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Abstract: The high pace and increase in cloud computing technology and associated 

applications, especially large scale data centres, have demanded energy efficient and 

Quality of Service (QoS) oriented computing platform. To meet these requirements, 

virtualization and Virtual Machine (VM) consolidation has emerged as an effective 

solution. The optimization in VM consolidation by means of efficient dynamic 

resource-utilization prediction, VM selection and placement can achieve optimal 

solution for energy efficient and QoS oriented cloud computing system. In this paper, 

an evolutionary computing algorithm called Adaptive Genetic Algorithm (A-GA) 

based VM consolidation approach has been developed. A-GA based placement policy 

and its implementation with different VM selection policies like Minimum Migration 

Time (MMT), Maximum Correlation (MC) and Random Selection (RS), along with 

different CPU utilization estimation approaches like Inter Quartile Range (IQR), 

Local Regression (LR), Local Robust Regression (LRR), static THReshold (THR) and 

Median Absolute Deviation (MAD) has revealed that A-GA based consolidation with 

MMT selection policy and combined IQR and LRR can enable optimal VM 

consolidation for large scale infrastructures. In addition, the proposed A-GA policy 

has exhibited better performance as compared to other meta-heuristics such as Ant 

Colony Optimization (ACO) and Best Fit Decreasing. The proposed consolidation 

system can be used for large scale cloud infrastructures where energy conservation, 

minimal Service Level Agreement (SLA) violation and QoS assurance is inevitable. 

Keywords: Energy efficient cloud computing, virtual machine consolidation, 

adaptive genetic algorithm, minimum migration time, dynamic threshold, service 

level agreement violation. 

1. Introduction  

The rising demand for cloud infrastructures has motivated entrepreneurs and 

organizations to establish large scale data centers that comprise thousands of 

computational nodes or Physical Machines (PMs), also called host nodes, thus 

causing enormous energy consumption. This demanding energy consumption can 
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significantly impact various factors like environmental issues, resource 

sustainability, cost of service, etc. Hence, there is an inevitable need to reduce energy 

consumption. In addition, the exponentially increased number of users for cloud 

computing services demands, the Quality of Service (QoS) and service reliability. To 

deal with these issues and ensure optimal resource utilization, energy conservation 

and QoS provisioning, virtualization has emerged as a potential solution. 

Virtualization performs live migration of Virtual Machines (VMs) across the network 

while ensuring zero or minimal downtime. Live migration concept is of great 

significance, especially for VM consolidation, as it can enable minimum active hosts, 

thus resulting into reduced energy consumption. The persistent VM consolidation can 

cause performance degradation due to dynamic resource requirements. Assuring QoS 

services and its reliability as per Service Level Agreements (SLA) is an unavoidable 

need for cloud service providers. To achieve these objectives, VM consolidation has 

emerged as a potential solution. Dynamic VM consolidation [1] can be significant for 

leveraging the fine-grained variations in the workload, thus enabling minimal active 

host’s count, which might significantly reduce energy consumption. The dynamic 

VM consolidation approach encompasses two elementary processes. First the VM 

migration from certain underutilized host or PM and second offloading the VMs from 

hosts whenever it undergoes overloading situation so as to reduce any possible 

performance degradation. In first case, the idle nodes or nodes undergoing 

underutilization are SWITCHED OFF so as to reduce the active or static power 

consumption. Further, as per network needs, the host nodes are reactivated to 

accommodate migrated VMs.  

In general, the overall VM consolidation scheme encompasses four main 

phases. The first and second phases deal with under load and overload detection 

respectively, while it is followed by VM selection in the third phase that decides 

which VMs are to migrate. Finally, in the last phase of consolidation, the VM 

placement takes place where these VMs are allocated while ensure that it wouldn’t 

cause overload on the host. Considering dynamic functional environment, the 

dynamic resource allocation and scheduling can be of great significance. Meanwhile, 

the efficient VM selection and placement can play vital role for enhancing overall 

performance of cloud infrastructure. On the contrary, the inefficient VM selection 

and allocation might result in severe performance degradation and SLA violation 

issues. To perform efficient VM selection, the statistical analysis of VM resource 

requirements and its behaviour mapping should be considered. Normally, VM 

consolidation is a bin packing problem that can be effectively dealt with by means of 

certain heuristic approaches and evolutionary computing schemes. Considering these 

motivations, in this paper, we have proposed a highly robust and efficient VM 

consolidation scheme where it has been intended to enhance overall functional 

components such as, dynamic threshold based overloading detection, enhanced VM 

selection policy and evolutionary computing based VM placement facility. In this 

paper an enhanced dynamic threshold estimation scheme based on scheduling based 

combined Local Robust Regression (LRR) and Inter Quartile Range (IQR) algorithm 

has been developed, which has been followed by VM selection for which three 

different algorithms, Minimum Migration Time (MMT), Maximum Correlation 



 99 

(MC) and Random Selection (RS) policy have been used independently. Finally, to 

enhance VM placement, we have proposed and developed two algorithms namely  

A-GA (Adaptive Genetic Algorithm) and ACO (Ant Colony Optimization) scheme.  

