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Abstract: The point of interest in this paper is the main content of autonomous 

navigation of robots. An algorithm for robot Simultaneous Localization And 

Mapping (SLAM) based on self-detected waypoint is introduced to realize robot’s 

mapping in its area of interest. Robot’s next step waypoint is performed using 

characteristics of large information in the area of interest and dense landmark, 

clustering the landmark in the area of interest, and guiding robot’s movement with 

clustered central point. Robot clusters the observed area in its observation every 

time. It takes the clustered center based on the largest number of landmarks as the 

waypoint of the next step. Simulation experiment shows, that due to robot’s 

movement toward the area of dense landmarks, the proposed method increases the 

number of landmarks observed by the robot and frequency of observation is 

increased. The proposed method enhances accuracy of robot’s positioning and the 

robot realizes to detect its waypoint autonomously. 

Keywords:  Robot, Simultaneous Localization And Mapping (SLAM), K-means 

clustering, Extended Kalman Filter (EKF), waypoint. 

1. Introduction 

The solution to the Simultaneous Localization And Map building (SLAM) problem 

is a “HolyGrail” of the autonomous vehicle research community in many respects. 

The ability of an autonomous vehicle, when is placed at unknown location in 

unknown environment, to build a map using only relative observations of the 

environment, and then to use this map simultaneously to navigate would indeed 

make such a robot “autonomous”. Thus, the main advantage of SLAM is that it 

eliminates the need for artificial infrastructures or a priori topological knowledge of 

the environment. 
The robot’s simultaneous localization and mapping is the key step in its 

autonomous movement. The robot’s SLAM study is categorized into passive SLAM 
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and autonomous directing SLAM according to robot’s movement model. In passive 

SLAM, people controls robot’s movement [1-3]. Document [1] puts forward that 

robot’s position and direction is controlled by people’s hands. In Document [2], 

vision sensor is installed on operator’s head; Document [3] proposes an SLAM 

algorithm of stereoscopic vision on 6 degree of freedom, and this method adopts 

local subgraph to decrease calculating complexity but it is accomplished under 

operator’s hand control on double vision sensor. These algorithms are all realized 

by people under certain training without any autonomy.  

In autonomous detecting SLAM, robot is guided by target point and selects 

autonomously the best route to reach target point without running into barrier. The 

current study is mainly about SLAM guided by the target points [4-11]. Document 

[4] presents a real-time object-based SLAM system that leverages the largest object 

database to date; Document [5] solves the EKF-SLAM algorithm whereas the path 

planning problem is tackled via Q-learning; Document [6] studies the data 

association problem; Document [7] proposes clustering techniques for finding 

landmarks for realizing Loop Closure; Document [8] uses mutual independent 

subgraph technology to decrease the calculating complexity and increases mapping; 

Document [9] solves measure uncertainty; Document [10] presents a novel 

mechanism to initiate new views within the map building process for an EKF-based 

visual SLAM approach using omnidirectional images. This type of SLAM is about 

the fixed target point which guides simultaneous localization and mapping on the 

premise that the waypoint is pre-established and the robot has no autonomy on its 

selection.  

Autonomous navigation of the robot is always movement to the targets. The 

targets generally have more feature points, that is, the area of interest for the robot. 

In order to let the robot have autonomous simultaneous localization and mapping in 

its area of interest, a type of robot Self-detected Waypoint SLAM (SWSLAM) is 

proposed based on K-means clustering. The robot clusters the observed area in each 

observation with the observed monotonic increasing number of landmarks, and it 

takes clustering centre on the largest number of landmarks as the next step 

waypoint. This is done with the robot’s basic SLAM framework estimated on  

EKF-SLAM. The frequency of environment features observation can increase due 

to the guidance driven by the clustering center point in robot’s area of interest. This 

method enhances accuracy of robot’s positioning. 

2. System model  

2.1. SLAM system model 

The described SLAM system is composed of robot’s position and direction, and the 

observed coordinates on static environment landmark. The united state vector under 

k state is shown as  
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In the formula, vk vk rkx , y ,  are represented the robot’s coordinates in two-

dimensional space and direction angle, respectively. The map is static, parameter 

 1 1, , , ,k N Nm x y x y
T

 has no time index. The robot’s movement model is rolling 

motion constraints (i.e., assuming zero wheel slip) [12],  
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The time interval from 1k   up to k  moment is ,T  speed kv  and driving 

angle kG  are constant, which constitutes controlled quantity  ,k k ku v G
T

，and 

robot’s wheel base is B .  

