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Abstract: In order to improve the performance of tracking, we propose a new 

online tracking method based on classification and adaptive fused feature. We first 

label a few positive and negative samples, train the classifier by the online SSSM 

(Semi-Supervised Support Vector Machine) learning and these labelled samples, 

and then locate the position of the object from the next frame according to the 

trained classifier. In order to adapt more of the new samples, we need to update the 

classifier by finding new samples with high confident value obtained by the trained 

classifier and add them into the online SSSM. Finally we also update the object 

model by the online incremental PCA (Principal Component Analysis) because of 

background clutter, heavy occlusion and complicated object appearance changes. 

Compared with the basic mean shift tracking and the ensemble tracking method, 

experimental results show that our tracking method is able to effectively handle 

heavy occlusion and background clutter in some challenge videos including some 

thermal videos. 

Keywords: Visual tracking, SSSM, feature fusion, incremental PCA，online. 

1. Introduction  

Recently, tracking problem formulated as a binary classification has been a 

promising direction used in some visual applications such as video surveillance and 

military field [1, 2]. The key idea of this kind of tracking method is to obtain an 

effective classifier from training samples which are labelled by online or offline 

method. In spite of speeding up the matching process by offline method, the 

classifier trained by offline method can’t deal efficiently with changes in 

appearance or complex background, while the classifier, trained by the online 

method, on the other hand, can solve these problems effectively [3]. 
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Many methods based on classifier have been proposed for visual tracking  

[1, 3-6]. S. A v i d a n  [4], introduced the support vector tracker, combined the 

trained classifier by offline method with optical-flow feature to track the object. S. 

Avidan proposed the ensemble tracker which trained some weak classifiers by 

Adaboost method to obtain stronger classifier [5]. However, the ensemble tracker 

used the classification results with high confidence to update the classifier itself. 

Unfortunately, the classification error is gets more prominent over time and the 

tracking error increases as well. To further reduce the tracking error, co-tracking 

based on semi-supervised support vector machines [3] was proposed, with the 

underlying assumption that each feature is different and independent but completely 

independent features are difficult to obtain in reality. Co-tracking method makes 

use of two independent features to train the corresponding classifiers, produces the 

confidence maps for a new unlabelled sample using the trained classifiers, and then 

combines a final confidence map with the produced confidence maps. However, co-

tracking method neglects the contribution of the each feature taking into 

consideration the fusion of two maps which were produced by the trained 

classifiers. To take full advantage of each feature, we combine all features to form 

an efficient feature which is helpful for distinguishing the object from the 

background by the distance between the candidate object and the model which is 

adaptively updated by online increment PCA [7]. 

Motivated by self-training and the fusion features idea [8], we present a new 

tracking method based on semi-supervised support vector machine and adaptive 

fused feature. We first label a few positive and negative samples, train the classifier 

by the online SSSM [9] learning and these labelled samples, and then locate the 

position of the object from the next frame according to the trained classifier. In 

order to adapt more of the new samples, we need to update the classifier by finding 

new samples with high confident value obtained by the trained classifier and add 

them into the online SSSM. Finally we also update the object model by the online 

incremental PCA because of background clutter, heavy occlusion and complicated 

object appearance changes. Compared with the basic mean shift tracking and the 

ensemble tracking method, experimental results show that our tracking method is 

able to effectively handle heavy occlusion and background clutter in some 

challenge videos including some thermal video. 

The rest of this paper is organized as follows. Section 2 briefly reviews the 

online support vector machine and the self-training method. Section 3 describes the 

features fused by the new similarity MSSBRS and model object updated by 

incremental PCA. Our method is described in Section 4. Experimental results and 

comparisons are shown in Section 5. Finally, the conclusions are made in Section 6. 

2. Background 

2.1. Online support vector machine 

Support Vector Machine (SVM) which is also a powerful learning tool for 

classification and regression samples easily solves small and high dimensional 

samples. When the number of the samples is very large the computation of SVM 
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will take considerable time. To reduce the computational time of training samples, 

Gert improves the basic SVM by incremental and decreasing leaning method [9]. 

