
 97

BULGARIAN ACADEMY OF SCIENCES

CYBERNETICS AND INFORMATION TECHNOLOGIES  Volume 16, No 2

Sofia  2016 Print ISSN: 1311-9702; Online ISSN: 1314-4081

DOI: 10.1515/cait-2016-0023

Evolutionary Computing Based on QoS Oriented Energy Efficient

VM Consolidation Scheme for Large Scale Cloud Data Centers

Perla Ravi Theja1, S. K. Khadar Babu2
1School of Computer Science & Engineering, Research Scholar, VIT University, Vellore, India
2School of Advanced Sciences, VIT University, Vellore, India

Emails: ravithejaperla9048@gmail.com khadar.babu36@gmail.com

Abstract: The high pace and increase in cloud computing technology and associated

applications, especially large scale data centres, have demanded energy efficient and

Quality of Service (QoS) oriented computing platform. To meet these requirements,

virtualization and Virtual Machine (VM) consolidation has emerged as an effective

solution. The optimization in VM consolidation by means of efficient dynamic

resource-utilization prediction, VM selection and placement can achieve optimal

solution for energy efficient and QoS oriented cloud computing system. In this paper,

an evolutionary computing algorithm called Adaptive Genetic Algorithm (A-GA)

based VM consolidation approach has been developed. A-GA based placement policy

and its implementation with different VM selection policies like Minimum Migration

Time (MMT), Maximum Correlation (MC) and Random Selection (RS), along with

different CPU utilization estimation approaches like Inter Quartile Range (IQR),

Local Regression (LR), Local Robust Regression (LRR), static THReshold (THR) and

Median Absolute Deviation (MAD) has revealed that A-GA based consolidation with

MMT selection policy and combined IQR and LRR can enable optimal VM

consolidation for large scale infrastructures. In addition, the proposed A-GA policy

has exhibited better performance as compared to other meta-heuristics such as Ant

Colony Optimization (ACO) and Best Fit Decreasing. The proposed consolidation

system can be used for large scale cloud infrastructures where energy conservation,

minimal Service Level Agreement (SLA) violation and QoS assurance is inevitable.

Keywords: Energy efficient cloud computing, virtual machine consolidation,

adaptive genetic algorithm, minimum migration time, dynamic threshold, service

level agreement violation.

1. Introduction

The rising demand for cloud infrastructures has motivated entrepreneurs and

organizations to establish large scale data centers that comprise thousands of

computational nodes or Physical Machines (PMs), also called host nodes, thus

causing enormous energy consumption. This demanding energy consumption can

mailto:author@boulder.nist.gov

 98

significantly impact various factors like environmental issues, resource

sustainability, cost of service, etc. Hence, there is an inevitable need to reduce energy

consumption. In addition, the exponentially increased number of users for cloud

computing services demands, the Quality of Service (QoS) and service reliability. To

deal with these issues and ensure optimal resource utilization, energy conservation

and QoS provisioning, virtualization has emerged as a potential solution.

Virtualization performs live migration of Virtual Machines (VMs) across the network

while ensuring zero or minimal downtime. Live migration concept is of great

significance, especially for VM consolidation, as it can enable minimum active hosts,

thus resulting into reduced energy consumption. The persistent VM consolidation can

cause performance degradation due to dynamic resource requirements. Assuring QoS

services and its reliability as per Service Level Agreements (SLA) is an unavoidable

need for cloud service providers. To achieve these objectives, VM consolidation has

emerged as a potential solution. Dynamic VM consolidation [1] can be significant for

leveraging the fine-grained variations in the workload, thus enabling minimal active

host’s count, which might significantly reduce energy consumption. The dynamic

VM consolidation approach encompasses two elementary processes. First the VM

migration from certain underutilized host or PM and second offloading the VMs from

hosts whenever it undergoes overloading situation so as to reduce any possible

performance degradation. In first case, the idle nodes or nodes undergoing

underutilization are SWITCHED OFF so as to reduce the active or static power

consumption. Further, as per network needs, the host nodes are reactivated to

accommodate migrated VMs.

In general, the overall VM consolidation scheme encompasses four main

phases. The first and second phases deal with under load and overload detection

respectively, while it is followed by VM selection in the third phase that decides

which VMs are to migrate. Finally, in the last phase of consolidation, the VM

placement takes place where these VMs are allocated while ensure that it wouldn’t

cause overload on the host. Considering dynamic functional environment, the

dynamic resource allocation and scheduling can be of great significance. Meanwhile,

the efficient VM selection and placement can play vital role for enhancing overall

performance of cloud infrastructure. On the contrary, the inefficient VM selection

and allocation might result in severe performance degradation and SLA violation

issues. To perform efficient VM selection, the statistical analysis of VM resource

requirements and its behaviour mapping should be considered. Normally, VM

consolidation is a bin packing problem that can be effectively dealt with by means of

certain heuristic approaches and evolutionary computing schemes. Considering these

motivations, in this paper, we have proposed a highly robust and efficient VM

consolidation scheme where it has been intended to enhance overall functional

components such as, dynamic threshold based overloading detection, enhanced VM

selection policy and evolutionary computing based VM placement facility. In this

paper an enhanced dynamic threshold estimation scheme based on scheduling based

combined Local Robust Regression (LRR) and Inter Quartile Range (IQR) algorithm

has been developed, which has been followed by VM selection for which three

different algorithms, Minimum Migration Time (MMT), Maximum Correlation

 99

(MC) and Random Selection (RS) policy have been used independently. Finally, to

enhance VM placement, we have proposed and developed two algorithms namely

A-GA (Adaptive Genetic Algorithm) and ACO (Ant Colony Optimization) scheme.

