
 69

BULGARIAN ACADEMY OF SCIENCES

CYBERNETICS AND INFORMATION TECHNOLOGIES Volume 16, No 2

Sofia 2016 Print ISSN: 1311-9702; Online ISSN: 1314-4081

DOI: 10.1515/cait-2016-0021

An Efficient Fault-Tolerant Multi-Bus Data Scheduling

Algorithm Based on Replication and Deallocation

Chafik Arar1, Mohamed Salah Khireddine2
1Computer Science department, Batna University, Batna, 05000 Algeria
2Department of Electronics, Batna University, Batna, 05000 Algeria

Emails: chafik.arar@gmail.com mkhireddine@yahoo.fr

Abstract: The paper proposes a new reliable fault-tolerant scheduling algorithm for

real-time embedded systems. The proposed scheduling algorithm takes into

consideration only one bus fault in multi-bus heterogeneous architectures, caused

by hardware faults and compensated by software redundancy solutions. The

proposed algorithm is based on both active and passive backup copies, to minimize

the scheduling length of data on buses. In the experiments, this paper evaluates the

proposed methods in terms of data scheduling length for a set of DAG benchmarks.

The experimental results show the effectiveness of our technique.

Keywords: Fault-tolerance, scheduling, real time systems, active and passive

redundancy, replication, deallocation.

1. Introduction

Nowadays, our society becomes increasingly dependent on heterogeneous,

distributed, embedded and real-time systems, which take over even exceptionally

critical decisions. These systems are increasingly becoming more complex and

more sensitive to faults, due to potentially catastrophic consequences that could

result from a malfunction of these systems, fault tolerant techniques are required to

ensure that these systems continue to provide a correct service in spite of faults

[1-4]. The hardware thus as the software of a system, can be the target of a variety

of faults with different causes; we concentrate on hardware faults and especially

communication faults.

We can define fault tolerance as a system's ability to continue operating as

planned, despite the presence of faults. There are different ways to achieve fault

tolerance. A common one is that some redundancy (such as re-execution and

mailto:author@boulder.nist.gov

 70

N-version programming) or a kind of recovery actions is built into the system.

However, fault tolerance increases complexity and may lead to performance

degradation if applied in an artless way.

As we target embedded systems, due to their limited resources (due to space,

weight and cost considerations); it is impossible to provide space redundancy. This

is why we study only time redundancy solutions. Several fault-communication

tolerance approaches for distributed embedded real-time systems have been

proposed. These techniques are based on active or passive backup methods.

In the active backup scheme, different copies of the message are sent along

distinct buses. In [5] authors develop a fault-tolerant allocation and scheduling

method, which maps messages onto a low-cost multiple-bus system to ensure

predictable inter-processor communication. In [6], the reliability of the system can

be increased by providing several paths from source to destination and sending the

same packet through each of them (the algorithm is known as multipath routing),

authors use this idea to propose a new mechanism that enables the trade-off

between the amount of traffic and the reliability.

On the other hand, in the passive backup scheme only the primary copy of the

message is sent; if it fails, another copy (backup) of the message, will be

transmitted. In [7], authors provide a generic algorithm, based on replication of

operations and data communications, which solves the problem of off-line fault

tolerant scheduling of an algorithm onto a multiprocessor architecture. They take

into account two kinds of failures: fail-silent and omission. In [8], the authors

propose a synthesis-based design methodology, which incorporates formal

validation techniques, and relieves the designers from the burden of specifying

detailed mechanisms for addressing platform faults, while involving them in the

definition of the overall fault-tolerance strategy. In [9], authors survey the problem

of how to schedule tasks in such a way that deadlines continue to be met despite

processor and communication media (permanent or transient) or software failure. In

[10], authors propose a new method to identifying bus faults based on support

vector machine. The proposed method operates on two stages, first, the bus fault

state is simulated using PSCAD/EMTDC, then a support vector machine model is

established for carrying out data pre-treatment. In [2], both, active redundancy and a

TDMA (Time Division Multiple Access) communication protocol is used to

tolerate faults of buses. In [11], authors propose a fine grained transparent recovery,

where the property of transparency can be selectively applied to processes and

messages. In [12] authors propose a QoS-aware dynamic fault-tolerant scheduling

algorithm called QAFT that can tolerate a node's permanent failures at one time

instant for real-time tasks.

