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Abstract: The paper proposes a new reliable fault-tolerant scheduling algorithm for 

real-time embedded systems. The proposed scheduling algorithm takes into 

consideration only one bus fault in multi-bus heterogeneous architectures, caused 

by hardware faults and compensated by software redundancy solutions. The 

proposed algorithm is based on both active and passive backup copies, to minimize 

the scheduling length of data on buses. In the experiments, this paper evaluates the 

proposed methods in terms of data scheduling length for a set of DAG benchmarks. 

The experimental results show the effectiveness of our technique.  

Keywords: Fault-tolerance, scheduling, real time systems, active and passive 

redundancy, replication, deallocation. 

1. Introduction 

Nowadays, our society becomes increasingly dependent on heterogeneous, 

distributed, embedded and real-time systems, which take over even exceptionally 

critical decisions. These systems are increasingly becoming more complex and 

more sensitive to faults, due to potentially catastrophic consequences that could 

result from a malfunction of these systems, fault tolerant techniques are required to 

ensure that these systems continue to provide a correct service in spite of faults  

[1-4]. The hardware thus as the software of a system, can be the target of a variety 

of faults with different causes; we concentrate on hardware faults and especially 

communication faults. 

We can define fault tolerance as a system's ability to continue operating as 

planned, despite the presence of faults. There are different ways to achieve fault 

tolerance. A common one is that some redundancy (such as re-execution and  
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N-version programming) or a kind of recovery actions is built into the system. 

However, fault tolerance increases complexity and may lead to performance 

degradation if applied in an artless way. 

As we target embedded systems, due to their limited resources (due to space, 

weight and cost considerations); it is impossible to provide space redundancy. This 

is why we study only time redundancy solutions. Several fault-communication 

tolerance approaches for distributed embedded real-time systems have been 

proposed. These techniques are based on active or passive backup methods. 

In the active backup scheme, different copies of the message are sent along 

distinct buses. In [5] authors develop a fault-tolerant allocation and scheduling 

method, which maps messages onto a low-cost multiple-bus system to ensure 

predictable inter-processor communication. In [6], the reliability of the system can 

be increased by providing several paths from source to destination and sending the 

same packet through each of them (the algorithm is known as multipath routing), 

authors use this idea to propose a new mechanism that enables the trade-off 

between the amount of traffic and the reliability. 

On the other hand, in the passive backup scheme only the primary copy of the 

message is sent; if it fails, another copy (backup) of the message, will be 

transmitted. In [7], authors provide a generic algorithm, based on replication of 

operations and data communications, which solves the problem of off-line fault 

tolerant scheduling of an algorithm onto a multiprocessor architecture. They take 

into account two kinds of failures: fail-silent and omission. In [8], the authors 

propose a synthesis-based design methodology, which incorporates formal 

validation techniques, and relieves the designers from the burden of specifying 

detailed mechanisms for addressing platform faults, while involving them in the 

definition of the overall fault-tolerance strategy. In [9], authors survey the problem 

of how to schedule tasks in such a way that deadlines continue to be met despite 

processor and communication media (permanent or transient) or software failure. In 

[10], authors propose a new method to identifying bus faults based on support 

vector machine. The proposed method operates on two stages, first, the bus fault 

state is simulated using PSCAD/EMTDC, then a support vector machine model is 

established for carrying out data pre-treatment. In [2], both, active redundancy and a 

TDMA (Time Division Multiple Access) communication protocol is used to 

tolerate faults of buses. In [11], authors propose a fine grained transparent recovery, 

where the property of transparency can be selectively applied to processes and 

messages. In [12] authors propose a QoS-aware dynamic fault-tolerant scheduling 

algorithm called QAFT that can tolerate a node's permanent failures at one time 

instant for real-time tasks. 

In this paper, we are interested in approaches based on scheduling algorithms, 

more specifically those based on static scheduling that allows for the inclusion of 

the dependencies and execution cost of tasks and data dependencies in its 

scheduling decisions, and the schedule is already computed at compile-time.  

The main objective is to minimise the scheduling length of data on buses, 

which is the total sending time of data, under the assumption that at most only one 

bus may fail. The basic idea of our work, which is the combination of active and 
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passive redundancy in the same scheme, was originally proposed by [4], for 

processors fault tolerance, what we propose is its adaptation for communication 

fault tolerance. For that, many transformation and redevelopment are needed. 

First, we start by outlining the definition of the scheduling problem as an 

optimization problem. We use the linear programming to formulate the optimization 

problem of the fault-tolerant scheduling data with two types of backup copies, to 

minimise the scheduling length. It provides the best results, but since the problem is 

NP-hard, this solution generally takes a long time to obtain an optimal solution, and 

for some cases we cannot find a feasible solution in an acceptable time.  

To overcome this problem, we propose our solution, based on a heuristic 

algorithm called: Fault-Tolerant multi-bus data scheduling Algorithm based 

Replication and Deallocation (FTA-RD). The aims of this algorithm are twofold, 

first, maximize the reliability of the system; secondly, minimize the length of the 

whole generated schedule in both presence and absence of faults. We are able to 

show with simulation results that our approach can generally reduce the run-time 

overhead. 

The remainder of this paper is structured as follows: in Section 2, we give 

detailed description of our system models and backup copies types. In Section 3, we 

introduce and discuss our approach with a motivational example, which shows how 

our approach can minimize the length of the whole generated schedule. Section 4 

present our solution and give a detailed description of our scheduling algorithm. In 

Section 5, we present the experiments. We finally conclude this work in Section 6. 