The results obtained for different combinations reveal that A-GA with MMT

selection policy performs better in terms of energy consumption, SLA Violation

(SLAV), etc.

2. Related work

A significant amount of research has explored VM consolidation approaches [2-5]

for QoS and energy optimization. To deal with overload detection in data centers,

initially researchers used the static threshold approach [6], where they considered

overall CPU utilization and scheduled hosts to be in the range of certain defined

thresholds. Later, considering highly dynamic cloud environment, the conventional

static threshold based scheduling was found ineffective to alleviate SLA and

therefore the dynamic cloud pattern and workloads based threshold schemes were

proposed [7]. Buyya and others authors (see [7]) employed an adaptive threshold

scheme for upper and lower bound estimation, which was defined on the basis of the

statistical analysis and historical pattern of CPU utilization. Regression based CPU

utilization was suggested in [8, 9], where the CPU utilization was estimated at host

nodes. Researchers used linear regression and the K-nearest neighbour regression

schemes for approximating the data retrieved throughout the VMs lifetime. They

emphasized their model for SLA optimization. Later, bin packing problem was

considered in [10-12] for efficient VM consolidation. Majority of existing approaches

have used Best Fit Decrease (BFD) based consolidation [2]. The algorithms made

effort to minimize number of host count by packing more and more VMs onto host.

Some combinatorial optimization mechanism were proposed by researchers

where they tried to incorporate adaptive schemes for consolidation optimization

[13, 14, 15].

Researchers suggested a bio-inspired technique [16] to reduce energy

consumption among servers. The foraging of ant based resource allocation was

proposed in [17]. Some heuristic approaches like ACO and evolutionary concept of

Genetic Algorithm (GA) were suggested in [18] and [19] respectively, for

consolidation purposes. ACO-based decentralized scheme for scheduling was

proposed in [20]. The genetic algorithm was examined for resource scheduling

function in virtualization [21-23]. The majority of existing research has either focused

on VM selection or VM placement. Some of the researchers have made efforts

towards introducing dynamic thresholding to provide optimistic resource allocation

facility [7].

3. Our contribution

In this paper, we performed a comparative analysis between different combinations

of host overload detection algorithms, VM selection policies and VM placement

policies. We came to see our proposed, A-GA based consolidation with MMT

selection policy and combined IQR and LRR can enable optimal VM consolidation,

 100

with minimal SLA violation, QoS assurance and provides energy conservation for

large scale infrastructures.

3.1. Cloud model

In this paper, we have considered a large scale cloud infrastructure comprising N

heterogeneous host nodes or PMs, where each host is characterized in terms of its

CPU utilization and Millions Instructions Per Second (MIPS). As, it doesn’t have its

own inherent storage capacity, a Storage Area Network (SAN) has been used to

support live migration. In addition, we assume that there is no available information

about the application, execution time or associated workloads for which the migration

has to be done. It states that our approach is the application-agnostic paradigm. In

this model, multiple independent VMs requests for different MIPS. Thus, the VM

consolidation on a single host is the problem of resource management when the

combined workload caused due to individual VM and associated applications

demands resource simultaneously.

VMM

Local

Controller

1

VM1
VM

2

VM

3

PM 1

4

1
VMM

Local

Controller

2

VM4

PM 1

4

1
VMM

Local

Controller

3

VM5
VM

6

VM

7

PMn

4

1

VIRTUALIZATION

Global Controller

Resource

Monitor

Adaptive Genetic

Algorithm

Create VM on

Host
Migration Module

VM

Request

...

VM Placement

Resource

Consumption

Fig. 1. Proposed system architecture

The VM migration from one host to another might facilitate better resource

allocation and energy conservation, but during this process it might suffer certain

downtime, causing SLA violation. For service provider, meeting SLA and QoS

reliability are the inevitable requirements. Here, we consider that efficient resource

allocation, VM migration, optimal VM selection and its swift placement across the

network can achieve optimal performance, meeting overall expectations. In the

proposed system, a multi-controller based VM consolidation scheme has been

proposed. We have estimated host underload and overload locally on each host node.

Furthermore, the VM placement has been done on the individual host. The proposed

system encompasses two controllers; Global Controller (GC) and Local Controller

(LC) Fig. 1. LC functions as Virtual Machine Manager (VMM) for each node and

monitors resource (CPU) utilization continuously and identifies the underload and

overloaded nodes during execution. Recognizing overloaded node, the LC initiates

 101

VM selection scheme to find which specific VM to offload and from which host, so

as to avoid overloading. GS on the other hand retrieves information from LC to

enable dynamic scheduling. Based on the decision of the LC, the GC generates

migration command to perform VM placement. During this process, VMM executes

VM migration and accordingly updates the changes in power modes at different hosts

to enable further scheduling and placement.

3.2. Host under load detection

In our proposed system, if a host node is undergoing minimal resource utilization,

then it is considered an under load host and therefore all of its connected VMs are

migrated from it to other host(s), without causing overloaded on them. Performing

VM migration, to conserve energy the source host node is either SWITCHED OFF

or in SLEEP MODE. In our approach, if all VMs from the host node couldn’t be

offloaded, then the source node is still active so as to alleviate the probability of

downtime and QoS degradation.