In this paper, we are interested in approaches based on scheduling algorithms,

more specifically those based on static scheduling that allows for the inclusion of

the dependencies and execution cost of tasks and data dependencies in its

scheduling decisions, and the schedule is already computed at compile-time.

The main objective is to minimise the scheduling length of data on buses,

which is the total sending time of data, under the assumption that at most only one

bus may fail. The basic idea of our work, which is the combination of active and

 71

passive redundancy in the same scheme, was originally proposed by [4], for

processors fault tolerance, what we propose is its adaptation for communication

fault tolerance. For that, many transformation and redevelopment are needed.

First, we start by outlining the definition of the scheduling problem as an

optimization problem. We use the linear programming to formulate the optimization

problem of the fault-tolerant scheduling data with two types of backup copies, to

minimise the scheduling length. It provides the best results, but since the problem is

NP-hard, this solution generally takes a long time to obtain an optimal solution, and

for some cases we cannot find a feasible solution in an acceptable time.

To overcome this problem, we propose our solution, based on a heuristic

algorithm called: Fault-Tolerant multi-bus data scheduling Algorithm based

Replication and Deallocation (FTA-RD). The aims of this algorithm are twofold,

first, maximize the reliability of the system; secondly, minimize the length of the

whole generated schedule in both presence and absence of faults. We are able to

show with simulation results that our approach can generally reduce the run-time

overhead.

The remainder of this paper is structured as follows: in Section 2, we give

detailed description of our system models and backup copies types. In Section 3, we

introduce and discuss our approach with a motivational example, which shows how

our approach can minimize the length of the whole generated schedule. Section 4

present our solution and give a detailed description of our scheduling algorithm. In

Section 5, we present the experiments. We finally conclude this work in Section 6.

2. Problem definition

2.1. System models description

In this section, we first give some definitions that describe our system and then we

define the problem for fault-tolerant scheduling formally. The specification of this

system involves the description of tasks and data models, architecture model and

fault model.

2.1.1. Task model

The task model is defined by a Directed Acyclic Graph (DAG) noted

task task(, ,Exe)G T E , where: ntttT ,,, 21 represents a set of n tasks; E is a set

of directed edges represents the task dependencies, where an edge from a task it to

a task jt noted by ji tt means that task jt depends on the output of task it ;

taskExe ()it is a function that calculates the execution cost of task Tti . Fig. 2

represents an example of a task model.

2.1.2. Architecture model

The architecture is modelled by a non-directed graph, noted),(arch BPG , where

each node is a processor, and each edge is a media communication (bus). We

 72

assume that the architecture is heterogeneous and fully connected. Fig. 1 shows an

example of an architecture model.

2.1.3. Data model

The data model is modelled by another DAG noted data data(, ,Exe)G M P . The

graph dataG is generated from the graph taskG with a transformation that respects

the data precedence, lm,,m,mM 21 represents a set of all data transferred

between tasks, the cardinality of M is equal to that of E, P is a set of directed edges

and represents the precedence relationships, where an edge from a data im to a data

jm noted by ji mm means that data jm require im to be calculated,

dataExe ()im is a function, represents the transfer cost of data Mmi and the time

required to run a failure-detection routine that determines whether the data was

received successfully or not.

2.1.4. Failure model

We assume only buses faults. Each bus may fail due to hardware fault. The faults

can be transient or permanent and are independent. It is assumed that at most one

bus will fail to execute data transfer, in our proposed algorithms. We call it one-bus

failure model. There exists a fault-detection mechanism such as fail-signal and

acceptance test to detect the bus failure.

2.2. Backups copies

2.2.1. Replicated backup copy

A Replicated backup copy Rep

im of data im is an active backup copy, which is sent

independently, no matter whether the Primary copy Pr

im was received successfully

or not. In the case that the primary copy fails to reach its destination properly, the

replicated copy can be used instead of the primary. For example, in Fig. 5, Rep

1m is a

replicated backup copy of 1m scheduled on bus 2B .