The results obtained for different combinations reveal that A-GA with MMT 

selection policy performs better in terms of energy consumption, SLA Violation 

(SLAV), etc.  

2. Related work  

A significant amount of research has explored VM consolidation approaches [2-5] 

for QoS and energy optimization. To deal with overload detection in data centers, 

initially researchers used the static threshold approach [6], where they considered 

overall CPU utilization and scheduled hosts to be in the range of certain defined 

thresholds. Later, considering highly dynamic cloud environment, the conventional 

static threshold based scheduling was found ineffective to alleviate SLA and 

therefore the dynamic cloud pattern and workloads based threshold schemes were 

proposed [7]. Buyya and others authors (see [7]) employed an adaptive threshold 

scheme for upper and lower bound estimation, which was defined on the basis of the 

statistical analysis and historical pattern of CPU utilization. Regression based CPU 

utilization was suggested in [8, 9], where the CPU utilization was estimated at host 

nodes. Researchers used linear regression and the K-nearest neighbour regression 

schemes for approximating the data retrieved throughout the VMs lifetime. They 

emphasized their model for SLA optimization. Later, bin packing problem was 

considered in [10-12] for efficient VM consolidation. Majority of existing approaches 

have used Best Fit Decrease (BFD) based consolidation [2]. The algorithms made 

effort to minimize number of host count by packing more and more VMs onto host. 

Some combinatorial optimization mechanism were proposed by researchers  

where they tried to incorporate adaptive schemes for consolidation optimization  

[13, 14, 15]. 

Researchers suggested a bio-inspired technique [16] to reduce energy 

consumption among servers. The foraging of ant based resource allocation was 

proposed in [17]. Some heuristic approaches like ACO and evolutionary concept of 

Genetic Algorithm (GA) were suggested in [18] and [19] respectively, for 

consolidation purposes. ACO-based decentralized scheme for scheduling was 

proposed in [20]. The genetic algorithm was examined for resource scheduling 

function in virtualization [21-23]. The majority of existing research has either focused 

on VM selection or VM placement. Some of the researchers have made efforts 

towards introducing dynamic thresholding to provide optimistic resource allocation 

facility [7]. 

3. Our contribution  

In this paper, we performed a comparative analysis between different combinations 

of host overload detection algorithms, VM selection policies and VM placement 

policies. We came to see our proposed, A-GA based consolidation with MMT 

selection policy and combined IQR and LRR can enable optimal VM consolidation, 
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with minimal SLA violation, QoS assurance and provides energy conservation for 

large scale infrastructures. 

3.1. Cloud model 

In this paper, we have considered a large scale cloud infrastructure comprising N 

heterogeneous host nodes or PMs, where each host is characterized in terms of its 

CPU utilization and Millions Instructions Per Second (MIPS). As, it doesn’t have its 

own inherent storage capacity, a Storage Area Network (SAN) has been used to 

support live migration. In addition, we assume that there is no available information 

about the application, execution time or associated workloads for which the migration 

has to be done. It states that our approach is the application-agnostic paradigm. In 

this model, multiple independent VMs requests for different MIPS. Thus, the VM 

consolidation on a single host is the problem of resource management when the 

combined workload caused due to individual VM and associated applications 

demands resource simultaneously.  
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Fig. 1. Proposed system architecture 

The VM migration from one host to another might facilitate better resource 

allocation and energy conservation, but during this process it might suffer certain 

downtime, causing SLA violation. For service provider, meeting SLA and QoS 

reliability are the inevitable requirements. Here, we consider that efficient resource 

allocation, VM migration, optimal VM selection and its swift placement across the 

network can achieve optimal performance, meeting overall expectations. In the 

proposed system, a multi-controller based VM consolidation scheme has been 

proposed.  We have estimated host underload and overload locally on each host node. 

