
 85

BULGARIAN ACADEMY OF SCIENCES

CYBERNETICS AND INFORMATION TECHNOLOGIES  Volume 16, No 2

Sofia  2016 Print ISSN: 1311-9702; Online ISSN: 1314-4081

DOI: 10.1515/cait-2016-0022

Multi-Partite Graphs and Verification

of Software Applications for Real-Time Systems

Victor Nikiforov1, Sergey Baranov2

1St. Petersburg Institute for Informatics and Automation of the Russian Academy of Sciences,

14 liniya, 39, V. O., St. Petersburg, 199178, Russia
2ITMO University, av. Kronverkski, 49, St. Petersburg, Russia

Emails: nik@iias.spb.su SNBaranov@gmail.com

http://www.spiiras.nw.ru/index.php?newlang=english

Abstract: Aspects of static verification of software applications for real-time

systems are considered. A verification method based on oriented multipartite

graphs is suggested for checking whether mutual blockings (deadlocks or clinches)

could occur in a real-time multitask application and estimate the duration of high-

priority task blocking by lower-priority tasks due to the application structure.

Keywords: Real-time systems, multi-task software applications, multi-core

processors, feasibility analysis, shared resources, blocking factor.

1. Introduction

The characteristic feature of software real-time applications is that they work in the

“timing structure” determined by external processes flow. Certain time frames of

various flexibility levels for information exchanges between Real-Time (RT)

software application components and external processes provide a sort of

conformity between their flows.

The required conformity between the timing structure, which reflects the

external process flow and that for execution of the software components, is a

manifestation of a general requirement of the architecture of a reasonably

constructed RT system – observing the principle of structured conformity. In its

most general form this principle reads: for a reasonably constructed Real-Time

System (RTS) the break-down structure of software objects complex should be a

mapping of the structure of the set of external objects [1]. This principle guides the

development of the architecture of a real-time software application. A major

corollary of this principle is the requirement to organize a software application in

the form of a complex of cooperating tasks.

mailto:nik@iias.spb.su%20%20%20%20%20SNBaranov@gmail.com
http://www.spiiras.nw.ru/index.php?newlang=english

 86

Logical correctness of multi-task software applications. Cooperating tasks

coordinate their activities by exchanging data and synchronizing (signalling)

informative messages and by sharing common system resources: computing

(processors and cores of multi-core processors) and informational (global data

arrays, interface registers of peripheral devices, elements of man-machine interface,

etc.) Aspects of logical correctness should be addressed among other issues in the

process of verification of multi-tasking software complexes (when developing real-

time systems as well as simulation systems, etc.). Particular issues are assuring

integrity of shared informational resources and preventing incorrect situations when

tasks interrelated by operations of accepting signalling messages are trapped in the

state of infinite waiting (clinches and deadlocks).

Dynamic correctness of software applications for RTS. When developing a

real-time system, verification aspects related to dynamic correctness, which include

feasibility assurance – on-time execution of tasks within the software application

[2, 3], should be addressed as well, along with aspects of logical correctness.

Developing software applications for real-time systems, one should resolve

conflicts between requirements to reduce the size of allocated computing resources

and those to ensure feasibility of particular tasks and the software application as a

whole. Resolving this conflict allows to increase the efficiency of computer

resources usage while preserving the dynamic correctness of the real-time system.

2. Tasks and jobs

To verify software applications for real-time systems parametric and structural

characteristics of static and dynamic application components (tasks and jobs) shall

be used, which are deliberately aimed at resolving the abovementioned problems of

logical and dynamic correctness.

The j-th activation of the task τi means arrival of its j-th instance – arrival of

the job τi(
j) – some new dynamic component of application. Job arrival means an

increase of the number of competitors for the processor time and, therefore, a

change of conditions for processor time allocation. A change in conditions for

system resources allocation being called a system event in general, job arrival

should be considered as its instantiation. Job termination – a decrease of the number

of competitors for the processor time – is another example of a system event.