2.2. SLAM observation model 

The observed model is  
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where zik is the observation vector at time k, and ih  is the model of the observation 

of the i-th landmark. The vector zik is an observation of the landmark location pi 

relative to the robot’s location xvk. This type of observation will be referred to as a 

vehicle-landmark observation or a VLM observation. 

The model is not assumed to be perfect, so some sensor characteristics out of 

the model and noise corruptions are lumped into an observation error vector ik . 

The observation error vector is again taken to be a temporally uncorrelated and zero 

means random sequence: 
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where ikR  is the observation error covariance matrix at time k. 

A linear observation model is employed often for the analysis in the paper, 

which is written as 

(4)    ,
iik P i v vk ik  z H p H x  

where 
iPH  is the partitioned landmark observation model. This formulation of the 

observation equation makes the relative nature of the observation explicit. 

2.3. Landmark model 

Landmarks are fixed and conspicuous features of the environment. Landmarks may 

have many physical forms; corners, planes, rough surfaces, poles, natural or 

artificial terrain features can all be considered landmarks if they are repeatedly and 

reliably observed by a sensor. What constitutes a landmark exactly is driven by the 



 215 

physics of the observing sensor – landmarks are conspicuous through the eyes of 

the observing sensor. This sensor-centric definition of a landmark means that it is 

not always possible to readily associate a landmark with visually perceived features.  

Mathematically, landmarks are represented as a vector of parameters that are 

used to define the location and other properties of the landmark. This paper 

generally employs the simplest of all landmark models: A landmark is a stationary, 

point like entity in two dimensions. A point landmark is defined by two parameters 

specifying its position in Cartesian space with respect to some global coordinate 

frame. A point landmark is visible from all viewing angles. In general, more 

complex landmarks can be incorporated into the maps with models defined in this 

paper. 

The relationship between the point landmark state at times k + 1 and k is 

trivial. 

The landmark is stationary, so 

(5)     ( 1) ( ) .i i ik k  m m m  

Importantly, and in contrast to the vehicle model, there is no additive 

uncertainty term in the landmark model. 

2.4. Map 

A map consists of a set of landmarks with defined locations and properties. The set 

of landmarks within a map may be known or uncertain, and for the SLAM problem 

they are initially completely unknown. 

Maps can generally be defined in two forms: Absolute and relative maps. In 

The absolute maps, all landmarks are registered in a single global coordinate frame. 

In the relative map, only the relationships between individual landmarks are 

described. The relationship between the two map types will then be investigated. 

It is important to note that the maps discussed in this section are built only for 

navigation purposes. The maps need not correspond to a “human” description of the 

environment as it only contains sensor-centric landmarks. 

3. Robot’s SLAM based on self-detected waypoint 

Robot’s next step waypoint is performed using the characteristics of large 

information in the location of interest and dense landmarks, then clustering the 

landmarks in the location of interest, and guiding robot’s movement to the clustered 

central point. Due to the guidance driven by the clustering central point in area of 

interest, this method increases the number of the observed landmarks and the 

observed frequency of environment feature. It realizes a high degree accuracy of 

positioning. 

3.1. Self-detected waypoint in area of interest 

The robot’s selection in its area of interest is under no supervision and this problem 

can be solved through clustering. Due to the features of simplified calculation and 

accelerating convergence in K-means clustering algorithm, this paper regards 
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landmark concentration in the area of interest as the measurement criteria. So, the 

clustered central point will be chosen as the robot’s next step waypoint. K-means 

clustering is non-supervision real-time clustering algorithm put forward by M a c  

Q u e e n  [13]. Steps of self-detected waypoint based on K-means clustering are as 

follows: 

Step 1. Initialization 

Take the observed landmark as object set, assign clustering class number, 

select randomly initial clustering center in object set, and set iteration suspended 

conditions. 

Step 2. Performing iteration 

Assign data object to the closest clustering center according to similarity to 

form the same class.  