Furthermore, the VM placement has been done on the individual host. The proposed 

system encompasses two controllers; Global Controller (GC) and Local Controller 

(LC) Fig. 1. LC functions as Virtual Machine Manager (VMM) for each node and 

monitors resource (CPU) utilization continuously and identifies the underload and 

overloaded nodes during execution. Recognizing overloaded node, the LC initiates 
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VM selection scheme to find which specific VM to offload and from which host, so 

as to avoid overloading. GS on the other hand retrieves information from LC to 

enable dynamic scheduling. Based on the decision of the LC, the GC generates 

migration command to perform VM placement. During this process, VMM executes 

VM migration and accordingly updates the changes in power modes at different hosts 

to enable further scheduling and placement. 

3.2. Host under load detection 

In our proposed system, if a host node is undergoing minimal resource utilization, 

then it is considered an under load host and therefore all of its connected VMs are 

migrated from it to other host(s), without causing overloaded on them. Performing 

VM migration, to conserve energy the source host node is either SWITCHED OFF 

or in SLEEP MODE. In our approach, if all VMs from the host node couldn’t be 

offloaded, then the source node is still active so as to alleviate the probability of 

downtime and QoS degradation.  

3.2.1. Host over load detection 

To detect the overloaded host node, each host node initializes an overload detection 

scheme intermittently to perform VM de-consolidation, thus enabling SLA violation 

avoidance. CPU utilization of the host node has been used for identifying overloaded 

hosts. Unlike conventional schemes, based on static threshold, in this paper we have 

developed a dynamic threshold based adaptive CPU utilization and overload 

detection scheme. It enables the proposed system to behave in real time scenario 

where there is highly fluctuating resource utilization. It adjusts resource utilization 

threshold based on the variation in CPU utilization and utility map. It can be observed 

that higher deviation might even result into 100% CPU utilization that signifies 

higher overloading probability. To enable dynamic threshold detection scheme, we 

have used IQR and LRR algorithm. In our proposed model, the resource utilization 

has been examined at the interval of 5 min and on each odd iteration, IQR algorithm 

has been used, while LRR has been scheduled for even iterations. Such novelty tends 

to employ major advantages of both approaches. A brief of IQR is given as follows: 

IQR is a statistical dispersion technique which is equivalent to the differences 

between the third and first quartile. To estimate dynamic CPU utilization threshold, 

the following equation has been used:  

(1)  IQR = Q3– Q1,     Tm = 1– s. IQR,  
where 𝑠 represents the safety parameter that states the maximum extent of the 

tolerability of a host node in Cloud environment and its lower value signifies the 

higher tolerance to the fluctuation in the CPU utilization. Here we have used 𝑠 = 1.2 

and it can be changed to examine the optimal performance. 

In addition to IQR, we have used the Loess concept [24] to derive the LRR 

algorithm, which has been employed for fitting a trend polynomial to the earlier 𝓀 

observations for the CPU utilization called utilization map. For initial recent 

observations, it is retrieved as 

(2)   ℊ̂(𝓍)  =  �̂� + �̂�𝓍. 
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It is further used for calculating the next observation ℊ̂(𝓍𝓀+1). To offload some 

VMs from an overloaded host node, the following conditions have been fulfilled: 

(3)   𝓈. ℊ̂(𝓍𝓀+1) ≥ 1, 𝓍𝓀+1 − 𝓍𝓀 ≤ 𝓉𝓂, 

where 𝓈 ∈ ℝ+is the safety parameter that signifies the maximum capability or 

tolerability of a host node, and 𝓉𝓂 represents the maximum time required for 
migrating a VM from the overloaded host. The traditional Loess concept [24] is 
found vulnerable to the outliers caused due to leptokurtic or heavy-tailed 
distributions. To alleviate this problem, we have modified the Loess concept 
[24] to bisquare from the conventional least-squares LR approach. Thus we have 
LRR approach iteratively for estimating the initial fitting and tricube weight function 

has been used for dynamic weight estimation. The fitting parameter has been 

retrieved at 𝓍𝒾 to get optimal value by means of �̂�𝒾. Thus, the final residual value 

is 𝜀𝑖 = 𝓎𝑖 − �̂�𝒾. Furthermore, the final retrieved value  (𝓍𝑖, 𝓎𝑖) has been assigned a 

robustness factor ℛ𝒾 that primarily depends on the magnitude of 𝜀𝑖. Mathematically, 

ℛ𝒾 is obtained as 

(4)   ℛ𝒾 = ℬ (
ε̂l

6𝐿MAD
), 

where ℬ(. ) gives the bisquare weight function and 𝐿MAD represents the Median 

Absolute Deviation (MAD) for the least square fit. Mathematically: 

(5)  ℬ(. ) = {
(1 − 𝓊2)2 if  |𝓊| < 1,
0                  otherwise.