The behaviour of each job τi(
j) shall be limited by static parameters of the

corresponding task τi:

 the task weight Ci, that is the maximal processor time required for a single

execution of the task τi ;

 the task period Ti, that is the length of the time interval between two

successive activations of the task τi (the length of the time interval between the

moments tarr(τi(
j)) and tarr(τi(

j+1)) of arrivals of jobs τi(
j) and τi(

j+1) respectively);

 the task deadline Di, that is the maximal acceptable length of time interval

between the job τi(
j) arrival time tarr(τi(

j)) and its termination time tend(τi(
j)).

The used scheduling mode (or, simply, scheduling) determines the ordering in

which processor time is allocated to serve active jobs [2]. Scheduling may be

 87

defined as a means to match jobs with integer-valued priorities: at the moment of

each system event active jobs are assigned with certain priority values; the resource

of processor time is allocated to active jobs of the highest priorities. In most RTS,

priorities are assigned statically. Let’s enumerate tasks τ1, τ2, ..., τn, which compose

an application, according to the descending ordering of their priorities: τ1 is a task

with the highest priority, and τn is a task with the lowest priority. The most widely

used scheduling with static priorities is that of RM (Rate Monotonic), where task

priorities decrease as the values Ti increase.

Expected timelines of jobs in an RTS should be guaranteed: the duration

ri
(j)

 = tend (τi(
j)) – tarr (τi(

j)) of the interval of existence of any instance τi(
j) of the task τi

should not exceed the maximal acceptable value Di (the task τi deadline). Using the

notion of response time Ri=max{ri
(j)| j=1, 2, ...} of the task τi, the feasibility

requirement for the task τi (guaranteed timeliness of execution of any of its

instances) may be formulated as the inequality: Ɐi Di≥Ri.

Most actual RTS applications contain interdependent tasks which may fall into

states of waiting for signal messages from other tasks. This means that the interval

of existence of the job τi(
j), which accepts a signal message, may contain

subintervals where the processor is busy with execution of jobs with priorities lower

than that of τi(
j). Such subintervals are called blocking intervals of the job τi(

j),

within such interval the job τi(
j) is in a blocking state (is waiting for incoming

particular signal messages). The total duration bi
(j) when the job τi(

j) is in blocking

states contributes to the value ri
(j) of the response time of this job. The maximal

possible contribution Bi = max{bi
(j)| j=1, 2, ...} for jobs of the type τi is called a

blocking factor of the task τi. For independent task τi blocking factor is absent

(Bi = 0).

Another factor contributing to the value ri
(j) is the preemption time – the total

time pi
(j) when the job τi

(j) was waiting for the resource of the processor busy by

other higher priority jobs. The maximal such duration Ii = max{pi
(j)| j=1, 2, ...}

among jobs of the type τi is called a priority factor of the task τi.

Exact estimation of the Bi value requires taking into account the task internal

structure, that may by presented by route networks [4]. Fig. 1 represents expressive

means of a particular variant of route networks.

Synchronizing interface elements of the mutex type are used as a means to

control access to shared information resources. For each such resource g a separate

mutex mut is formed. Let mutex mut_1 be formed to control access to the shared

resource g1. Then each program code segment within which the resource g1 is

accessed (each critical interval for accessing the resource g1) is framed with

operators on the mutex mut_1: it starts with the operator lock(mut_1)— lock the

mutex mut_1; and ends with the operator unlock(mut_1) — unlock the mutex

mut_1. If at the moment of invoking the operator lock(mut) the mutex mut is in

the state “locked”, then job execution is suspended until this resource becomes

available by the operation unlock(mut) within the job which currently owns this

resource. Operators lock/unlock break down the task code into segments.