Assume that training data (x, y) with R n
x and { 1,1} y  is obtained from 

several frames, the SVM classifier is then represented as T( ) ( ) ,f b x a x  in 

which a is a weight vector, b is a constant, and ( ) x  is a map function from the 

input space to feature space, N is the number of the training samples, and the 

classifier can be learned as  
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Here 0   is a slack parameter, and   is a penalty factor which represents the 

degree of punishment to the error. To further simplify the formula (1) can be 

rewritten as 
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In this paper, we adopt the Gaussian RBF as our kernel function. The solution of the 

dual parameters {a, b} can be defined by minimizing (2). These solutions need to 

satisfy the KKT (Karush-Kuhn-Tucker) conditions expressed by (1) and (2) because 
it  is a necessary condition for a solution in nonlinear to be optimal: 
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Based on the partial derivatives fi, the training samples can be classified into 

three categories, the samples on the margin are usually called support vectors  

(fi = 0), while samples exceeding the margin are error vector (fi < 0), the remaining 

samples, within the margin, are called reserve vectors (fi > 0).  

In [9], incremental or decreasing SVM learning is a procedure that adds or 

removes samples from one vector of SVM according to the value fc that is a partial 

derivative value adding the training yields margin each time. In the incremental 

procedure, new samples with fc > 0 are directly added to the reserve vector set due 

to the fact that they don’t affect the solution. On the contrary, all other new samples 

are added to the set of either margin vector or error vector according to the value of 

fc and ac. that is a coefficient being incremental. In the decreasing procedure, the 

samples are removed according to the value fc and ac, No matter how the samples 

are added or removed, they should satisfy the KKT conditions. 
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2.2. Self-training method 

Self-training, also called self-teaching or bootstrapping, is a classical training 

algorithm in semi supervised leaning [10]. In self-training frame, a classifier is first 

trained with only a few labelled samples, and then unlabelled samples are classified 

by the classifier. Typically unlabelled samples with the highest confidence are 

added to the training set, and the classifier is retrained.  

3. Fusing feature and updating model 

3.1. Feature fusion  

3.1.1. HOGE 

HOGE (Histogram of Orientation Gradient Edge) is an effective representation of 

object appearance because it is insensitive to the change of illumination. We first 

pre-process the object by the guided filtering method [11], compute the edge 

(Fig.1b) of [12], and then reserve some pixels with greater than double the mean 

value. The orientation of the gradient edge of the object is quantified using Nh bins. 

In this paper, Nh is set 16. 

 
                      (a)                            (b)                 (c)                                           (d) 

Fig. 1. Process of HOGE: an original image (a); an edge image (b); the gradient orientation 

corresponding to the edge image (c); and a HOGE with 16 bins (d) 

3.1.2. Fusing feature 

During the tracking, each feature is different in contribution of the different frames, 

the more the contribution is, the bigger the weight is. On the contrary, the less the 

contribution is, the smaller the weight is, so it is extremely important and crucial to 

compute the weight of each feature. 

Let fei and fefu represent the i-th feature and fusion feature of the object, 

respectively, the multiple features are fused by 
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where i  denotes the coefficient of the i-th feature, which is the normalized value 

of the similarity measure between the i-th feature and the object model. In this paper, 

the adopted similarity measure is the MSSBRS introduced in Section 3.2 that is 

more discriminative than the common measure, such as the Bhattacharyya 

similarity and the BRS. The selected features are different in visible video and 

thermal video, for example, the selected features are grayscale and HOGE in 

thermal video and two features are selected from color and HOGE in visible vide . 
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3.2. MSSBRS 

The BRD [13] (Bin-Ratio Dissimilarity) is a new similarity measure which 

considers the ratios between bin values of histograms, and The BRD is successful in 

the scene of classification. Nevertheless, it is prone to neglecting spatial information 

of the object. To improve the performance of distinguishing objects, we have 

introduced a modified BRD named the SBRS [14] which is better than the 

similarity Bhattacharyya and the BRS. We introduce a Modified Similarity SBRS 

(MSSBRS) which considers not only the spatial structure of the object but also the 

relation of the bins of the histogram of between the candidate object and the 

reference object.  