 

In this paper, we assigned ℛ𝒾 for each observation (5 minute), where 𝐿𝑀𝐴𝐷 has 

been obtained as 

(6)  𝐿MAD = mediun|𝜀�̂�|. 
Using (3), the next observation has been obtained for the estimated trend line, 

where observing any inequalities, the host can be identified as overloaded. 

3.2.2. VM selection policy 

In this phase, the VM selection takes place where it is intended to select the VM 

which should be migrated to minimize overhead from overloaded host. Estimating 

the dynamic CPU utilization threshold, VM selection has been performed that 

offloads host for avoiding SLA violation and unwanted energy consumption caused 

due to overload. In this paper, we have examined three different selection policies; 

the Minimum Migration Time (MMT), Maximum Correlation (MC) and Random 

Selection (RS) policy. A brief discussion of the implemented VM selection policies 

are given as follows: 

3.2.2.1. Minimum migration time policy  

Once assessing the host’s CPU utilization levels and identifying any probable or 

overloaded host, VMs selection algorithm performs offloading of that host node to 

avoid any probability of SLA violation. The developed MMT selection policy 

performs migration of only those VMs (𝑣) which requires minimal migration time 

than the other. In this paper, the migration time has been estimated in terms of the 

resource, RAM being used by VM divided by the supplementary network bandwidth 
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available for host 𝑗. Let 𝑉𝑗  be a set of VMs connected with the host  𝑗. Therefore, the 

VM to be migrated is selected based on the following condition: 

(7) 𝑣 ∈ 𝑉𝑗|∀𝑎∈ 𝑉𝑗 ,   
RAM𝑢(𝑣)

NET𝑗
≤

RAM𝑢(𝑎)

NET𝑗
, 

where RAM𝑢(𝑎) depicts the amount of RAM currently being used by VM𝑎; and NET𝑗 

refers the bandwidth available for migration from the host  𝑗.  

3.2.2.2. Maximum correlation policy  

In case of MC policy [25, 26] it is assumed that the higher correlation between the 

CPU utilization by VMs connected to certain host signifies higher overloading 

probability. In MC policy, VMs having the highest correlation for the CPU utilization 

are needed to be migrated from the current host to assist energy conservation and 

SLA violation avoidance. We have used the concept of Multiple Correlation 

Coefficients (MCC) for estimating the intra-VM correlation and respective CPU 

utilization. The used MCC coefficients are in relation to the squared correlation 

between the real and the predicted values of the dependent variable. In fact, it can be 

interpreted as the fraction of variance of the dependent variable elucidated by the 

associated independent variables. 

Let 𝒳1, 𝒳2, … , 𝒳𝑛 be the CPU utilization of 𝓃 VMs connected to a host and 𝒴 

be the specific VM to be migrated, where n – 1 are the random independent variables. 

Here 𝒴 being the VM to be migrated, be the independent variable. In our proposed 

MC policy, we have calculated the correlation between 𝒴 and n – 1. The obtained 

augmented matrix (n – 1) × n encompasses the observed instances or the values of  

n – 1, indicated as 𝒳. Similarly, the observation vector or mapped vector (n – 1) × 1 

of the dependent variable 𝒴 be 𝓎. Thus, the overall observation vector or the 

mapping vectors for the VM’s CPU utilization can be given as follows: 

(8) 𝒳 = [

1 𝒳1,1 … 𝒳1,𝓃−1

⋮ ⋮ ⋱ ⋮
1 𝒳𝓃−1,1

… 𝑥𝓃−1,𝓃−1

] , 𝒴 = [
𝒴1

⋮
𝒴𝑛−1

]. 