 88

τ1 Enter point for task τ1 (T1=10)

The segment of code ends with the
operator lock(mut_1), execution of
the segment requires 12 units of the
processor time

The fimal segment of task requires 7
units of the processor time, the task
dedline is 20 units of time (D=20)

Mutex mut

For current
state mutex
mut is
unlocked

Current
location of
the job
cursor

mut

10

20

The segment of code ends with the
operator unlock(mut_2), execution
of the segment requires 15 units of the
processor time

15

7

Structural elements of task codes

mut_2

12

mut_1

mut

mut
For current
state mutex
mut is
locked

Elements of
network marking

τ1 Enter point for task τ1 (T1=10)

The segment of code ends with the
operator lock(mut_1), execution of
the segment requires 12 units of the
processor time

The fimal segment of task requires 7
units of the processor time, the task
dedline is 20 units of time (D=20)

Mutex mut

For current
state mutex
mut is
unlocked

Current
location of
the job
cursor

mut

10

20

The segment of code ends with the
operator unlock(mut_2), execution
of the segment requires 15 units of the
processor time

15

7

Structural elements of task codes

mut_2

12

mut_1

mut

mut
For current
state mutex
mut is
locked

Elements of
network marking

Fig. 1. Elements of route networks

Fig. 2 provides an example of a route network consisting of two tasks.

Elements “task entry point” are marked with the task names τ1 and τ2 with the

values of the task period (T1=20, T2=32). The ending segment provides the maximal

value for the task execution (D1=20, D2=32). The number of processor time units

needed for task execution is specified for each segment.

The first segment of the task τ1 ends with the operator lock(mut_1), the

third segment of the task τ1 ends with the operator unlock(mut_1): the piece of

code between these two operators is a critical interval for access to the resource

controlled by mutex mut_1. The length of this critical interval is equal to 4 units of

the processor time (the sum of the lengths of the second and the third code segments

of the task τ1). The length of the critical interval of the task τ1, which corresponds to

the mutex mut_2, equals 5. Сritical intervals of the task τ1 with respect to mut_1

and mut_2 overlap at the third task code segment. The critical interval of the task

τ2 with respect to mut_1 is nested into the critical interval with respect to mut_2.

Tasks τ1 and τ2 are interdependent, there instances may be trapped in the “waiting”

state.

τ1
20

1
20

1413

32

1 1424
32τ2

mut_1 mut_1mut_2 mut_2

Critical interval for mut_1

Critical interval for mut_2

Critical interval for mut_2

Critical interval
for mut_1

mut_1

mut_2

mut_1mut_1 mut_2mut_2

τ1
20

1
20

1413

32

1 1424
32τ2

mut_1 mut_1mut_2 mut_2

Critical interval for mut_1

Critical interval for mut_2

Critical interval for mut_2

Critical interval
for mut_1

mut_1

mut_2

mut_1mut_1 mut_2mut_2

Fig. 2. Application structure represented as a route network

 89

The state of marked-up elements of the route network in Fig. 2 corresponds to

the time moment when an instance of the task τ1 arrived, but has not yet reached the

end of the first segment (the cursor is still inside the first segment of the model of

the task τ1) and an instance of the task τ1 has not arrived yet. Both mutexes are in

the state “open”.

3. Verification goals and means

Verification methods used in software development assume comparison of formal

objects of two types:

 a formal model which adequately reflects software functioning;

 a set of software requirements in the form of assertions which have to be

satisfied during its normal functioning.

The goal of verification is to check the consistency between the software

model and the specified requirements. Verification means to be used are the formal

model of the software, the set of requirements, and the algorithm which checks that

the requirements are totally satisfied.

Prospective verification methods of model checking are based on representing

the system model in the form of finite automata, representing software requirements

in form of logical formulae, and performing automated consistency checking of the

model and the requirements [5]. These methods are universal in their nature and are

applicable to representing a wide range of structural features of systems with

sophisticated logical formulae interpreting the requirements to be checked.

However, this universality results in high complexity of model and requirements

representation, as well as in high effort for implementation of mechanisms for

consistency checking. Scalability of these methods also makes a problem, as their

complexity grows exponentially with the model size and the number of

requirements to be verified.