3.2.1. Host over load detection

To detect the overloaded host node, each host node initializes an overload detection

scheme intermittently to perform VM de-consolidation, thus enabling SLA violation

avoidance. CPU utilization of the host node has been used for identifying overloaded

hosts. Unlike conventional schemes, based on static threshold, in this paper we have

developed a dynamic threshold based adaptive CPU utilization and overload

detection scheme. It enables the proposed system to behave in real time scenario

where there is highly fluctuating resource utilization. It adjusts resource utilization

threshold based on the variation in CPU utilization and utility map. It can be observed

that higher deviation might even result into 100% CPU utilization that signifies

higher overloading probability. To enable dynamic threshold detection scheme, we

have used IQR and LRR algorithm. In our proposed model, the resource utilization

has been examined at the interval of 5 min and on each odd iteration, IQR algorithm

has been used, while LRR has been scheduled for even iterations. Such novelty tends

to employ major advantages of both approaches. A brief of IQR is given as follows:

IQR is a statistical dispersion technique which is equivalent to the differences

between the third and first quartile. To estimate dynamic CPU utilization threshold,

the following equation has been used:

(1) IQR = Q3– Q1, Tm = 1– s. IQR,
where 𝑠 represents the safety parameter that states the maximum extent of the

tolerability of a host node in Cloud environment and its lower value signifies the

higher tolerance to the fluctuation in the CPU utilization. Here we have used 𝑠 = 1.2

and it can be changed to examine the optimal performance.

In addition to IQR, we have used the Loess concept [24] to derive the LRR

algorithm, which has been employed for fitting a trend polynomial to the earlier 𝓀

observations for the CPU utilization called utilization map. For initial recent

observations, it is retrieved as

(2) ℊ̂(𝓍) = �̂� + �̂�𝓍.

 102

It is further used for calculating the next observation ℊ̂(𝓍𝓀+1). To offload some

VMs from an overloaded host node, the following conditions have been fulfilled:

(3) 𝓈. ℊ̂(𝓍𝓀+1) ≥ 1, 𝓍𝓀+1 − 𝓍𝓀 ≤ 𝓉𝓂,

where 𝓈 ∈ ℝ+is the safety parameter that signifies the maximum capability or

tolerability of a host node, and 𝓉𝓂 represents the maximum time required for
migrating a VM from the overloaded host. The traditional Loess concept [24] is
found vulnerable to the outliers caused due to leptokurtic or heavy-tailed
distributions. To alleviate this problem, we have modified the Loess concept
[24] to bisquare from the conventional least-squares LR approach. Thus we have
LRR approach iteratively for estimating the initial fitting and tricube weight function

has been used for dynamic weight estimation. The fitting parameter has been

retrieved at 𝓍𝒾 to get optimal value by means of �̂�𝒾. Thus, the final residual value

is 𝜀𝑖 = 𝓎𝑖 − �̂�𝒾. Furthermore, the final retrieved value (𝓍𝑖, 𝓎𝑖) has been assigned a

robustness factor ℛ𝒾 that primarily depends on the magnitude of 𝜀𝑖. Mathematically,

ℛ𝒾 is obtained as

(4) ℛ𝒾 = ℬ (
ε̂l

6𝐿MAD
),

where ℬ(.) gives the bisquare weight function and 𝐿MAD represents the Median

Absolute Deviation (MAD) for the least square fit. Mathematically:

(5) ℬ(.) = {
(1 − 𝓊2)2 if |𝓊| < 1,
0 otherwise.

In this paper, we assigned ℛ𝒾 for each observation (5 minute), where 𝐿𝑀𝐴𝐷 has

been obtained as

(6) 𝐿MAD = mediun|𝜀�̂�|.
Using (3), the next observation has been obtained for the estimated trend line,

where observing any inequalities, the host can be identified as overloaded.

3.2.2. VM selection policy

In this phase, the VM selection takes place where it is intended to select the VM

which should be migrated to minimize overhead from overloaded host. Estimating

the dynamic CPU utilization threshold, VM selection has been performed that

offloads host for avoiding SLA violation and unwanted energy consumption caused

due to overload. In this paper, we have examined three different selection policies;

the Minimum Migration Time (MMT), Maximum Correlation (MC) and Random

Selection (RS) policy. A brief discussion of the implemented VM selection policies

are given as follows:

3.2.2.1. Minimum migration time policy

Once assessing the host’s CPU utilization levels and identifying any probable or

overloaded host, VMs selection algorithm performs offloading of that host node to

avoid any probability of SLA violation. The developed MMT selection policy

performs migration of only those VMs (𝑣) which requires minimal migration time

than the other. In this paper, the migration time has been estimated in terms of the

resource, RAM being used by VM divided by the supplementary network bandwidth

 103

available for host 𝑗. Let 𝑉𝑗 be a set of VMs connected with the host 𝑗. Therefore, the

VM to be migrated is selected based on the following condition:

(7) 𝑣 ∈ 𝑉𝑗|∀𝑎∈ 𝑉𝑗 ,
RAM𝑢(𝑣)

NET𝑗
≤

RAM𝑢(𝑎)

NET𝑗
,

where RAM𝑢(𝑎) depicts the amount of RAM currently being used by VM𝑎; and NET𝑗

refers the bandwidth available for migration from the host 𝑗.