Assume qref with second-order spatiogram [15] to represent the reference 

object, which is defined as ref ( ) [ , , ],j j jj q h m c  where jh  is the j-th bin of the 

histogram, and mj, cj  denote the mean vector and covariance of the coordinates of 

the pixels corresponding to the j-th bin respectively. Meanwhile, the histogram of 

the edge needs to satisfy 2

1
1,

M

jj
 h  where M is the number of the bins. Assume 

pcal with second-order spatiogram, which defines as ' ' '

cal ( ) [ , , ]j j jj q h m c to represent 

the candidate object. So the similarity ref cal( , ) q p  between reference spatiogram 

qref and candidate spatiogram pcal is defined as 
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where jβ  is the weight of the j-th bin similarity, if the spatiogram is a 0-th order, 

jβ  is set to 1, and if it is  a second-order spatiogram, jβ  can be defined as 

' '

0 ( ; , ( ))j j j j ja N k β m m c c , in which the factor 0a  ensures the similarity measure 

that satisfies the condition 0≤ ρ ≤1 and ρ(h, h) = 1; N(μ, Σ) is a Gaussian function 

with a mean vector μ and a covariance matrix Σ of the coordinates of the pixels. 

The bigger the control factor k is, the smoother the weight jβ  is; '( , )j j jd h h  is a bin 

ratio similarity measure that improved the bin ratio dissimilarity [14], which is 

defined as   
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where Ne is the number of bins, and each pair of bins has at least one non-zero value 

in the two histograms jh , 
'

jh , and 2|| . ||  is a L2 norm.  

Given the reference object is represented as a set of B histograms 

1 2[ , ,..., ]Bq q q q . Meanwhile, and the candidate object selected as the same size as 

the reference object is represented as a set of B histograms 1 2[ , , ..., ],Bp p p p  

where bq  and bp  are the spatiogram of the b-th fragment respectively. In this paper, 

the fragments of the object are consisted of the fragments with three levels under 

different scales, and three levels of each scales are made up of the top level, the 
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middle level and the bottom, in which the top level is the image with equally 

divided into 16 rectangle fragments, and the second level is the image with equally 

divided into 4 rectangle fragments, and the bottom level is the original image. So all 

the fragments of each scale are concatenated as 1 21[ , , ..., ]bF F F F ; q is a reference 

histogram set corresponding fragments, and p is a candidate histogram set. The 

similarity measure between q and p is expressed as     
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where b  represents the normalized weight corresponding to the b-th spatiogram, 

which is defined as 
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 in which  controls the normalized 

weight of the b . The similarity measure of the b-th spatiogram between q and p,  

b  is expressed as  
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3.3. Updating the model by incremental PCA 

During the tracking, the tracking results with fixed object model are prone to 

producing a drift due to the fact that object or background appearance often 

changes. It is necessary to update online the object model in order to alleviate drift. 

PCA has been successful in face recognition and object tracking [7]. However, 

when the size of the object is very large, the complexity of these algorithms is very 

high. The main reason is that PCA computes the feature values and the feature 

vectors of training images. In this section, we introduce to update the object model 

by PCA which is similar to the method in [7]. 

Given 1 1 2[hi , hi , , hi ]
inn  ch  and 

in o2 1 2[hi , hi , , hi ]n n n m    ch , where hii is 

an observation histogram with d bins, and mo, nin is the number of the training 

histograms ch1 and ch2, respectively; 1ch , 
1 is the mean vector and the scatter 

matrix SCH1 of ch1 respectively, and 2ch , 
2 is the mean vector and the Scatter 

matrix Sch2
 of ch2 respectively; ch =[ch1 ch2] is their concatenation, SCH is the 

scatter matrix of CH, which is expressed as    
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Its detailed proof can refer to [7]. After the decomposition of the incremental 

