th International Conference on Cloud Computing, Grids, and Virtualization,

Valenica, Spain, 2013, pp. 7-12.

26. OASIS. Topology and Orchestration Specification for Cloud Applications Version 1.0. OASIS,

OASIS Committee Specification Committee Specification 01, March 2013, Accessed 9

November 2016.

http://docs.oasis-open.org/tosca/TOSCA/v1.0/cs01/TOSCA-v1.0-cs01.pdf

27. SNIA. Cloud Data Management Interface (CDMITM) Version 1.0.2. SNIA, SNIA Technical

Position, Jun. 2012, Accessed 9 November 2016.

http://snia.org/sites/default/files/CDMI%20v1.0.2.pdf

28. Salesforce. SOAP API Developer’s Guide Version 28.0. 21-Jun-2013, Accessed 9 November

2016.

http://www.salesforce.com/us/developer/docs/api/
29. Salesforce. Metadata API Developer’s Guide. Salesforce, 05-Oct-2013., Accessed 9 November

2016.

https://developer.salesforce.com/docs/atlas.en-

us.api_meta.meta/api_meta/meta_intro.htm

30. Google. Entities, Properties, and Keys. 16-Aug-2013, Accessed 9 November 2016.

https://cloud.google.com/appengine/docs/java/datastore/entities
31. Google. Google App Engine Java API. Google, Accessed 9 November 2016.

https://cloud.google.com/appengine/docs/java/javadoc/

32. Microsoft. Windows Azure Storage Services REST API Reference. Microsoft, 31-Aug-2011,

Accessed 9 November 2016.

http://msdn.microsoft.com/en-us/library/windowsazure/dd179355.aspx

33. N a u d e t, Y., T. L a t o u r, W. G u e d r i a, D. C h e n. Towards a Systemic Formalisation of

Interoperability. – Computers in Industry, Vol. 61, February 2010, No 2, pp. 176-185.

34. P a r k, J., S. R a m. Information Systems Interoperability. – ACM Transactions on Information

Systems, Vol. 22, October 2004, No 4, pp. 595-632.

35. S h e t h, A. P., V. K a s h y a p. So Far (Schematically) yet So Near (Semantically). – In: Proc. of

IFIP WG 2.6. Database Semantics Conference on Interoperable Database Systems, 1993,

pp. 283-312.

36. P a r e n t, C., S. S p a c c a p i e t r a. Database Integration: The Key to Data Interoperability. –

In: Advances in Object-Oriented Data Modeling. MIT Press, 2000.

37. Z h u, F., M. T u r n e r, I. K o t s i o p o u l o s, K. B e n n e t t, M. R u s s e l, D. B u d g e n,

P. B r e r e t o n, J. K e a n e, P. L a y z e l l, M. R i g b y. Dynamic Data Integration Using

Web Services. – In: Proc. of IEEE International Conference on Web Services (ICWS’04),

San Diego, USA, 2004, pp. 262-272.

38. H a s l h o f e r, B., W. K l a s. A Survey of Techniques for Achieving Metadata Interoperability. –

ACM Computing Surveys, Vol. 42, February 2010, No 2, pp. 1-37.

39. P o n n e k a n t i, S. R., A. F o x. Interoperability among Independently Evolving Web Services. –

In: Proc. of 5th ACM/IFIP/USENIX International Conference on Middleware

(Middleware’04), Toronto, Canada, 2004, pp. 331-351.

40. N a g a r a j a n, M., K. V e r m a, A. P. S h e t h, J. A. M i l l e r. Ontology Driven Data Mediation

in Web Services. – International Journal of Web Services Research, Vol. 4, 34 2007, No 4,

pp. 104-126.

https://cloud.google.com/appengine/docs/java/datastore/entities

 44

41. B e r r e, A.-J., B. E l v e s æ t e r, N. F i g a y, C. G u g l i e l m i n a, S. G. J o h n s e n,

D. K a r l s e n, T. K n o t h e, S. L i p p e. The ATHENA Interoperability Framework. – In:

Enterprise Interoperability II. R. J. Gonçalves, J. P. Müller, K. Mertins, and M. Zelm, Eds.

London, Springer, pp. 569-580.

42. L o u t a s, N., E. K a m a t e r i, K. T a r a b a n i s, F. D’A n d r i a. D 1.2 Cloud4SOA Cloud

Semantic Interoperability Framework. 2 Juny 2011, Accessed 9 November 2016.

http://www.cloud4soa.com/sites/default/files/D1.2_Cloud4SOA%20Cloud%20Semantic

%20Interoperability%20Framework.pdf

43. N e u h a u s, F., A. V i z e d o m, K. B a c l a w s k i, M. B e n n e t t, M. D e a n, M. D e n n y,

M. G r ü n i n g e r, A. H a s h e m i, T. L o n g s t r e t h, L. O b r s t, S. R a y, R. S r i r a m,

T. S c h n e i d e r, M. V e g e t t i, M. W e s t, P. Y i m. Towards Ontology Evaluation across

the Life Cycle. Applied Ontology, 2013, No 3, pp. 179-194.

44. ProtegeWiki. DL Query Tab. Protege Wiki. 18-Mar-2013, Accessed 9 November 2016.

http://protegewiki.stanford.edu/wiki/DLQueryTab

45. C a r l i n i, E., M. C o p p o l a, P. D a z z i, L. R i c c i, G. R i g h e t t i. Cloud Federations in

Contrail. – In: Euro-Par 2011, Parallel Processing Workshops. Vol. 7155, M. Alexander,

P. D’Ambra, A. Belloum, G. Bosilca, M. Cannataro, M. Danelutto, B. Martino, M. Gerndt,

E. Jeannot, R. Namyst, J. Roman, S. L. Scott, J. L. Traff, G. Vallée, and J. Weidendorfer,

Eds. Berlin, Heidelberg, Springer, 2012, pp. 159-168.