3.2.2.2. Maximum correlation policy

In case of MC policy [25, 26] it is assumed that the higher correlation between the

CPU utilization by VMs connected to certain host signifies higher overloading

probability. In MC policy, VMs having the highest correlation for the CPU utilization

are needed to be migrated from the current host to assist energy conservation and

SLA violation avoidance. We have used the concept of Multiple Correlation

Coefficients (MCC) for estimating the intra-VM correlation and respective CPU

utilization. The used MCC coefficients are in relation to the squared correlation

between the real and the predicted values of the dependent variable. In fact, it can be

interpreted as the fraction of variance of the dependent variable elucidated by the

associated independent variables.

Let 𝒳1, 𝒳2, … , 𝒳𝑛 be the CPU utilization of 𝓃 VMs connected to a host and 𝒴

be the specific VM to be migrated, where n – 1 are the random independent variables.

Here 𝒴 being the VM to be migrated, be the independent variable. In our proposed

MC policy, we have calculated the correlation between 𝒴 and n – 1. The obtained

augmented matrix (n – 1) × n encompasses the observed instances or the values of

n – 1, indicated as 𝒳. Similarly, the observation vector or mapped vector (n – 1) × 1

of the dependent variable 𝒴 be 𝓎. Thus, the overall observation vector or the

mapping vectors for the VM’s CPU utilization can be given as follows:

(8) 𝒳 = [

1 𝒳1,1 … 𝒳1,𝓃−1

⋮ ⋮ ⋱ ⋮
1 𝒳𝓃−1,1

… 𝑥𝓃−1,𝓃−1

] , 𝒴 = [
𝒴1

⋮
𝒴𝑛−1

].

Observing (8), it can be found that the first column of 𝒳 is all 1 (for all

instances), therefore it can be considered as an augmented matrix. The predicted

values of the VM’s CPU utilization or 𝒴 can be presented as �̂�, which can be

obtained by �̂� = 𝒳𝒷, where 𝒷 = (𝒳T𝒳)
−1

𝒳T𝒴. Obtaining the predicted

values, MCC coefficients, the final correlation 𝑅2
𝑌,1,…,𝑛−1′ has been obtained as

(9) ℛ2
𝒴,𝒳1,…,𝒳𝓃−1

=
∑ (𝒴𝒾−𝓂𝒴)

2
(�̂�𝒾−𝓂�̂�)

2
𝓃
𝒾=1

∑ (𝒴𝒾−𝓂𝒴)
2

∑ (�̂�𝒾−𝓂�̂�)
2′

𝓃
i=1

𝓃
𝒾=1

,

where 𝓂𝒴 and 𝓂�̂� give the observation means of 𝒴 and �̂� respectively. In MC

based VM selection, the MCCs for all mapped instances 𝒳𝒾 have been obtained

as ℛ2
𝒳i,𝒳1,…,𝒳i−1,𝒳i+1,…,𝒳𝓃

. Finally, based on correlation value, (10) has been used to

select a specific VM to be migrated:

(10) 𝓋 ∈ 𝒱ℳ𝒿|∀𝒶∈ 𝒱𝒿 , ℛ2
𝒳𝓋𝓂 ,𝒳1,…,𝒳𝓋𝓂−1,𝒳𝓋+1𝒳𝓃

≥ ℛ2
𝒳𝓋 ,𝒳1,…,𝒳𝒶−1,𝒳𝒶+1,…,𝒳𝓃

.

 104

In addition to the MMT and MC selection policy, we have also examined an

algorithm called RS policy.

3.2.2.3. Random selection policy

In RS policy, a VM is randomly selected for migration from the host node as per a

uniformly distributed discrete random variable 𝒜 = U(0|𝒱𝒿), whose values signify

a set of VMs, 𝒱𝒿 placed at 𝒿-th host. Since VM consolidation is a bin packing

problem and therefore, an optimal approach for placement is of great significance to

ensure minimal downtime, energy consumption and probable SLA violation. The

following section discusses the proposed evolutionary computing based VM

placement approach.

3.2.3. VM placement policy

VM placement can be stated to be a problem of bin packing that encompasses bins,

items and prices as the three parameters, where bins represent the host nodes, VMs

represent the items to be allocated, bin size refers the available resource on the host

node; and the resource or CPU power consumed by a host is stated in terms of price.

In bin packing, it is intended to accommodate as much as VMs that makes the overall

scenario NP-hard. In order to deal with such non-convexity problem, certain heuristic

approach or evolutionary computing scheme can be the potential solution. In this

paper, we have proposed A-GA as VM placement policy. We have interfaced A-GA

with CloudSim simulator comprising multiple host nodes, and VMs in the data center.

In our proposed model, each host is equipped with one or multiple Processing

Elements (PE). The executing VMs on the hosts have one or multiple running

Cloudlets. In simulation model, the user requests have been stated in terms of

Cloudlets, where the needed processing power for each Cloudlet has been defined in

terms of MIPS. In the proposed placement policy, the scheduler considers all hosts,

VMs and VM maps as input and generates mapping for nodes, where it divides

overall MIPS into different components like hosts and VMs running in parallel. The

functional discussion of the proposed A-GA scheme is given in coming sections.