On the other hand, specialized verification methods used along with universal

ones, are aimed at checking particular properties of systems being developed. They

usually employ simpler models (e.g., with a reduced inventory of constructive

parameters), brief formulations of requirements to be verified, and verification

algorithms of low complexity. Feasibility checking of real-time tasks and

applications is an example of such specialized methods.

Feasibility ensuring. The most exact method for feasibility checking is the

RT-test (Response Time test) [6] based on estimation of the Ri value (response

time) for each task τi of the given application. If the formula Ɐi Ri < Di holds, then

every task and the whole application are feasible.

In case of applications with independent tasks implemented for classical

single-core platforms, algorithms for response time estimation provide exact results

because they involve analysis of system functioning under the worst (critical)

scenarios of system events. In this case, the inequality Ri ≤ Di provides the

necessary and sufficient condition for the task τi to be feasible.

For independent tasks, the response time Ri equals to the sum Ri=Ci+Ii where

Ci is the task τi weight factor and Ii is its priority factor. Examples of methods to

 90

estimate Ii may be found in [7] for systems on single-core processors and in [8-10]

for multi-core processors.

In case of systems with interdependent tasks, the blocking factor Bi should be

added to the response time Ri to reflect an increase of the existence interval of jobs

of the type τi due to possible existence in the “waiting” state: Ri=Ci+Ii+Bi.

In the simplest case, the blocking factor Bi is equal to the maximal weight of

those critical intervals, which block the task τi [11]. However, the blocking factor

may exceed this value, either because some tasks contain intersected critical

intervals [12], or because the system is implemented on a multi-core processor [13].

Chained blocking should also be considered, when a particular request for an

already locked resource is blocked by several active jobs chained through

dependencies of their critical intervals [14]. For systems which allow for chained

blocking, complete estimating of task feasibility may be obtained by using special

multi-partite oriented graphs, that are presented below.

Ensuring logical correctness. When constructing a multi-task system, the

following system properties should be guaranteed:

 integrity of shared information resources;

 absence of options for deadlocks or clinches to occur.

A conventional approach to ensure the integrity of shared information

resources is based on mutexes. One should use certain tools to check absences of

incorrect usage of the operations lock/unlock in the program code.

Presence of critical interval bundles in form of nested or intersecting critical

intervals (similar to ones in the structure of a two-task application in Fig. 2) is

deadlock and clinch prone. A deadlock is such a system state, in which all tasks are

trapped in the “waiting” state and the system hangs as there are no tasks in the

“running” state; i.e., there is no activity capable to perform the unlock operation

which corresponds to the requested information resource. A clinch is such a system

state, where a number of tasks are bundled by a ring of mutual blockings; however,

there still is a subset of tasks capable to be executed indefinitely long.

One of the possible ways to check a model of a multitask system for potential

deadlocks or clinches is to construct an oriented state graph, whose vertices

represent reachable states and arcs represent possible transitions from one state into

another. A deadlock is possible if the graph contains a vertex with no outgoing arcs.

Checking the state graph for potential clinches is more complicated.

For the model in Fig. 2 the state graph may be constructed and analyzed

manually – it contains only several dozen vertices and arcs. However, the number

of vertices and arcs in such a graph grows exponentially with the number of tasks.

In RTS software applications used in practice, there are dozens of tasks and shared

information resources – for such systems construction and analysis of the state

graph is unfeasible not only manually, but with much more powerful tools as well.

A conventional way to ensure logical correctness of an application

implementation with interdependent tasks is based on providing the synchronizing

mechanisms of the mutex type with special protocols for access to shared

information resources [15]. The Priority Inheritance Protocol (PIP) ensures that no

priority inversion occurs; i.e., no blocking of higher priority jobs takes place due to

 91

excessive activation of medium priority tasks. The PIP protocol acts as follows. If a

resource turns out to be locked by a job τj(
y) with a lower priority than the job τi(

x)

which executes the operation lock on a mutex (i.e., at the moment of issuing a

request for this resource), then temporally, until the resource becomes available, the

priority of τj(
y) is increased up to the priority of τi(

x) (i.e., τj(
y) temporally inherits the

priority of τi(
x)). The Priority Ceiling Protocol (PCP) prevents not only priority

inversion, but mutual blockings as well.