PCA, we select the corresponding vectors according to the first five big eigen 

values, and then we make them assemble the feature set. The reference histogram is 

approximated as  
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where V(:, k, b) in (11) is the k-th eigen vector of the b-th fragment in the scatter 

matrix Sch; bh is the mean histogram of the b-th fragment; cih(k, b) is the k-th eigen-
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values of the b-th fragment of the object; un  is the number of the selected feature 

histogram (In this paper, we set nu 5. In that we consider the time and space 

complexity and the performance of the tracking method. If nu > 5, the time and 

space complexity is high, hence it affects the speed of the tracking method, on the 

contrary, the performance of the tracking method is affected). To further adaptive 

the change of the object, we also consider the initial histogram, therefore, the new 

object model is expressed as  

(12)   0, init, 1,(1 )b b b   H H H , 

where   is a learning rate，which is computed by the similarity between the 

current and the initial object. (We set from 0.6 up to 0.8 due to the fact that the 

appearance changes are prone to neglecting if is bigger than 0.8, on the contrary, the 

appearance changes are excessively considered if is smaller than 0.6.)  

4. Object tracking based on online semi-SVM and adaptive fused 

feature   

Self-training has been a widely used method in semi-supervised learning, in which a 

classifier is firstly trained with a small amount of labelled samples, and then the 

unlabelled samples are classified by the classifier. If the confident values of these 

unlabelled samples are high, we need to add these unlabelled samples into the 

training set as the label samples and update the classifier by retraining these label 

samples. Our method combines the incremental SVM with self-learning to track the 

object. To improve the drifting problem resulted from the self-learning, we need to 

update the object mode on line.  

The larger the number the more it leads to degradation in tracking results, 

while the smaller also lead to unreliable results since the number of the labelled 

samples is important for training. In semi-supervised leaning, only a few samples 

are labelled. In this paper, we find that our method can perform well with only 15 

labelled positive samples and 60 negative labelled samples. The positive samples 

are a histogram set including some feature histograms of the objects and the 

negative sample is also a histogram set of including some feature histograms of the 

areas which do not overlap with the objects. After the initialization, we will locate 

the object and update the classifier. 

4.1. Locating the object and updating the classifier 

Given a self-learning classifier and an unlabelled frame, we need to compute the 

location of the object within the frame. Specifically, the location of the unlabelled 

frame is classified by the classifier using the sliding window technology, and then 

the confidence map is generated. One common method of searching the maximum 

value of the confidence map is a gradient ascent algorithm which is known at the 

prior location of the object. However, this method suffers from the spatial 

constraint. To simplify the procedure, we only compute the global maximum value 

in the confidence map.  
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To adapt to the changes of the object or background, it is vital to update the 

classifier and the object model on line. The main problem is how to select online 

samples comprising of positive samples and negative samples, that is, we determine 

whether or not to add the current sample to training set and update the classifier. In 

this paper, we determine whether or not to add the current sample to the feature set 

according to its value of the global maximum in the confidence map, if the value is 

higher than the given threshold (threshold is selected manually and its value is 0.3 

because of considering effective and accuracy of the classifier), the current sample 

is added and then the classifier is updated. The negative samples are selected 

according to whether or not adding positive sample. When the current object is 

added, we select the k highest peaks which do not overlap with the object in the 

confidence map in order to select the most important negative samples. However, 

the number of the samples can become very large in time, moreover, they make our 

method of studying the changes of the object or the background work much slower. 

To improve the tracking velocity, we maintain the number of training samples Ni
 

(we set Ni = 15 in our experiments because of considering effective and accuracy of 

the classifier). If the number of the trained samples is larger than Ni, the old sample 

will be removed from the SVM by decreasing method.  