3.2.3.1. A-GA based VM placement

As depicted in Fig. 1, the proposed A-GA algorithm processes VM scheduling based

on the resource utilization information provided by local controller and the upper

threshold value estimated by dynamic threshold estimation scheme. We have

considered upper threshold so as to satisfy transient variations of resource demand

by different VMs on a host node. The CPU utilization pattern or history of VMs has

been considered for VMs placement onto destination host node. Considering a large

scale cloud infrastructure or data center, the time efficient and effective placement

scheduling is of great significance. In this research we have intended to reduce the

number of VM migration and migration time, so as to enable energy efficient and

QoS oriented consolidation mechanism. In addition, we have scheduled the system

to enable maximum host shut down so as to conserve energy. In this paper, placing

 105

or allocating VM on certain host, our algorithm estimates the energy of the data center

and accordingly performs further scheduling to minimize energy consumption.
At first, the proposed A-GA algorithm initializes a definite set of population

where the individual host is a tree comprising global controller as its root, the hosts

are the next level nodes and VMs are the child nodes Fig. 1. It calculates the total

energy consumption and CPU utilization for each mapping in the deployed cloud

center. Here, the VM mapping history also known as utilization pattern, allocated

VMs and their resource utilization mapping, future mapping for VMs based dynamic

utilization, hosts and its available resource availability etc. have been used as

population. The precise discussion of the proposed system is given in coming section.

From these chromosomes, our proposed A-GA algorithm initially selects two VM

mappings with minimal energy values on which the initial genetic operators

(crossover 𝑝c and mutation probability 𝑝m) are applied. Thus, the mapping obtained

for VMs onto the host nodes is added to the overall population based on the fitness

values. In our proposed A-GA based VM placement policy, 𝑝c selects the host with

the best CPU utilization based on the previous VMs mapping. Here 𝑝c and 𝑝m try to

reduce host nodes by means of SWITCHING OFF or turning it into SLEEP MODE.

Here, it should be noted that unlike conventional genetic approach (i.e., A-GA), we

have applied adaptive genetic parameter selection, where these variables are updated

dynamically after every iteration, till stopping criteria (100 generations) is obtained.

Consider, the host nodes in data centers be

PM = {𝓅𝓂1, 𝓅𝓂2, 𝓅𝓂3, ⋯ , 𝓅𝓂𝓂},

and 𝓅𝓂𝒾 be 𝒾th host node, where 1 ≤ 𝒾 ≤ 𝓂. Similarly, VMs in the network be

VM𝒾 = {𝓋𝓂1, 𝓋𝓂2, 𝓋𝓂3, ⋯ , 𝓋𝓂𝓃,𝒾},

which are connected to the 𝒾-th host. Consider 𝓋𝓂𝒿,𝒾 be the 𝒾-th VM on 𝒿-th PM.

The variable 𝓍𝒾,𝒿 ignifies whether 𝒾-th VM is placed on host 𝒿 or not. Let 𝒫𝓇,𝒾 be the

resource capacity 𝓇 (CPU utilization) on 𝒿-th host node. The resource needed by
𝒾-th VM is 𝓋𝓇,𝒿. Thus, overall load on 𝒿-th host node would be the sum of all resource

needed by all VMs running over it. Consider, 𝒯 be the duration of past observations,

thus the sub-intervals can be obtained by dividing 𝒯 into 𝓆 – 1 sub intervals such that

𝒯 = [(𝓉2 − 𝓉1)(𝓉3 − 𝓉2) ⋯ (𝓉𝓆 − 𝓉𝓆−1)]. The slot 𝓉𝓀 − 𝓉𝓀−1 is the time period 𝓀.

In such manner, for period 𝓀, we have estimated the CPU utilization at a host

(CPU𝒾,Util(𝓀)) using following equation:

(11) CPU𝒾,Util(𝓀) = ∑ 𝓋𝓂CPU,𝒿/𝓅𝓂CPU,𝒿
𝓃
𝒿=1 ,

where, 𝓀 represents the duration for which the CPU utilization has to be retrieved.

Finally, the average CPU utilization at a host node has been obtained as:

(12) 𝓅𝓂𝒾,AvgUtil = ∑ 𝓅𝓂𝒾,Util
𝓉𝓀−𝓃
𝓉−𝓉𝓀

(𝓉)/(𝓆 − 1),

where 𝓆 – 1 represents the total number of sub intervals in 𝒯 time.

Consider 𝓅𝓂𝒾 represents the power of 𝒿-th host node during 𝓉𝓀. Thus, the power

utilization can be obtained in terms of CPU utilization at the host node. Consider,

𝓅𝓂𝒾ℰ(𝓀) be the power or energy consumption of the 𝒿-th host node in between the

last time interval and the current time, then it can be obtained as

(13) 𝓅𝓂𝒾ℰ(𝓀) = 𝓅𝓂𝒾𝓌(𝓀 − 1) + (𝓅𝓂𝒾𝓌(𝓀 − 1) + (𝓅𝓂𝒾𝓌(𝓀))(𝓉𝓀 − 𝓉𝓀 − 1).