4. Bundle dependency graph

A multi-partite oriented graph (called bundle dependency graph) is aimed at

checking logical correctness of a multi-task application model. The construction

method and analysis method of the bundle dependency graph are illustrated with a

model of an application consisting of fowr interdependent tasks (see Fig. 3 and

Fig. 4).

mut_1

τ4

mut_3 mut_1 mut_1mut_3

τ2

mut_5mut_5 mut_3mut_4 mut_4 mut_3

τ3

mut_2 mut_4 mut_4mut_2

τ1

mut_5mut_5 mut_2mut_1 mut_1 mut_2

mut_2

mut_3

mut_5

mut_4

Fig. 3. The initial system state which allows for clinches

The initial system state in Fig. 3 is presented with the means of route

networks: all mutexes are in the state “open” (e.g., all shared resources are

available) and no task is activated. One of reachable states of this application is

depicted in Fig. 4:

 mutex mut_1 is open, other mutexes are locked;

 an instance of the task τ1 is waiting for the mutex mut_2 to open (the

critical interval associated with this mutex is occupied by an instance of the task τ3);

 an instance of the task τ2 is waiting for the mutex mut_5 to open (the

critical interval associated with this mutex is occupied by an instance of the task τ1);

 an instance of the task τ3 is waiting for the mutex mut_4 to open (the

critical interval associated with this mutex is occupied by an instance of the task τ2);

 an instance of the task τ4 is in the “running” state and executes the critical

interval guarded by the mutex mut_3.

mut_1

τ4

mut_3 mut_1 mut_1mut_3

τ1

mut_5mut_5 mut_2mut_1 mut_1 mut_2

mut_2

mut_3

mut_5

mut_4

τ2

mut_5mut_5 mut_3mut_4 mut_4 mut_3

τ3

mut_2 mut_4 mut_4mut_2

Fig. 4. A ring of mutual waiting: 

1
→

3
→

2
→

1

 92

Thus, in the state depictured in Fig. 4 jobs of the types τ1, τ2, τ3 are linked in a

ring of mutual waits. This state is not a deadlock because an instance of the task τ4

may continue its execution and then other jobs of the type τ4 may be generated and

executed an arbitrary number of times, performing operations lock and unlock

on mutexes mut_1 and mut_3.

Further analysis shows that the system state in Fig. 4 is not the only reachable

state of mutual blocking for the modeled system. To demonstrate this, let’s

construct the bundle dependency graph for this application.

Let’s call two critical intervals of the task τ with respect to the resources g and

g* bundled (forming a bundle L=τ, g, g*), if they intersect; i.e., they contain

common segments of the task code. Each bundle L=τ, g, g* consists of three

sectors. In the starting (head) sector the task τ has access to the head resource g of

the bundle. At the central sector the task τ has access to both resources – the head

resource g and additional resource g*. At the ending segment one of the bundle

resources is released by the task τ. The central segment consists of segments which

form an intersection of bundled critical intervals.

The task τ1 contains two bundles: La=τ1, g1, g5 and Lb=τ1, g5, g2 (Fig. 3).

The segment between operators lock(mut_5) and unlock(mut_1) in the

bundle La is a common sector of critical intervals with respect to the head resource

g1 and the additional resource g5. The segment between operators lock(mut_2)

and unlock(mut_5) in the bundle Lb is an intersection of bundled critical

intervals. The task τ2 contains two bundles: Lc=τ2, g4, g5 and Ld=τ2, g5, g3. The

task τ3 contains one bundle Le=τ3, g2, g4, and the task τ4 contains yet another

bundle Le=τ4, g3, g1.

A necessary condition for rings of mutual waits to appear is the presence in the

software application of such bundle pairs, for which the following dependency

relation holds. A bundle Lx=τi, ga, gb depends on the bundle Ly=τj, gc, gd, if τi and

τj are different tasks and gb≡gc. In other words, bundle Lx depends on bundle Ly, if Lx

and Ly belong to different tasks and the head resource of the bundle Ly coincides

with the additional resource of the bundle Lx.