2.2.2. Deallocated backup copy

A Deallocated backup copy
Del

im of data im is a passive backup copy, which is sent

only if the primary copy
Pr

im fails. The deallocated copy cannot be scheduled to

start until the primary copy was completely sent and the activation message was

received. An activation message messageA is a message originating from a primary

copy to its deallocated backup copies, which indicates whether im was sent

successfully or not. We use messageA to denote the time cost of the message.

 73

The fact of scheduler several deallocated backups at the same time on the same bus,

is called backup overlapping. The implementation of backup overlapping is under

the assumption that at most, there is one bus failure to be tolerated so that no more

than one backup will run at any time. For example, in Fig. 5, Del

2m is a deallocated

backup copy of 2m scheduled in bus 2B , and overlapping with another deallocated

backup copy Del

6m .

3. Illustrative example

In this section, we provided an example to illustrate the problem that we try to

solve. The architecture model of our system is composed of three processors fully

connected with three buses (as it is shown in Fig. 1), we assume that there will be at

most one bus fault.

Fig. 1. Architecture model

Fig. 2. Task model

Fig. 2 presents the tasks model of our example, with nine tasks 1t , 2t , 3t , 4t ,

5t , 6t , 7t , 8t and 9t . The edges show the task dependencies. In the graph, for

instance, task 4t can’t start to be executed until task 1t was executed successfully.

Fig. 3 presents the data model generated from the tasks model of Fig. 2. The

data model regain and respects the tasks dependencies. In the graph, for instance,

data 3m and 4m can’t be sent until data 1m was successively received, because in

 74

tasks model of Fig. 2, task 4t need 1m to calculate 3m and 4m . For this example,

we assume that the time delay for the activating message messageA is 1 time unit.

Fig. 3. Data model

The problem to solve is finding an optimal schedule with a minimized length

for these data and their backup copies, so that all data can successfully be

transmitted, assuming that only one bus may fail.

Fig. 4 presents an example of a non fault-tolerant scheduling, the length of the

scheduling for this case is equal to 8.

Fig. 4. No fault-tolerant data scheduling

In the case of our example, the advantage of combining both replication and

deallocation in the same algorithm is shown by three kinds of optimal schedules to

tolerate one bus fault (Figs 5, 6 and 7). All the optimal results can be obtained by

the linear programming formulation presented in Section 4.

 75

Fig. 5. Optimal fault-tolerant schedule with both replicated and deallocated backup copies

An optimal fault-tolerant schedule with both replicated and deallocated backup

copies for our example is shown in Fig. 5. The minimal scheduling length is 9 time

units. In this schedule we choose the deallocated backup copies for data 2m , 6m

and replicated backup copies for the rest of data. In this schedule, the deallocated

backup copy of data 2m is overlapping with that of data 6m at Steps 7 and 8 on bus

2B to reduce the scheduling length.

Fig. 6. Optimal fault-tolerant schedule with only replicated backups copies

An optimal fault-tolerant schedule with only replicated backup copies, with a

length equal to 10 time units, is shown in Fig. 6.

An optimal fault-tolerant schedule with only deallocated backup copies is

show in Fig. 7, the scheduling length is 17 time units. In this schedule,
Del

2m and
Del

1m are overlapping at Steps 4 and 5 on bus 2B ,
Del

3m

and
Del

4m are also

overlapping at Steps 10 and 11, on the bus 1B . There is at least 1 time unit delay for

messageA between data im and its deallocated backup copies
Del

im . If the primary

copy is sent successfully, the activation message messageA cancels its deallocated

backup copy.

 76

Fig. 7. Optimal fault-tolerant schedule with only deallocatted backups copies

In this example, the optimal schedule with both deallocation and replication

has 47.05% reduction over deallocation only in scheduling length, when he loses

only 12.5% compared to a non-fault tolerant solution. And it also reduces the

scheduling length by 10% comparing with the optimal schedule with replication

only. The performance is improved significantly.

4. The proposed approach

In this section, we define the scheduling problem as an optimization problem and

we use the linear programming to find the optimal scheduling of data dependency

with their backup copies to tolerate one-bus fault, with minimal length.

As our solution is based on a hybrid approach that combines both passive and

active redundancy we use two types of backup copies, replicated and deallocated.