 106

The energy consumption for the 𝑗-th host, ℰ(𝓅𝓂𝒿) can be estimated at certain host

𝓅𝓂𝒿 having CPU usage as CPU𝒾,Util(𝓀)

(14) ℰ(𝓅𝓂𝒿) = 𝒦𝒿 . ℯ𝒿
max + (1 − 𝓀𝒿) . ℯ𝒿

max . CPU𝒾,Util(𝓀),

where 𝒦𝒿 states the part of energy consumed when the host 𝓅𝓂𝒿 is in idle state; ℯ𝒿
max

states for the energy consumption of host 𝓅𝓂𝒿 when it being used 100%. The

variable CPU𝒾,Util(𝓀) represents the CPU utilization by host 𝓅𝓂𝒿. We have used

this approach to estimate the energy consumption at certain host so as to perform

placement scheduling. Similarly, the energy consumption for all hosts 𝒟ℰ(𝓀) can be

obtained for a period using following equation:

(15) 𝒟ℰ(𝓀) = ∑ 𝓅𝓂𝒾ℰ(𝓀)𝓂
𝒾=1 .

In this paper, the prime objective of the proposed A-GA scheme for VM

placement is to retrieve the set of mapping from VM set to the host set PM while

ensuring minimal energy consumption 𝒟ℰ(𝓀), provided:

(16) ∀𝒾 ∑ 𝓍𝒾𝒿−1,𝓂
𝒿=1

(17) ∀𝒿 ∑ 𝓋𝓂CPU,𝒾𝒳𝒾𝒿 ≤ 𝓅𝓂CPU,𝒿
𝓃
𝑖=1 .

The implementation of our proposed A-GA based consolidation scheme is as

follows:

 Step 1. Create VMs with random workloads and allocate them randomly on

PMs.

 Step 2. Perform each iteration at a defined scheduling interval (say 5 min) to

estimate CPU Utilization and dynamic thresholding based resource prediction until

Simulation Limit expires

Odd iterations: Calculate upper threshold value for all PMs using IQR.

Even iterations: Calculate upper threshold value all PMs using LRR.

 Step 3. Perform Initial mapping of VMs and PMs and add it as

initialchromosome to population (called root).

 Step 4. Estimate the list of overloaded PMs using Step 2.

 Step 5. Estimate the list of VMs from each host that are not under migration.

 Step 6. Perform VM selection for all overloaded or over-utilized PMs and

obtain the list of all VMs that are ready for migration.

 Step 7. Sort all VMs based on their CPU Utilization and allocate them

tooverloaded PMs, while ensuring that these hosts should not get overloaded again.

 Step 8. Obtain a minimalHost from the list of active hosts having minimal

resource CPU utilization.

 Step 9. Allocate all VMs from minimalHost to active hosts while ensuring that

allocation would not cause overloading on that host node.

Step 10. Current mapping for VMs and PMs is retrieved as proposed partner

chromosome and add it to the A-GA population.

Step 11. Obtain the first child by performing initial crossover between the root

(Step 3) and proposed partner (Step 10) on the basis of candidate fitness value:

Candidate fitness value =
MIPS Utilized by all VMs on a PM

PM′sMIPS
.

Step 12. Mutate the first child chromosome and add to population by allocating

some VMs randomly to PMs.

 107

Step 13. Calculate the Roulette wheel (Rwheel) value using probability fitness:

Probability fitness =
CandidateFitnesValue(Candidate, root)

Cumulative fitness value
,

Rwheel =
Probability Fintness Value

Number of PMs
.

Step 14. Select parent nodes (Father and Mother) using Rwheel probability

value to perform crossover.

Step 15. Mutate the chromosome obtained from Step 14 and add it to the

population.

Step 16. Perform Steps 13-15 till stopping criteria is met.

(We have defined 100 as the total number of population (generations), i.e.,

stopping criteria).

Step 17. From population, obtain the Best VM/PM map having higher candidate

fitness value for placement.

Step 18. Allocate VMs to PMs using Step 17.

Step 19. Supply this map to Step 2 for next scheduling purpose.

In our approach, after every iteration the value of the Roulette wheel probability,

which is used for crossover, gets changed and thus it exhibits adaptive nature of GA.

Due to this reason, our proposed scheme has been named as Adaptive Genetic

Algorithm (A-GA). In this paper, in addition to the A-GA based VM placement

policy, other heuristic approaches,such as ACO and BFD have been employed for

placement policy and respective performance comparison has been done.

4. Experimental setup

In this paper, we have examined the performance of the proposed system using real

time cloud workload traces retrieved from CoMon data project, which is a part of

Cloud monitoring infrastructure of PlanetLab [27]. To evaluate the robustness of the

proposed consolidation scheme a large scale cloud infrastructure containing 1000s of

VMs and host nodes (PMs) has been considered. The benchmark cloud image or

workload traces encompass the CPU utilization of 1000+ VMs connected with the

servers located at 100s of different places. The workload traces have been obtained

during 10 randomly selected days in March and April 2011 and CPU utilization has

been measured at the interval of 5 minutes. Java-Eclipse has been used for

programming and CloudSim platform has been used for simulation. We have used to

distinct servers with different configurations.At first, the frequency of the servers has

been mapped onto MIPS ratings where the individual server is mapped with 1860

and 2660 MIPS in HP ProLiant ML110 G4 and HP ProLiant ML110 G5,

respectively. Each server has been assigned 1 GB per 1 s network bandwidth.