The fact of dependency of the bundle Lx on the bundle Ly is denoted by the

symbol “→” (Lx→Ly). With these notations the following dependencies hold:

La→Ld, Lb→Le, Lc→Lb, Ld→Lf, Le→Lc, Lf→La for the model in Fig. 3. These

dependencies may be represented graphically by constructing a multi-partite

oriented bundle dependency graph: each bundle is represented by a graph vertex; an

arc from vertex Lx to vertex Ly means that the bundle Ly depends on the bundle Ly.

Each task corresponds to a partite in the constructed graph.

A bundle dependency graph for a system represented with the model in Fig. 3

is depicted in Fig. 5.

 93

LbLa

Ld

Lf

Lc

Le

τ2

τ4

τ3

τ1 LbLa

Ld

Lf

Lc

Le

τ2

τ4

τ3

τ1

Fig. 5. Bundle dependency graph

5. Inter-partite routes and contours

Identifying inter-partite routes and contours in the bundle graph is important for

static analysis of systems with interdependent tasks. A route in an oriented graph is

a sequence of its arcs such that:

1. Two adjacent arcs (the preceding and the following) have a common vertex;

the preceding arc is an incoming arc of the common vertex and the following arc is

its out-going arc.

2. Each vertex of the route occurs in it only once (the route has no self-

crossings and its starting and ending vertices are different).

In a multi-partite graph a route is an inter-partite route, if no two vertices of

this route belong to the same graph partite.

A contour of an oriented graph is a closed sequence of adjacent arcs without

self-crossings (the first arc is an out-going arc for the same vertex, which the last

arc is an incoming arc for).

A contour of a multi-partite graph is an inter-partite contour, if no two vertices

of this contour belong to the same graph partite.

Analysis of the bundle dependency graph structure is important due to the fact

that rings of mutual waits in a multi-task system become possible, if and only if this

graph contains inter-partite contours.

A bundle dependency graph in Fig. 5 has two inter-partite contours. Each one

represents an achievable marking-up which characteristic feature is that some tasks

are mutually blocked. In particular, the inter-partite contour Lb→Le→Lc→Lb

(distinguished with thick lines in Fig. 5) corresponds to a ring of mutual waits,

which bounds the tasks τ1, τ3, and τ2 in the system state represented in Fig. 4. The

bundle dependency graph in Fig. 5 contains another inter-partite contour – that of

La→Lc→Le→La. This contour corresponds to a potential variant of event sequence

which results in a ring of mutual waits among the tasks τ1, τ2, and τ4.

The practice of constructing multi-task software applications demonstrate that

the number of critical intervals in each particular task does not exceed some fixed

upper bound when the number of tasks grows. Therefore, the upper bound of the

number of vertices in the bundle dependency graph grows linearly with the number

of tasks. It follows that construction and analysis of the bundle dependency graph

for real-time multi-task applications may be done within reasonable time.

If there are no inter-partite contours in a bundle dependency graph, then the

respective application is free of deadlocks and clinches not only with the PCP

 94

protocol, but with PIP and PCP protocols as well. It was demonstrated in [13] that

the blocking factor may turn out to be less with PIP than with PCP. This is valid for

implementations of systems on both single- and multi-core processor platforms.

Therefore, applying the technique of bundle dependency graphs to static analysis of

RTS applications may increase the efficiency of processor resources usage.

6. Graph of bundles and critical intervals

It was demonstrated in [14] that with the PIP protocol chained blocking may occur

on both single- and multi-core processors when a particular request for an already

locked resource may be blocked by several active jobs chained by dependencies of

their critical intervals. To estimate the blocking factor in such situations, a variety

of multi-partite graphs – a bundle and critical interval graph – may be used.