Observing (8), it can be found that the first column of 𝒳 is all 1 (for all 

instances), therefore it can be considered as an augmented matrix. The predicted 

values of the VM’s CPU utilization or 𝒴 can be presented as  �̂�, which can be 

obtained by  �̂� = 𝒳𝒷, where  𝒷 = (𝒳T𝒳)
−1

𝒳T𝒴. Obtaining the predicted 

values, MCC coefficients, the final correlation 𝑅2
𝑌,1,…,𝑛−1′  has been obtained as  

(9) ℛ2
𝒴,𝒳1,…,𝒳𝓃−1

=
∑ (𝒴𝒾−𝓂𝒴)

2
(�̂�𝒾−𝓂�̂�)

2
𝓃
𝒾=1

∑ (𝒴𝒾−𝓂𝒴)
2

∑ (�̂�𝒾−𝓂�̂�)
2′

𝓃
i=1

𝓃
𝒾=1

, 

where 𝓂𝒴  and 𝓂�̂� give the observation means of 𝒴 and �̂� respectively. In MC 

based VM selection, the MCCs for all mapped instances 𝒳𝒾 have been obtained 

as  ℛ2
𝒳i,𝒳1,…,𝒳i−1,𝒳i+1,…,𝒳𝓃

. Finally, based on correlation value, (10) has been used to 

select a specific VM to be migrated: 

(10) 𝓋 ∈ 𝒱ℳ𝒿|∀𝒶∈ 𝒱𝒿 , ℛ2
𝒳𝓋𝓂 ,𝒳1,…,𝒳𝓋𝓂−1,𝒳𝓋+1𝒳𝓃

≥ ℛ2
𝒳𝓋 ,𝒳1,…,𝒳𝒶−1,𝒳𝒶+1,…,𝒳𝓃

. 
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In addition to the MMT and MC selection policy, we have also examined an 

algorithm called RS policy. 

3.2.2.3. Random selection policy  

In RS policy, a VM is randomly selected for migration from the host node as per a 

uniformly distributed discrete random variable  𝒜 = U(0|𝒱𝒿), whose values signify 

a set of VMs, 𝒱𝒿  placed at 𝒿-th host. Since VM consolidation is a bin packing 

problem and therefore, an optimal approach for placement is of great significance to 

ensure minimal downtime, energy consumption and probable SLA violation. The 

following section discusses the proposed evolutionary computing based VM 

placement approach.  

3.2.3. VM placement policy 

VM placement can be stated to be a problem of bin packing that encompasses bins, 

items and prices as the three parameters, where bins represent the host nodes, VMs 

represent the items to be allocated, bin size refers the available resource on the host 

node; and the resource or CPU power consumed by a host is stated in terms of price. 

In bin packing, it is intended to accommodate as much as VMs that makes the overall 

scenario NP-hard. In order to deal with such non-convexity problem, certain heuristic 

approach or evolutionary computing scheme can be the potential solution. In this 

paper, we have proposed A-GA as VM placement policy. We have interfaced A-GA 

with CloudSim simulator comprising multiple host nodes, and VMs in the data center. 

In our proposed model, each host is equipped with one or multiple Processing 

Elements (PE). The executing VMs on the hosts have one or multiple running 

Cloudlets. In simulation model, the user requests have been stated in terms of 

Cloudlets, where the needed processing power for each Cloudlet has been defined in 

terms of MIPS. In the proposed placement policy, the scheduler considers all hosts, 

VMs and VM maps as input and generates mapping for nodes, where it divides 

overall MIPS into different components like hosts and VMs running in parallel. The 

functional discussion of the proposed A-GA scheme is given in coming sections. 

3.2.3.1. A-GA based VM placement 

As depicted in Fig. 1, the proposed A-GA algorithm processes VM scheduling based 

on the resource utilization information provided by local controller and the upper 

threshold value estimated by dynamic threshold estimation scheme. We have 

considered upper threshold so as to satisfy transient variations of resource demand 

by different VMs on a host node. The CPU utilization pattern or history of VMs has 

been considered for VMs placement onto destination host node. Considering a large 

scale cloud infrastructure or data center, the time efficient and effective placement 

scheduling is of great significance. In this research we have intended to reduce the 

number of VM migration and migration time, so as to enable energy efficient and 

QoS oriented consolidation mechanism. In addition, we have scheduled the system 

to enable maximum host shut down so as to conserve energy. In this paper, placing 
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or allocating VM on certain host, our algorithm estimates the energy of the data center 

and accordingly performs further scheduling to minimize energy consumption. 
At first, the proposed A-GA algorithm initializes a definite set of population 

where the individual host is a tree comprising global controller as its root, the hosts 

are the next level nodes and VMs are the child nodes Fig. 1. It calculates the total 

energy consumption and CPU utilization for each mapping in the deployed cloud 

center. Here, the VM mapping history also known as utilization pattern, allocated 

VMs and their resource utilization mapping, future mapping for VMs based dynamic 

utilization, hosts and its available resource availability etc. have been used as 

population. The precise discussion of the proposed system is given in coming section. 