5. Results and discussion

The performance evaluation of the proposed research model has been done with a

different combination of overload detection schemes, VM selection policies and

 108

placement policies. The performance of proposed A-GA based placement policy for

consolidation has been compared with the other heuristics like ACO and BFD. The

performance has been compared with different approaches like conventional IQR,

LR, MAD, THR algorithm based CPU utilization estimation scheme and MMT, MC

and RS based VM selection. Here, it should be noted that the other existing

approaches (IQR, LR, MAD, THR and LRR) have been employed with BFD based

VM placement algorithm only Table 1.

Table 1. Implementation and simulation scenarios

CPU

utilization

threshold

VM selection VM placement

IQR MMT MC RS BFD

LR MMT MC RS BFD

MAD MMT MC RS BFD

THR MMT MC RS BFD

LRR MMT MC RS BFD

Combined

IQR and LRR

MMT MC RS ACO

MMT MC RS A-GA

Fig. 2. Number of VM migrations

Considering better efficiency of IQR and LRR, we have used these algorithms

with our proposed A-GA based consolidation scheme. We have examined the

performance of different techniques under three distinct VM selection policies,

MMT, MC and RS. Based on different threshold estimation (for overload detection),

VM selection and placement policies, the simulation has been done and numerous

performance parameters such as energy efficiency, SLA violation, SLA time per

active host, number of host shut down etc., have been assessed. The different

simulation scenarios and respective results outcome are given as follows:

 109

Fig. 3. SLAV (%)

Fig. 4. SLA performance degradation (%)

Fig. 5. SLA time per active host (s)

To perform better analysis, we have examined different algorithms with three

different VM selection and placement policies. As depicted in Fig. 2, the proposed

A-GA based consolidation exhibits minimal migration thus enabling minimal

downtime probability. Fig. 3 represents the SLAV, where the proposed evolutionary

computing based proposed system has exhibited minimal SLA violation with MMT

selection policy. Fig. 4 depicts the SLA performance degradation, where it can be

observed that the proposed A-GA based VM placement strategy with MMT VM

selection policy and LRR based overload detection and resource prediction can

 110

enable minimum performance degradation. Similarly, Fig. 5 affirms better

performance of the proposed system in terms of SLA per active host. Fig. 6 states

that Combined IQR and LRR+MMT+A-GA based consolidation scheme can perform

better as compared to other possible consolidation scenarios. In addition to the QoS

and reliability, we have examined the energy efficiency of the proposed VM

consolidation technique. The results obtained in Fig. 7 represents that the proposed

evolutionary computing based VM placement scheme ensures minimal power

consumption. Observing the results retrieved, it can be found that the minimal

migration, maximum host shut down enables this significant energy conservation.

Fig. 6. Number of hosts shut down

Fig. 7. Energy consumption (kW.h)

6. Conclusion

In this paper, a highly robust and efficient A-GA based on VM consolidation scheme

has been developed, where different issues of the large scale cloud infrastructures

like dynamism in resource utilization, number of VM migration, downtime reduction,

SLA violation, and energy efficiency, etc. have been considered for optimization.

The implementation of a combined IQR and LRR for dynamic threshold estimation

 111

has performed better for resource utilization and thresholding than other algorithms

such as LR, conventional LRR, MAD, THR, etc. Furthermore, MMT based VM

selection policy with proposed A-GA based VM placement or allocation has

performed better than MC and RS scheme for energy efficiency and QoS in terms of

minimal downtime and SLA violation. A-GA has exhibited better the other heuristics

such as ant colony optimization and best fit decreasing based VM consolidation. The

proposed system depicts minimum VM migration and SLA violation, low SLA active

per host, and maximum energy efficiency as compared to other system.Hence, the

proposed system can be used for large scale cloud resource management; energy

efficient and QoS oriented cloud service provisioning.

R e f e r e n c e s

1. F r a s e r, C. K., et al. Live Migration of Virtual Machines. – In: Proc. of 2nd USENIX Symposium

on Networked Systems Design and Implementation, Berkeley, CA, 2005, pp. 273-286.

2. V o g e l s, W. Beyond Server Consolidation. – ACM Queue, 2008, No 1, pp. 20-26.

3. F e l l e r, E., C. M o r i n et al. A Case for Fully Decentralized Dynamic VM Consolidation in

Clouds. – In: Proc. of 4th IEEE International Conference, Cloud Computing Technology and

Science, Taipei, Taiwan, 2012, pp. 26-33.

4. M u r t a z a e v, S. O. Sercon: Server Consolidation Algorithm Using Live Migration of Virtual

Machines for Green Computing. – IETE Technical Review, Vol. 28, 2011, No 3, pp. 212-231.

5. M a r z o l l a, M., O. B a b a o g l u et al. Server Consolidation in Clouds through Gossiping. –

In: Proc. of 12th IEEE International Symposium, World of Wireless, Mobile and Multimedia

Networks, Lucca, Italy, 2011, pp. 1-6.

6. B e l o g l a z o v, J. A., et al. Energy-Aware Resource Allocation Heuristics for Efficient

Management of Data Centers for Cloud Computing. – Grid Computing and e-Science, Future

Generation Computer Systems, Vol. 28, 2012, pp. 755-768.

7. B e l o g l a z o v, R. B. Optimal Online Deterministic Algorithms and Adaptive Heuristics for

Energy and Performance Efficient Dynamic Consolidation of Virtual Machines in Cloud Data

Centers. – Concurrency and Computation: Practice and Experience, Vol. 24, 2012, No 13,

pp. 1397-1420.