Fig. 6a presents the structure of a system composed of three tasks and two

resources. Studying the chart in Fig. 6b demonstrates that a request for the resource

g1 by the task τ1 results in its blocking, first, directly by the task τ3 which owns the

required resource and then (indirectly, at the time t=14) by the task τ2 which owns a

resource needed not by the task τ1 itself, but rather by the task τ3 which blocks the

task τ1. Thus, critical intervals of the tasks τ3 and τ2 form two links of a chain which

blocks execution of the task τ1.

mut_1

τ1

11 3

11 12

9 12 11

τ2

τ3

mut_1

mut_2 mut_2

mut_1 mut_1

mut_2 mut_2

t

0 10 20 30

g1

g1

g2

g2

a) b)

Fig. 6. Chained blocking

The following question comes naturally: “How many active tasks may be

involved in a blocking chain?” This may be answered through analysis of the

bundle and critical interval graph, introduced below. Its distinguishing feature is

that each graph partite which corresponds to a particular task τi, consists of vertices

corresponding to:

 bundles of critical intervals of the task τi code;

 critical intervals within the bundles of the task τi code;

 free critical intervals (critical intervals within the task τi code which belong

to no bundle).

The arcs of the bundle and critical interval graph are constructed according to

the following rules.

Rule 1. Two vertices La and Lb (corresponding to the bundles La and Lb), are

connected by an arc from La to Lb, if La and Lb belong to different graph partites and

the head resource of the bundle Lb coincides with the additional resource of the

bundle La.

 95

Rule 2. An arc is drawn from vertex G(g) to vertex L, if these vertices belong

to different graph partites and the head resource of L coincides with the resource g.

Rule 3. An arc is drawn from vertex L to vertex G(g), if the resource g

coincides with the additional resource of bundle L.

Fig. 7 depicts a bundle and critical interval graph for a software application

configuration of Fig. 6. Let’s add a parameter W – the arc weight – to each arc of

this graph. The weight of an arc incoming into the vertex G(g) equals to the

computational effort needed to execute the critical interval of the vertex G(g). The

weight of an arc incoming into the vertex L equals to the computational effort

needed to execute the heading critical interval of the bundle corresponding to the

vertex L.

G4(g2)G3(g1)

G2(g2)

G1(g1)

L=<g1,g2>

9

12

τ1

τ2

τ3 G4(g2)G3(g1)

G2(g2)

G1(g1)

L=<g1,g2>

99

1212

τ1τ1

τ2τ2

τ3τ3

Fig. 7. A bundle and critical interval graph

To find-out what blocking chains are feasible at entering the k-th critical

interval of the task

τi, blocking routes should be constructed for the vertex G which

corresponds to this critical interval. The route weight equals to the sum of the

weights of its composing arcs. Chained blocking is feasible, if the blocking route

contains more than one arc.

The route G1, L, G2

of the graph in Fig. 7 contains two arcs with the total

weight W(G1, L)+W(L, G2)=9+12=21. Therefore, at entering a critical interval

associated with the resource g1, chained blocking for the task τ1 is feasible, with its

maximal duration up to 22 time units.

A scenario of system events involving the occurrence of a chained blocking,

which corresponds to the blocking route G1, L, G2, is depicted in Fig. 6b.

7. Conclusion

When developing a RTS, verification issues referred to logical and dynamic

correctness of the system as a whole should be addressed along with similar issues

referring to individual system tasks. Establishing logical correctness assumes

checking that erroneous situations, such as infinite waits for signal messages

(deadlocks and clinches) among interdependent tasks, are impossible. Static

verification of relevant evidences may be done through construction and analysis of

a multi-partite bundle dependency graph of the system under consideration.

The necessity to ensure efficient usage of computing resources with a warranty

of timely execution of all software application tasks is among the RTS issues of its

dynamic correctness. Possible duration of high-priority tasks blocking because of

their waiting for locked information resources to be released by low-priority tasks

should be taken into account. To estimate the blocking duration in systems with

 96

chained blocking of tasks, application of the described technique of multi-partite

oriented bundle and critical interval graph may be a reasonable solution.