4.2. Pseudo-code of our method 

In this section, the detailed procedure of the presented algorithm will be given as 

the following: 

Initialization: 

     For i=1:nin 

Step 1. Acquire the i-th labelled object either manually or by other object 

tracking method  

Step 2. Compute the histogram of the intensity and the HOGE 

Step 3. Fuse feature histogram through the Equation (5) 

Step 4. Acquire a positive sample and desired negative samples 

End 

      Train the classifier using incremental/decremental SVM 

      L=1; 

   Online self-tracking with adaptive update model 

   For i=nin+1: nin+Nfr 

Step 1. Build a confidence map making use of the trained classifier 

Step 2. Locate the object employing the maximum value of the confidence 

map 

Step 3. If maximum value is bigger than threshold1 and similarity between the 

current object     

(a) the current object is added to the positive sample set 

(b) the images corresponding to the first four minimum value of the 

confidence map are added to the negative sample set 

   L=L+1 

(c) update the SSSVM classifier 

(d) the current object is added to the feature set 



 206 

       Else 

           Track the object using the basic particle filter   

End 

Step 4. If L>20  

Remove old samples from the SVM by the decreasing SVM 

Update the object model by (12) and retrain the classifier. 

L=1; 

End  

      End 

5. Experimental results and discussion 

To evaluate the performance of the proposed method, we perform our method in 

some visible and thermal video sequences. The visible sequences are selected from 

two vehicle sequences and the CAVIAR database1, and the thermal sequences are 

selected from OTCBVS Benchmark Dataset2 . In our experiments, two selected 

features are intensity histogram and HOGE, and then it fuses them by MSSBRS to 

represent the tracked object and local background. Of course, the other feature, such 

as optical flow can be easily selected. The selected features are intensity and HOGE 

for thermal sequences, and two features from r, g, b, HOGE are selected according 

to the method in [8] for visible sequences. The scale which may produce the 

maximum score was selected when scale changes are bound to ± 10% in each 

frame. 

All the experiments are carried out with a core 4 Duo 2.9 GHz processor with  

2 GB RAM under Matlab R2010b. To demonstrate the performance of our method, 

we compare our tracker with the ensemble tracking and the basic mean-shift 

tracking in some invisible and thermal sequences. 

5.1. Results in visible sequences   

The first experiment can be seen on a video sequence of a white car crossing the 

crossroads under heavy fog and heavy wind. The sequence is 150 frames long and 

the size of each image is 576×768 pixels. The sequence is challenging because the 

car can be easily affected by the heavy fog. Obviously, it is difficult to track the car 

accurately. In spite of this, our method is still able to track the car throughout the 

entire sequence. The ensemble tracker [5] is able to track the car for the first 100 

frames, however the following frame is clear drift. The main reason is that the 

ensemble tracking method suffers from the fog, where our method can solve this 

problem. Fig. 2 shows the results of the ensemble tracker and our method, which 

contain the tracking results and the corresponding confidence map, and it can see 

that our confidence maps have a clear peak at the object center (Fig. 3), so it leads 

to more stable tracking.  

                                                 
1http://i21www.ira.uka.de/image_sequences/ 

http://groups.inf.ed.ac.uk/vision/CAVIAR/CAVIARDATA1/ 
2 http://www.cse.ohio-state.edu/OTCBVS-BENCH/bench.html 

http://i21www.ira.uka.de/image_sequences/
http://www.cse.ohio-state.edu/OTCBVS-BENCH/bench.html
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Fig. 2. Comparison of our method and the ensemble tracker method. The first two rows are the 

tracking results and the corresponding confidence maps of the proposed method, and later two rows 

are the tracking results and the corresponding confidence maps of the ensemble tracker 

 
Fig. 3. Confidence value of the car under the heavy fog 

5.2. Results in thermal sequences 

Our method can track not only the object in visible sequences but also the object in 

thermal sequences. Here we show results of two experiments3; one is the boat in the 

sea and the other is the pedestrian across the big tree. The only modification is the 

feature space that is used to represent the object because the thermal object has few 

efficient cues, so the efficient features are selected as the intensity and the HOGE. 