8. F a r a h n a k i a n, F., P. L i l j e b e r g et al. Linear regression Based CPU Usage Prediction

Algorithm for Live Migration of Virtual Machines in Data Centers. – In: Proc. of 39th

Euromicro Conference of Software Engineering and Advanced Applications, Santander,

Spain, 2013, pp. 357-364.

9. F a r a h n a k i a n, F., T. P a h i k k a l a et al. Energy Aware Consolidation Algorithm Based on

K-Nearest Neighbor Regression for Cloud Data Centers. – In: Proc. of 6th IEEE/ACM

International Conference on Utility and Cloud Computing, Dresden, Germany, 2013.

10. W o o d, T., P. S h e n o y et al. Sandpiper: Black-Box and Gray-Box Resource Management for

Virtual Machines. – Computer Networks, Vol. 53, 2009, pp. 2923-2938.

11. A j i r o, Y., A. T a n a k a. Improving Packing Algorithms for Server Consolidation. – In: Proc. of

International Conference for the Computer Measurement Group, San Diego, California, USA,

2007, pp. 399-407.

12. W a n g, M., X. M e n g et al. Consolidating Virtual Machines with Dynamic Bandwidth Demand

in Data Centers. – In: Proc. of 30th IEEE International Conference on Computer

Communications, Shanghai, China, 2011, pp. 71-75.

13. H a r m a n, M., K. L a k h o t i a et al. Cloud Engineering is Search Based Software Engineering

Too. – Journal of Systems and Software, Vol. 86, 2013, No 9, pp. 2225-2241.

14. D o r i g o, M., G. D i C a r o et al. Ant Algorithms for Discrete Optimization. – Artificial Life,

Vol. 5, 1999, No 2, pp. 137-172.

 112

15. D o r i g o, M., L. G a m b a r d e l l a. Ant Colony System: A Cooperative Learning Approach to the

Traveling Salesman Problem. – IEEE Transactions on Evolutionary Computation, Vol. 1,

1997, No 1, pp. 53-66.

16. B a r b a g a l l o, D., E. D i N i t t o et al. A Bio-Inspired Algorithm for Energy Optimization in a

Self-Organizing Data Center. – Self-Organizing Architectures, Springer, 2010, pp. 127-151.

17. C h e n , H., L. X i o n g et al. Cloud Task Scheduling Simulation via Improved Ant Colony

Optimization Algorithm. – Journal of Convergence Information Technology, 2013.

18. D o n g, Y. S., G. C. X u et al. A Distributed Parallel Genetic Algorithm of Placement Strategy for

Virtual Machines Deployment on Cloud Platform. – The Scientific World Journal, 2014,

pp. 1-12.

19. F e l l e r, E. E. et al. Energy-Aware Distributed Ant Colony Based Virtual Machine Consolidation

in IaaS Clouds Bibliographic Study. – Informatics Mathematics (INRIA), 2012, pp. 1-13.

20. F e r d a u s, M. H., M. M u r s h e d et al. Virtual Machine Consolidation in Cloud Data Centers

Using ACO Metaheuristic. – In: Proc. of 20th International Conference Euro-Par 2014 Parallel

Processing, Porto, Portugal, 2014, pp. 306-317.

21. Z h o n g, H., K. T a o et al. An Approach to Optimized Resource Scheduling Algorithm for Open-

Source Cloud Systems. – In: Proc. of China Grid Conference (China Grid), 2010, Fifth Annual,

Guangzhou, China, 2010, pp. 124-129.

22. M a d h u s u d h a n, B., K. C. S e k a r a n. A Genetic Algorithm Approach for Virtual Machine

Placement in Cloud. – In: Proc. of International Conference on Emerging Research in

Computing, Information, Communication and Applications, 2013, pp. 115-122.

23. T a n g, M., S. P a n. A Hybrid Genetic Algorithm for the Energy-Efficient Virtual Machine

Placement Problem in Data Centers. – Neural Processing Letters, Vol. 41, 2015, No 2,

pp. 211-221.

24. C l e v e l a n d, W. S. Robust Locally Weighted Regression and Smoothing Scatterplots. – Journal

of the American Statistical Association, Vol. 74, 1979, No 368, pp. 829-836.

25. V e r m a, G. D. et al. Server Workload Analysis for Power Minimization Using Consolidation. –

In: Proc. of 2009 USENIX Annual Technical Conference, San Diego, China, 2009, pp. 28-42.

26. A b d i, H. Multiple Correlation Coefficient. – N. J. Salkind, Ed. Sage, Thousand Oaks, CA, USA,

2007.

27. P a r k, K. S., V. S. P a i. CoMon: A Mostly-Scalable Monitoring System for Planet-Lab. – ACM

SIGOPS Operating Systems Review, Vol. 40, 2006, No 1, pp. 65-74.

28. T h e j a, P. R., S. K. K. B a b u. An Evolutionary Computing Based Energy Efficient VM

Consolidation Scheme for Optimal Resource Utilization and QoS Assurance. – Indian Journal

of Science and Technology, 77179, Vol. 8, 2015, No 26, pp. 1-11.

29. T h e j a, P. R., S. K. K. B a b u. An Adaptive Genetic Algorithm Based Robust QoS Oriented Green

Computing Scheme for VM Consolidation in Large Scale Cloud Infrastructures. – Indian

Journal of Science and Technology, 79175, Vol. 8, 2015, No 27, pp. 1-13.