The proposed method allows for unlimited scalability with respect to the

number of tasks and shared resources of the application under consideration

because of the linear complexity of the respective algorithm for construction and

analysis of the respective bundle and critical interval graph derived from the

application structure. As by now, the method has been tried only on simple artificial

examples and is still to be validated in practical engineering with real-time multi-

task applications in order to be further developed into a specialized verification tool

to check feasibility of applications, which structure may be formally represented in

the described way. Its special feature is that with this method the application control

environment may be timely informed of an occurring deadlock or clinch in the

application, which allows it to properly react to such run-time exception.

Acknowledgments: This work was partially financially supported by the Government of the Russian

Federation, Grant 074-U01.

R e f e r e n c e s

1. D a v i d e n k o, K. Y. Software Engineering for Automatic Control Systems of Technological
Processes. Design of Real-Time Systems, Parallel, and Distributed Applications. Moscow,
Energoatomizdat, 1985. 183 p. (in Russian).

2. L i u, C., J. L a y l a n d. Scheduling Algorithms for Multiprocessing in a Hard Real-Time
Environment. – Journal of the ACM, Vol. 20, 1973, No 1, pp. 46-61.

3 . N i k i o r o v, V. V. Feasibility of Real-Time Applications on Multi-Core Processors. – SPIIRAS
Proceedings, Issue 8, Nauka, St. Petersburg, 2009, pp. 255-284 (in Russian).

4. N i k i f o r o v, V. V., V. A. P a v l o v. Structured Models for Multi-Task Software System
Analysis. – Information-Measuring and Control Systems, No 9, 2011, pp.19-29 (in Russian).

5. K a r p o v, Y. Model Checking. St. Petersburg, BHV-Petersburg, 2010. 560 p. (in Russian).
6. B i n i, E., G. C. B u t t a z z o, G. M. B u t t a z z o. Rate Monotonic Analysis: The Hyperbolic

Bound – IEEE Transactions on Computers, Vol. 52, July 2003, No 7, pp. 933-942.
7. L a p l a n t e, P. A. Real-Time Systems Design and Analysis. John Wiley & Sons, Inc., 2004.

530 p.
8. B a k e r, Т. Multiprocessors EDF and Deadline Monotonic Schedulability Analysis. – In: Proc. of

24th IEEE Real-Time Systems Symposium, 2003, pp. 120-129.
9. A n d e r s s o n, B., S. B a r u a h, J. J o n s s o n. Static-Priority Scheduling on Multiprocessors. –

In: Proc. of 22nd IEEE Real-Time Systems Symposium, London, 2001, pp. 193-202.
10. A n d e r s s o n, B. Global Static-Priority Preemptive Multiprocessor Scheduling with Utilization

Bound 38%. – In: Proc. of 12th International Conference on Principles of Distributed
Systems, Egypt, Luxor, December, 2008, pp. 73-88.

11. L i u, J. W. S. Real-Time Systems. NJ, Prentice Hall, 2000. 590 p.
12. N i k i f o r o v, V. V., V. I. S h k i r t i l. Route Networks – A Graphical Formalism for

Representing the Structure of Real-Time Software Applications. – SPIIRAS Proceedings,
Issue 14, SPb: Nauka, 2010, pp. 7-28 (in Russian).

13. N i k i f o r o v, V. V., V. I. S h k i r t i l. Estimating the Task Blocking Factor in Real-Time
Systems with Multi-Core Processors. – SPIIRAS Proceedings, Issue 4(27), SPb: Nauka,
2013, pp. 93-106 (in Russian).

14. N i k i f o r o v, V. V., V. I. S h k i r t i l. Chained Task Blocking in Real-Time Systems. –
Information Measuring and Control Systems, 2013, No 7, pp. 17-21 (in Russian).

15. S h a, L., R. R a j k u m a r, J. P. L e h o c z k y. Priority Inheritance Protocols: An Approach to
Real-Time Synchronization. – IEEE Transactions on Computers, Vol. 39, September1990,
No 9, pp. 1175-1185.