Step 3. Updating clustering center 

Take mean vector of the same class as the new clustering center and re-assign 

data object. 

Step 4. Repeating Step 2 and Step 3 until suspended conditions are satisfied. 

Step 5. Statistics updating 

Perform statistics upon landmark number in clustering, and take the clustering 

center of the most landmarks as the self-detected waypoint. 

3.2. The robot’s SLAM of self-detected waypoint based on K-means clustering 

SWSLAM combines K-means algorithm and the observed process based on  

EKF-SLAM estimated framework. It functions as mobile robot’s positioning 

algorithm. In positioning algorithm, SWSLAM autonomously selects partial 

waypoint and locates the area of interest autonomously. 

SWSLAM positioning algorithm mainly includes seven steps: The robot’s 

position and direction, observation of sensor, storage of landmark, updating and 

judging of landmark, predicting of measurement, matching of predicted value and 

real-observed value, and state updating and mapping. 

Step 1. Prediction of position and direction 

Predict the position and direction | 1
ˆ

k kx   of the robot and covariance matrix 

| 1k kP   in k moment according to formulas (1) and (2); | 1
ˆ

k kx   is the state estimate at 

time k according to time k – 1; | 1k kP   is the state estimate covariance at time k 

according to time k – 1. 

Step 2. Real observation 

Obtain the observation on environment feature i by using sensor, obtain real 

observation value ikz  and landmark number in k  step.  

Step 3.  Observation of area of interest and selection of autonomous waypoint 

If the number of landmarks ( )kN z  in continuous observation increases 

monotonously when the robot is within T  time, this area is regarded as an area of 

interest. At this moment the method described in Section 3.1 is adopted to select the 

waypoint autonomously.  
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Step 4. Measurement prediction 

Predict | 1
ˆ

k kx  and observe environment landmark estimation value; 1
ˆ

k m , 

1
ˆ

k m  is environment landmark estimation at time k – 1. Calculate and predict the 

observed value ˆ
ikz according to the robot’s position and direction. 

Step 5. Matching of the predicted value and real observed value 

Calculate innovations Innk, calculate innovations covariance matrix kS , 

calculate Mahalanobis distance, and match the really observed value and predicted 

value by using nearest neighbor relevance method [14]:  

(6)    | 1 1
ˆ ˆInn ( , ),k ik k k kz h x m    

(7)   
1Inn Inn .k k k kD S  T

 

Step 6. State updating 

Update corresponding covariance matrix |k kP  according to observation defined 

in formulas (3) and (6) to obtain the robot’s position estimation |
ˆ

k kx  during k 

moment. The iteration algorithm can realize the robot’s position and direction,  

recursive prediction and updating of covariance to get position and direction 

estimation during each moment.  

Step 7. Mapping 

State expanding, the mapping is  
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ikz  is the observation of new landmark, 
new

ikx  are the newly observed landmarks. 

4. Simulation and analysis 

The experimental environment is about 100×100 m area, with three landmark 

clustering areas set in advance. K-means algorithm will be performed if the 

observed landmark number is increasing monotonously within three observation 

periods. 14 waypoints are used to guide robot’s direction. 50 times of MonteCarlo 

simulation are done for EKF-SLAM, FastSLAM and SWSLAM respectively. 

Fig. 1 shows the experimental results by the proposed algorithms. From Fig. 1, 

the robot selects autonomously numbers 4, 8, and 12 waypoints because it observes 

its area of interest. All the landmarks in landmark dense area are observed.  
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Fig. 1. SWSLAM algorithm simulation 

The experiment analyzes the landmark in the robot’s area of interest and its 

positioning accuracy. 

4.1. The analysis of landmarks number in area of interest and observation 

frequency 

The experiment names the route of the robot from the observed area of interest to 

the next step waypoint as one route session, which is marked respectively in  

Section 1, Section 2 and Section 3. The experiment adopts respectively  

EKF-SLAM, FastSLAM and SWSLAM to perform motion simulation. During 

route session, the number of controlling steps in SWSLAM is more than that of 

those in EKF-SLAM and FastSLAM and it also delays one session to control steps 

when passing every route session.  