We model data dependencies scheduling with a binary variables to determine the

order of data. Pr

, ,i t jM is a binary variable such that Pr

, ,i t jM = 1 if and only if the

primary copy of data im was successfully sent on bus jB at step t. Similarly, the

binary variables Rep

, ,i t jM and Del

, ,i t jM are used for the replicated and deallocated backup

copies.

(1)

bus sch

Pr Rep Del

1 1 1

0 1i,t, j i,t, j i,t, j

i , , n , j , ,n t , ,L ,

M ,M ,M , ,

Lsch is an upper bound of the scheduling length.

The objective function of our linear problem is the minimization of the

scheduling length, which can be mathematically formulated as

(2)
sch bus

Pr

out, ,

1 1

Minimize ,
L n

t j

t j

tM

where mout is a fictitious node added to data model (DAG), to compute total

scheduling length (Fig. 8).

 77

Fig. 8. The fictitious node add to the DAG

The minimization of the total length of the scheduling is given under the

following constraints:

Data mapping constraint. The primary copy of each data is scheduled once

and only once,

(3)
sch bus

Pr

, ,

1 1

1, , 1.
L n

i t j

t j

i n M

The backup copy of each data is scheduled once and only once,

(4)
sch bus

Rep Del

, , , ,

1 1

1, , 1.
L n

i t j i t j

t j

i n M M

At any time, a bus xB is used either for the transmission of a primary copy of

data or its replicated backup copy,

(5) Pr Rep

sch bus , , , ,

1

1, , , 1, , 1.
n

i t j i t j

i

t L k n M M

In a multi-bus system, to tolerate one-bus fault, we can use only one backup

copy for each data dependency. This backup copy can be either replicated or

deallocated.

Dependency constraint. Backup copies must meet the same precedence

relationships as their primary copies.

Pmm ki means that data km require data im to be calculated; data km

cannot be send until data im was received and used to calculate km :

(6)
sch bus sch bus

Rep Rep

, , , ,

1 1 1 1

, 1, , * Exe() * .
L n L n

i t j i k t j

t j t j

i k n t M m t M

For each Pmm ki , a new directed acyclic graph that represents all

dependencies between possible backup copies and their primary copies is generated.

Fig. 9 presents the part of DAG for ki mm .

 78

Fig. 9. The new DAG for mi→mk

Fig. 10 presents the complete DAG for the data model in Fig. 3.

Fig. 10. The complete DAG for data model of our example

But for our example we have chose deallocated backup copies for 2m and

6m , and replicated backup copies for 1m , 3m , 4m , 5m and 7m , so Fig. 11 presents

the reduced DAG respecting this choice.

Fig. 11. The reduced DAG

Fault tolerant constraint: the primary copy and its backup copy should not, in

no case, be assigned to the same bus:

(7)

sch

bus

Pr Pep Del

, , , , , ,

1

1, , , 1, ,

1.
L

i t j i t j i t j

t

i n j n

M M M

 79

Execution constraint: For the tasks dependencies zyx ttt (as it is shown

in Fig. 12) the data bm can’t be scheduled until data am was successfully received

by task yt and this latter was completely executed,

(8) Pr Pr

bus , , task , ',1, , * Exe () ' .i t j y i t jj n t M t t M

Fig. 12. Execution constraint

The same can be said for all other combinations, in our case we can count nine

possibilities: (Pr, Pr), (Pr, Rep), (Pr, Del), (Rep, Pr), (Rep, Rep), (Rep, Del),

(Del, Pr), (Del, Rep), (Del, Del).

Overlapping and resource constraint. The overlapping of two deallocated

backup copies or more must respect the following conditions: their primary copies

must be assigned to different buses and must be completely independent, i.e., they

have no dependency.

Only, the deallocated backup copies, may overlap. If there are two deallocated

backup copies Del

, ,i t jM and Del

, ,k t jM overlapping on the same bus jB , then their

primary copies are assigned to two others different buses than jB :

(9)
sch

Del Del Pr Pr

, , , , , , , ,

1

, 1, , 1 0,
L

i t j k t j i t j k t j

t

i k n M M M M

(10)
sch

Pr Pr

bus , , , ,

1

, 1, , , 1, , 0.
L

i t j k t j

t

i k n j n M M

The solution obtained is thus the best result, but since the problem is NP-hard,

this formulation generally takes a long time to obtain an optimal solution, and for

some cases we cannot find a feasible solution in an acceptable time. That is why we

propose our second solution, based on a heuristic algorithm called FTA-RD. The

aims of this algorithm are twofold, first, maximize the reliability of the system;

secondly, minimize the length of the whole generated schedule in both presence and

absence of faults.