In the first thermal sequence, a boat at sea, which is over 800 frames is 

tracked, because the background of the sequence suffers from the clutter and it is 

represented using the mixture histogram which is fused between the intensity 

histogram with 16 bins and the HOGE with 16 bins. The tracking results of our 

method and the basic mean shift tracking method -are shown in Fig. 4. We observe 

that our method is able to track robustly the boat because we adopt the adaptive 

                                                 
3 http://www.cse.ohio-state.edu/OTCBVS-BENCH/bench.html   and 

http://www.cs.technion.ac.il/~idol/ 

http://www.cse.ohio-state.edu/OTCBVS-BENCH/bench.html
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object model, while the basic mean shift tracking method [16] is slight drift due to 

the fact that the thermal object does not provide enough information for tracking. 

Meanwhile, we also observe that the confidence map has a clear peak and helps the 

tracking. 

 

 

 
Fig. 4. Results of our algorithm and the basic mean shift algorithm on a thermal video of a boat. The 

top row is the results of our method, the middle row is the confidence map of our method, and the 

bottom row is the results of the basic mean shift algorithm. The frame number is 33,283, and 734 from 

the left to right respectively. Note that the confidence maps are smoother and have a clear peak at the 

object centre 

Fig. 5a shows the results of our method compared with the basic mean shift 

method on the boat sequence. As can be seen from the Fig. 5a, our method can track 

more stable and more consistent than the basic mean shift method. Furthermore, it 

is close to the ground truth. Fig 5b shows the confidence value of the tracked object 

in the first 300 frames. 

 
(a)                                                                            (b) 

Fig. 5. The tracking error about our method and the basic mean shift method of the first 300 frames in 

the boat sequence, Note that solid blue is the tracking error of our method and dashed red is the 

tracking error of the basic mean shift algorithm (a); the confidence value of the first 300  

frames (b) 
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So far, we only take into account the partial occlusions of the object. With 

respect to the complete occlusions, we can track the object using the basic particle 

filter tracker [17]. Specifically, as long as the confidence value is higher than the 

given threshold, the tracking position preserve unchanged until the next value is 

lower than the threshold, and then we begin with tracking the object via the basic 

particle filter tracker. In our experiments, we find that the object is occluded when 

the confidence value is less than 0.5, namely, we may set the threshold to 0.5. 

While tracking object, the confidence value is firstly computed by the trained 

classifier and then judge if it is above the threshold (that is to say, the object 

reappears if the threshold value is high, as is shown Fig. 6c. On the contrary ,the 

basic particle filter tracker will stop performing it if the confidence value of the 

current frame is above the threshold ,and then our method begin to track the object 

from the next frame . When the target is occluded, our method can accurately track 

the object than other tracking method, as is shown in Fig. 6. Fig. 7 shows the 

confidence value of all complete 151 frames, and finds that the confidence value 

between the frame 138 and the frame 143 is very low. 
 

 
(a)                              (b)                                (c) 

Fig. 6. Tracking results and the confidence map corresponding the frame number 93,136, and 144 of 

our tracker. Note that the confidence maps are smoother and have a clear peak at the object centre 

 
Fig. 7. The confidence value of all complete 151 frames. Note that the confidence value between the 

frame 138 and the frame 143 is very low 

Fig. 8 shows the tracking results of additional sequences applying proposed 

our method. 
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Fig. 8. Tracking results of our method under the visible sequence and the infrared sequences. The first 

row shows the results of our method on frames 114,211 and 226 in car under the heavy snow. The 

second row shows the results of our method on frames 143,225, and 391 from the OTCBVS sequence. 

The third row shows the results of our method on frames 22,124, and 259 from the OTCBVS 

sequence. Note that our method can robustly track the object 

6. Conclusion  

We treat object tracking as a binary classification and propose a robust tracking 

algorithm based on online semi-SVM with the self-training framework and adaptive 

fused features whose fused coefficients are computed by new similarity MSSBRS. 

The object model is updated using the incremental PCA. The proposed method only 

labels a small amount data to train the classifier during the initialization, and then 

the tracked object is classified according to the confidence value, the classifier is 

updated online by the self-training framework and new samples with high confident 

value. With regards to the complete occlusion, we use the basic particle filter 

algorithm to solve it. However, the object is represented by a fixed object scale, the 

proposed method is not able to deal with large changes in object scale. In future, we 

would like to make the proposed method adapt to these changes.  
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