From these chromosomes, our proposed A-GA algorithm initially selects two VM 

mappings with minimal energy values on which the initial genetic operators 

(crossover 𝑝c and mutation probability 𝑝m) are applied. Thus, the mapping obtained 

for VMs onto the host nodes is added to the overall population based on the fitness 

values. In our proposed A-GA based VM placement policy, 𝑝c selects the host with 

the best CPU utilization based on the previous VMs mapping. Here 𝑝c and 𝑝m try to 

reduce host nodes by means of SWITCHING OFF or turning it into SLEEP MODE. 

Here, it should be noted that unlike conventional genetic approach (i.e., A-GA), we 

have applied adaptive genetic parameter selection, where these variables are updated 

dynamically after every iteration, till stopping criteria (100 generations) is obtained. 

Consider, the host nodes in data centers be   

PM = {𝓅𝓂1, 𝓅𝓂2, 𝓅𝓂3, ⋯ , 𝓅𝓂𝓂}, 

and 𝓅𝓂𝒾 be 𝒾th host node, where 1 ≤ 𝒾 ≤ 𝓂. Similarly, VMs in the network be  

VM𝒾 = {𝓋𝓂1, 𝓋𝓂2, 𝓋𝓂3, ⋯ , 𝓋𝓂𝓃,𝒾}, 

which are connected to the 𝒾-th host. Consider 𝓋𝓂𝒿,𝒾 be the 𝒾-th VM on 𝒿-th PM. 

The variable 𝓍𝒾,𝒿 ignifies whether 𝒾-th VM is placed on host 𝒿 or not. Let 𝒫𝓇,𝒾 be the 

resource capacity 𝓇 (CPU utilization) on 𝒿-th host node. The resource needed by  
𝒾-th VM is 𝓋𝓇,𝒿. Thus, overall load on 𝒿-th host node would be the sum of all resource 

needed by all VMs running over it. Consider, 𝒯 be the duration of past observations, 

thus the sub-intervals can be obtained by dividing 𝒯 into 𝓆 – 1 sub intervals such that 

𝒯 = [(𝓉2 − 𝓉1)(𝓉3 − 𝓉2) ⋯ (𝓉𝓆 − 𝓉𝓆−1)]. The slot 𝓉𝓀 − 𝓉𝓀−1 is the time period 𝓀.  

In such manner, for period 𝓀, we have estimated the CPU utilization at a host 

(CPU𝒾,Util(𝓀)) using following equation: 

(11) CPU𝒾,Util(𝓀) = ∑ 𝓋𝓂CPU,𝒿/𝓅𝓂CPU,𝒿
𝓃
𝒿=1 , 

where, 𝓀 represents the duration for which the CPU utilization has to be retrieved. 

Finally, the average CPU utilization at a host node has been obtained as: 

(12) 𝓅𝓂𝒾,AvgUtil = ∑ 𝓅𝓂𝒾,Util
𝓉𝓀−𝓃
𝓉−𝓉𝓀

(𝓉)/(𝓆 − 1), 

where 𝓆 – 1 represents the total number of sub intervals in 𝒯 time. 

Consider 𝓅𝓂𝒾 represents the power of 𝒿-th host node during  𝓉𝓀. Thus, the power 

utilization can be obtained in terms of CPU utilization at the host node. Consider, 

𝓅𝓂𝒾ℰ(𝓀) be the power or energy consumption of the 𝒿-th host node in between the 

last time interval and the current time, then it can be obtained as 

(13)  𝓅𝓂𝒾ℰ(𝓀) = 𝓅𝓂𝒾𝓌(𝓀 − 1) + (𝓅𝓂𝒾𝓌(𝓀 − 1) + (𝓅𝓂𝒾𝓌(𝓀))(𝓉𝓀 − 𝓉𝓀 − 1). 
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The energy consumption for the 𝑗-th host, ℰ(𝓅𝓂𝒿) can be estimated at certain host 

𝓅𝓂𝒿 having CPU usage as  CPU𝒾,Util(𝓀) 

(14) ℰ(𝓅𝓂𝒿) = 𝒦𝒿 .  ℯ𝒿
max + (1 − 𝓀𝒿) . ℯ𝒿

max . CPU𝒾,Util(𝓀), 

where 𝒦𝒿 states the part of energy consumed when the host 𝓅𝓂𝒿 is in idle state; ℯ𝒿
max 

states for the energy consumption of host 𝓅𝓂𝒿 when it being used 100%. The 

variable  CPU𝒾,Util(𝓀) represents the CPU utilization by host 𝓅𝓂𝒿. We have used 

this approach to estimate the energy consumption at certain host so as to perform 

placement scheduling. Similarly, the energy consumption for all hosts 𝒟ℰ(𝓀) can be 

obtained for a period using following equation: 

(15) 𝒟ℰ(𝓀) = ∑ 𝓅𝓂𝒾ℰ(𝓀)𝓂
𝒾=1 . 