Our scheduling algorithm is a greedy list scheduling heuristic, which schedules

one operation at each step. The input to our algorithm is an instance of the tasks

graph task task(, , Exe)G T E and the architecture graph),(arch BPG , and the time

cost of the activate message messageA ; it generates a distributed static schedule of

a given task model onto a given architecture model, which minimizes the system's

run-time, and tolerates one bus fault. It is obvious that the FTA-RD algorithm's time

complexity is polynomial time.

 80

The FTA-RD scheduling algorithm is shown in Fig. 13.

Fig. 13. The FTA-RD scheduling algorithm

 81

FTA-RD operates as follows:

1. First, it examines the data dependencies one by one to determine when and

which bus each will be sent to. It finds the bus with the earliest available time and

the least used one (the use of a bus is measured by the total time of transmission of

all data assigned to that bus); therefore, this assignment, so made, ensures load

balancing.

2. Once the primary copy is scheduled, the algorithm attempts to schedule the

backup copy, first of all it tries to overlap with an existing deallocated backup copy,

if not, it allocates a new replicated or a new deallocated backup copy according to

the typeBACKuP .

3. Finally, to reduce the scheduling length, the backup type for the last data is

redefined.

5. Simulations, results and discussion

In this section, we present the result of simulations, we compare the proposed

scheduling algorithm FTA-RD with solution based on linear programming

formulation, and solutions based only on replication or deallocation, in scheduling

length. We have applied the FTA-RD heuristic to an example of an architecture

graph composed of five processors and three buses. The failure rates of the

processors are respectively 10-5, 10-5, 10-4, 10-5 and 10-6, and the failure rate of the

Buses SAMMP1, SAMMP2, and SAMMP3 are respectively 10-6, 10-5 and 10-4.

The algorithms graphs used are those of DSP benchmark from the DSPstone

[13], the number of tasks and data dependencies in each benchmark is listed in

Table 1.

Table 1. Benchmarks Information

Benchmark I Tasks Data-dependencies

FIR filter 12 8

2-motiv 12 9

2 iir filter 17 13

2-deq filter 24 20

IIR biquad section 36 31

2-rls-lat 28 33

8latiir 46 38

We use Simulation Tool for Real time Multiprocessor scheduling (STORM) to

calculate the data length. From the specification of the characteristics of software

architecture (the tasks to schedule), hardware architecture (the resources for

implementing these tasks) and the choice of a scheduling policy, the tool simulates

the execution of these tasks on these resources according to the rules of this policy

[14]. Fig. 14 shows the task model and the allocation of buses in STORM editor.

 82

Fig. 14. Task model and bus’s allocation

Results show that the FTA-RD heuristic with both the replicated and

deallocated backup copies performs better than the one with replicated and

deallocated heuristics only, in all benchmarks. We can see that FTA-RD heuristic

can reduce the scheduling length by 6.19% on an average when compared to only-

replication heuristic (Fig. 15), and 19.29% on average when compared to only-

dealocation heuristic (Fig. 16). We can see also that our heuristic loses 8.41% on

average in the scheduling length compared to the optimal solution obtained by

linear programming formulation (Fig. 17).

Fig. 15. Scheduling length of FTA-RD heuristic and only-replication heuristic

Fig. 16. Scheduling length of FTA-RD heuristic and only-deallocation heuristic

 83

We can see from the results that:

 When the number of data dependencies is a small one, the algorithm that

uses only the replicated backup copies is more efficient than one that uses

deallocated backup copies. This is explained by the fact that when the number of

data is low, the opportunity for backup overlapping is also low.

 When the number of data dependencies is more important, more deallocated

backup copies can be overlapped, which allows reduction of scheduling length.

Fig. 17. Scheduling length of FTA-RD heuristic and LP-formulation solution

Also, delay due to the activation message, may have a negative effect on the

schedule length.