 
Fig. 2. Landmark number 

Fig. 2 shows, that in the three route sessions, SWSLAM can acquire more 

landmarks than FastSLAM. From Tables 1, 2, 3, is clear that the total number of 

observed landmarks, the average number of one-step observed landmarks and the 

observed frequencies of single landmark in SWSLAM algorithm are larger than 
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those in EKF-SLAM and FastSLAM within three routs sessions. The experiment 

shows that the proposed algorithm guides the robot to observe the landmark dense 

area of interest. This way it increases the probability landmarks to be noticed in the 

area of interest. 

4.2. Estimation analysis of robot’s positioning accuracy and consistency  

The experiment adopts Root-Mean-Square (RMS) of robot’s position and direction 

as the judging criteria of algorithm. The experiment performs 50 times MonteCarlo 

simulation respectively.  

Table 1 shows the comparison of the robot’s position and variance average 

value. It is visible from Table 1 that the RMS average value of robot’s position in 

SWSLAM is less than that in EKF-SLAM and FastSLAM. This shows that the 

proposed algorithm maintains a better positioning accuracy.  

Table 2 compares the average value of robot’s direction angle and variance. 

From Table 2 is clear that the RMS average value of robot’s direction angle in 

SWSLAM is less than that in EKF-SLAM and FastSLAM. This shows that the 

proposed algorithm maintains a better positioning accuracy. 

Table 1. Section 1 

Items/Algorithms 

The total number 

of observed 

landmarks  

The average 

 Number of one-step 

observed landmark  

Observed 

frequency of 

single landmark 

EKF-SLAM 564 19 14 

Fast-SLAM 564 19 14 

SWSLAM 1056 26 23 

Table 2. Section 2 

Items/Algorithms 

The total number 

of observed 

landmark  

The average  

number of one- 

step observed landmark  

Observed 

frequency of 

single landmark 

EKF-SLAM 1018 18 30 

Fast-SLAM 1018 18 30 

SWSLAM 1765 33 46 

Table 3. Section 3 

Items/Algorithms 

The total number 

of observed 

landmarks  

The average 

 number of one-step 

observed landmark  

Observed 

frequency of single 

landmark 

EKF-SLAM 758 14 18 

Fast-SLAM 758 14 18 

SWSLAM 1365 19 28 

Table 4. Position error 

Items/Algorithms Mean, rad Covariance, rad2 

EKF-SLAM 0.3539 0.2537 

FastSLAM 0.5611 0.2733 

SWSLAM 0.2019 0.2286 
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Error analysis of robot’s position, direction and direction angle shows that 

SWSLAM maintains the more accurate positioning than EKF-SLAM and 

FastSLAM.  

Table 5. Direction angle error 

Items/Algorithms Mean, rad Covariance, rad2 

EKF-SLAM 0.0081 0.0054 

FastSLAM 0.0077 0.0052 

SWSLAM 0.0061 0.0052 

The estimation consistency is considered in the proposed algorithm. NEES 

(normalised estimation error squared) can be used to evaluate filtering performance 

index [15] to linear Gaussian filtering, i.e., the robot’s position and direction is a 

three dimensional vector. The 50 times of Monte Carlo simulation probability is 

95% and confidence interval is [2.36, 3.72]. An optimistic estimation could be  

greater than the upper limit of the interval;  the conserved estimation is less than the 

lower limit.  

The three algorithms are used to perform Monte Carlo simulation on robot for 

50 times. The NEES mean value curving line of the robot’s position and direction is 

shown on Fig. 3. 

Fig. 3 shows that FastSLAM is conserved estimation, NEES mean value of 

robot’s position and direction obeys 2  distribution. The curving line is around 4, 

between [2.36, 3.72], so the algorithm can be regarded as consistency estimation.  

 
Fig. 3. Consistency of the SLAM: EKF-SLAM (blue); FastSLAM (green); SWSLAM (red) 

5. Conclusions 

An algorithm for robot SLAM on self-detected waypoint based on K-mean value 

clustering is introduced to realize robot’s simultaneous localization and mapping in 

its area of interest. Through clustering landmarks in the area of interest, the 

clustering center is regarded as next step waypoint to direct robot’s movement. The 
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presented method can increase the number of the observed landmarks by the robot, 

because it keeps moving towards landmark dense area. The frequency of 

observation also increases, thus realizing a high degree of accuracy in robot’s 

positioning. 
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