In this paper, the prime objective of the proposed A-GA scheme for VM 

placement is to retrieve the set of mapping from VM set to the host set PM while 

ensuring minimal energy consumption 𝒟ℰ(𝓀), provided: 

(16)   ∀𝒾 ∑ 𝓍𝒾𝒿−1,𝓂
𝒿=1   

(17)   ∀𝒿 ∑ 𝓋𝓂CPU,𝒾𝒳𝒾𝒿 ≤ 𝓅𝓂CPU,𝒿
𝓃
𝑖=1 . 

The implementation of our proposed A-GA based consolidation scheme is as 

follows: 

  Step 1. Create VMs with random workloads and allocate them randomly on 

PMs. 

  Step 2. Perform each iteration at a defined scheduling interval (say 5 min) to 

estimate CPU Utilization and dynamic thresholding based resource prediction until 

Simulation Limit expires 

Odd iterations: Calculate upper threshold value for all PMs using IQR.  

Even iterations:  Calculate upper threshold value all PMs using LRR. 

  Step 3. Perform Initial mapping of VMs and PMs and add it as 

initialchromosome to population (called root). 

  Step 4. Estimate the list of overloaded PMs using Step 2. 

  Step 5. Estimate the list of VMs from each host that are not under migration. 

  Step 6. Perform VM selection for all overloaded or over-utilized PMs and 

obtain the list of all VMs that are ready for migration. 

  Step 7. Sort all VMs based on their CPU Utilization and allocate them 

tooverloaded PMs, while ensuring that these hosts should not get overloaded again. 

  Step 8. Obtain a minimalHost from the list of active hosts having minimal 

resource CPU utilization. 

  Step 9. Allocate all VMs from minimalHost to active hosts while ensuring that 

allocation would not cause overloading on that host node. 

Step 10. Current mapping for VMs and PMs is retrieved as proposed partner 

chromosome and add it to the A-GA population. 

Step 11. Obtain the first child by performing initial crossover between the root 

(Step 3) and proposed partner (Step 10) on the basis of candidate fitness value: 

Candidate fitness value =
MIPS Utilized by all VMs on a PM

PM′sMIPS
. 

Step 12. Mutate the first child chromosome and add to population by allocating 

some VMs randomly to PMs. 
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Step 13. Calculate the Roulette wheel (Rwheel) value using probability fitness:  

Probability fitness =
CandidateFitnesValue(Candidate, root)

Cumulative fitness value
, 

Rwheel =
Probability Fintness Value

Number of PMs
. 

Step 14. Select parent nodes (Father and Mother) using Rwheel probability 

value to perform crossover. 

Step 15. Mutate the chromosome obtained from Step 14 and add it to the 

population. 

Step 16. Perform Steps 13-15 till stopping criteria is met. 

(We have defined 100 as the total number of population (generations), i.e., 

stopping criteria). 

Step 17. From population, obtain the Best VM/PM map having higher candidate 

fitness value for placement. 

Step 18. Allocate VMs to PMs using Step 17. 

Step 19. Supply this map to Step 2 for next scheduling purpose. 

In our approach, after every iteration the value of the Roulette wheel probability, 

which is used for crossover, gets changed and thus it exhibits adaptive nature of GA. 

Due to this reason, our proposed scheme has been named as Adaptive Genetic 

Algorithm (A-GA). In this paper, in addition to the A-GA based VM placement 

policy, other heuristic approaches,such as ACO and BFD have been employed for 

placement policy and respective performance comparison has been done. 

4. Experimental setup  

In this paper, we have examined the performance of the proposed system using real 

time cloud workload traces retrieved from CoMon data project, which is a part of 

Cloud monitoring infrastructure of PlanetLab [27]. To evaluate the robustness of the 

proposed consolidation scheme a large scale cloud infrastructure containing 1000s of 

VMs and host nodes (PMs) has been considered.  The benchmark cloud image or 

workload traces encompass the CPU utilization of 1000+ VMs connected with the 

servers located at 100s of different places. The workload traces have been obtained 

during 10 randomly selected days in March and April 2011 and CPU utilization has 

been measured at the interval of 5 minutes. Java-Eclipse has been used for 

programming and CloudSim platform has been used for simulation. We have used to 

distinct servers with different configurations.At first, the frequency of the servers has 

been mapped onto MIPS ratings where the individual server is mapped with 1860 

and 2660 MIPS in HP ProLiant ML110 G4 and HP ProLiant ML110 G5, 

respectively. Each server has been assigned 1 GB per 1 s network bandwidth. 