The use of both replicated and deallocated backup copies allows the best

results, that in the case of the use of only one types of backup copies.

The results obtained by the linear programming formulation are better than

those obtained by the FTA-RD heuristic, the problem is that in many cases, the

calculation time of this formulation is too long to produce results. The advantage of

the FTA-RD heuristic is that it has a polynomial running time.

6. Conclusion

In this paper, we have studied the problem of fault-tolerance in embedded real-time

systems and proposed a software implemented fault-tolerance solution for multi-

buses architectures based on software redundancy. We have proposed a new

scheduling heuristic, called FTA-RD, which produces automatically a static

distributed fault-tolerant schedule when data dependencies are represented by

directed acyclic graphs with two types of backup copies under the assumption that

there will be at most one bus fault. The simulations show a significant improvement

compared to algorithms with only one type of backup copy. Finally, we plan to

carry out an experiment involving our method on an electric autonomous vehicle,

with a 5-processor multi-buses architecture.

 84

R e f e r e n c e s

1. J a l o t e, P. Fault Tolerance in Distributed Systems. Prentice-Hall, Inc., 1994.

2. K o p t e z, H. Real-Time Systems: Design Principles for Distributed Embedded Applications.

Springer Science & Business Media, 2011.

3. G r ü n s t e i d l, G., H. K a n t z, H. K o p e t e z. Communication Reliability in Distributed Real-

Time Systems. – In: Distributed Computer Control Systems 1991: Towards Distributed Real-

Time Systems with Predictable Timing Properties, 2014, p. 123.

4. J u n, Z., E. S h a et al. Efficient Fault-Tolerant Scheduling on Multiprocessor Systems via

Replication and Deallocation. – International Journal of Embedded Systems, Vol. 6, 2014,

No 2-3, pp. 216-224.

5. K a n d a s a m y, N., J. P. H a y e, B. T. M u r r a y. Dependable Communication Synthesis for

Distributed Embedded Systems. – Lecture Notes in Computer Science, 2003, pp. 275-288.

6. D u l m a n, S., T. N i e b e r g, J. W u et al. Trade-Off between Traffic Overhead and Reliability in

Multipath Routing for Wireless Sensor Networks. – IEEE, 2003.

7. D i m a, C., A. G i r a u l t, C. L a v a r e n n e et al. Off-Line Real-Time Fault-Tolerant Scheduling.

– In: Proc. of 9th Euromicro Workshop on Parallel and Distributed Processing, 2001. IEEE,

2001, pp. 410-417.

8. P i n e l l o, C., P. C. L u c a, L. S.-V. A l b e r t o. Fault-Tolerant Deployment of Embedded

Software for Cost-Sensitive Real-Time Feedback-Control Applications. – In: Proc. of

Conference on Design, Automation and Test in Europe-Volume 2. IEEE Computer Society,

2004, p. 21164.

9. K r i s h n a, C. M. Fault-Tolerant Scheduling in Homogeneous Real-Time Systems. – ACM

Computing Surveys (CSUR), 2014, Vol. 46, No 4, p. 48.

10. S o n g, H., H. W u. The Applied Research of Support Vector Machine in Bus Fault Identification.

– In: Proc. of 6th International Conference on Natural Computation (ICNC), 2010, IEEE,

2010. pp. 1326-1329.

11. I z o s i m o v, V., P. P o p, P. E l e s et al. Scheduling and Optimization of Fault-Tolerant

Embedded Systems with Transparency/Performance Trade-Offs. – ACM Transactions on

Embedded Computing Systems (TECS), Vol. 11, 2012, No 3, p. 61.

12. Z h u, X., X. Q i n, M. Q i u. QoS-Aware Fault-Tolerant Scheduling for Real-Time Tasks on

Heterogeneous Clusters. – Computers, IEEE Transactions on, Vol. 60, 2011, No 6,

pp. 800-812.

13. Z i v o j n o v i c, V., J. M. V e l a r d e, C. S c h l a g e r et al. DSPstone: A DSP-Oriented

Benchmarking Methodology. – In: Proc. of International Conference on Signal Processing

Applications and Technology, 1994, pp. 715-720.

14. RTS Group, STROM. IRCCyN Laboratory in Nantes, France.

http://www.rts-software.org/