5. Results and discussion  

The performance evaluation of the proposed research model has been done with a 

different combination of overload detection schemes, VM selection policies and 
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placement policies. The performance of proposed A-GA based placement policy for 

consolidation has been compared with the other heuristics like ACO and BFD. The 

performance has been compared with different approaches like conventional IQR, 

LR, MAD, THR algorithm based CPU utilization estimation scheme and MMT, MC 

and RS based VM selection. Here, it should be noted that the other existing 

approaches (IQR, LR, MAD, THR and LRR) have been employed with BFD based 

VM placement algorithm only Table 1.  

Table 1. Implementation and simulation scenarios 

CPU 

utilization 

threshold 

VM selection VM placement 

IQR MMT MC RS BFD 

LR MMT MC RS BFD 

MAD MMT MC RS BFD 

THR MMT MC RS BFD 

LRR MMT MC RS BFD 

Combined 

IQR and LRR 

MMT MC RS ACO 

MMT MC RS A-GA 

 
Fig. 2. Number of VM migrations 

Considering better efficiency of IQR and LRR, we have used these algorithms 

with our proposed A-GA based consolidation scheme. We have examined the 

performance of different techniques under three distinct VM selection policies, 

MMT, MC and RS. Based on different threshold estimation (for overload detection), 

VM selection and placement policies, the simulation has been done and numerous 

performance parameters such as energy efficiency, SLA violation, SLA time per 

active host, number of host shut down etc., have been assessed. The different 

simulation scenarios and respective results outcome are given as follows: 
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Fig. 3. SLAV (%) 

 

Fig. 4. SLA performance degradation (%) 

 

Fig. 5. SLA time per active host (s) 

To perform better analysis, we have examined different algorithms with three 

different VM selection and placement policies. As depicted in Fig. 2, the proposed 

A-GA based consolidation exhibits minimal migration thus enabling minimal 

downtime probability. Fig. 3 represents the SLAV, where the proposed evolutionary 

computing based proposed system has exhibited minimal SLA violation with MMT 

selection policy. Fig. 4 depicts the SLA performance degradation, where it can be 

observed that the proposed A-GA based VM placement strategy with MMT VM 

selection policy and LRR based overload detection and resource prediction can 
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enable minimum performance degradation. Similarly, Fig. 5 affirms better 

performance of the proposed system in terms of SLA per active host. Fig. 6 states 

that Combined IQR and LRR+MMT+A-GA based consolidation scheme can perform 

better as compared to other possible consolidation scenarios. In addition to the QoS 

and reliability, we have examined the energy efficiency of the proposed VM 

consolidation technique. The results obtained in Fig. 7 represents that the proposed 

evolutionary computing based VM placement scheme ensures minimal power 

consumption. Observing the results retrieved, it can be found that the minimal 

migration, maximum host shut down enables this significant energy conservation. 

 

 

Fig. 6. Number of hosts shut down 

 

Fig. 7. Energy consumption (kW.h) 

6. Conclusion  

In this paper, a highly robust and efficient A-GA based on VM consolidation scheme 

has been developed, where different issues of the large scale cloud infrastructures 

like dynamism in resource utilization, number of VM migration, downtime reduction, 

SLA violation, and energy efficiency,  etc. have been considered for optimization. 

The implementation of a combined IQR and LRR for dynamic threshold estimation 
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has performed better for resource utilization and thresholding than other algorithms 

such as LR, conventional LRR, MAD, THR, etc. Furthermore, MMT based VM 

selection policy with proposed A-GA based VM placement or allocation has 

performed better than MC and RS scheme for energy efficiency and QoS in terms of 

minimal downtime and SLA violation. A-GA has exhibited better the other heuristics 

such as ant colony optimization and best fit decreasing based VM consolidation. The 

proposed system depicts minimum VM migration and SLA violation, low SLA active 

per host, and maximum energy efficiency as compared to other system.Hence, the 

proposed system can be used for large scale cloud resource management; energy 

efficient and QoS oriented cloud service provisioning. 
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