2. Problem definition 

2.1. System models description 

In this section, we first give some definitions that describe our system and then we 

define the problem for fault-tolerant scheduling formally. The specification of this 

system involves the description of tasks and data models, architecture model and 

fault model. 

2.1.1. Task model 

The task model is defined by a Directed Acyclic Graph (DAG) noted 

task task( , ,Exe )G T E , where:  ntttT ,,, 21   represents a set of n tasks; E is a set 

of directed edges represents the task dependencies, where an edge from a task it  to 

a task jt  noted by ji tt   means that task jt  depends on the output of task it ; 

taskExe ( )it is a function that calculates the execution cost of task Tti  . Fig. 2 

represents an example of a task model. 

2.1.2. Architecture model 

The architecture is modelled by a non-directed graph, noted ),(arch BPG  , where 

each node is a processor, and each edge is a media communication (bus). We 



 72 

assume that the architecture is heterogeneous and fully connected. Fig. 1 shows an 

example of an architecture model.  

2.1.3. Data model 

The data model is modelled by another DAG noted data data( , ,Exe )G M P . The 

graph dataG  is generated from the graph taskG  with a transformation that respects 

the data precedence,  lm,,m,mM 21  represents a set of all data transferred 

between tasks, the cardinality of M is equal to that of E, P is a set of directed edges 

and represents the precedence relationships, where an edge from a data im  to a data 

jm  noted by ji mm   means that data jm  require im  to be calculated, 

dataExe ( )im  is a function, represents the transfer cost of data Mmi   and the time 

required to run a failure-detection routine that determines whether the data was 

received successfully or not. 

2.1.4. Failure model 

We assume only buses faults. Each bus may fail due to hardware fault. The faults 

can be transient or permanent and are independent. It is assumed that at most one 

bus will fail to execute data transfer, in our proposed algorithms. We call it one-bus 

failure model. There exists a fault-detection mechanism such as fail-signal and 

acceptance test to detect the bus failure. 

2.2. Backups copies 

2.2.1. Replicated backup copy 

A Replicated backup copy Rep

im  of data im  is an active backup copy, which is sent 

independently, no matter whether the Primary copy Pr

im  was received successfully 

or not. In the case that the primary copy fails to reach its destination properly, the 

replicated copy can be used instead of the primary. For example, in Fig. 5, Rep

1m  is a 

replicated backup copy of 1m  scheduled on bus 2B  . 

2.2.2. Deallocated backup copy 

A Deallocated backup copy 
Del

im  of data im  is a passive backup copy, which is sent 

only if the primary copy 
Pr

im  fails. The deallocated copy cannot be scheduled to 

start until the primary copy was completely sent and the activation message was 

received. An activation message messageA  is a message originating from a primary 

copy to its deallocated backup copies, which indicates whether im  was sent 

successfully or not. We use messageA  to denote the time cost of the message. 
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The fact of scheduler several deallocated backups at the same time on the same bus, 

is called backup overlapping. The implementation of backup overlapping is under 

the assumption that at most, there is one bus failure to be tolerated so that no more 

than one backup will run at any time. For example, in Fig. 5, Del

2m  is a deallocated 

backup copy of 2m  scheduled in bus 2B , and overlapping with another deallocated 

backup copy Del

6m . 

3. Illustrative example 

In this section, we provided an example to illustrate the problem that we try to 

solve. The architecture model of our system is composed of three processors fully 

connected with three buses (as it is shown in Fig. 1), we assume that there will be at 

most one bus fault. 

 

Fig. 1. Architecture model 

 
Fig. 2. Task model 

Fig. 2 presents the tasks model of our example, with nine tasks 1t , 2t , 3t , 4t , 

5t , 6t , 7t , 8t  and 9t . The edges show the task dependencies. In the graph, for 

instance, task 4t  can’t start to be executed until task 1t  was executed successfully. 

Fig. 3 presents the data model generated from the tasks model of Fig. 2. The 

data model regain and respects the tasks dependencies. In the graph, for instance, 

data 3m  and 4m  can’t be sent until data 1m  was successively received, because in 
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tasks model of Fig. 2, task 4t  need 1m  to calculate 3m  and 4m . For this example, 

we assume that the time delay for the activating message messageA is 1 time unit. 

 

Fig. 3. Data model 

The problem to solve is finding an optimal schedule with a minimized length 

for these data and their backup copies, so that all data can successfully be 

transmitted, assuming that only one bus may fail. 

Fig. 4 presents an example of a non fault-tolerant scheduling, the length of the 

scheduling for this case is equal to 8. 

 

Fig. 4. No fault-tolerant data scheduling 

In the case of our example, the advantage of combining both replication and 

deallocation in the same algorithm is shown by three kinds of optimal schedules to 

tolerate one bus fault (Figs 5, 6 and 7). All the optimal results can be obtained by 

the linear programming formulation presented in Section 4. 
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Fig. 5. Optimal fault-tolerant schedule with both replicated and deallocated backup copies 

An optimal fault-tolerant schedule with both replicated and deallocated backup 

copies for our example is shown in Fig. 5. The minimal scheduling length is 9 time 

units. In this schedule we choose the deallocated backup copies for data 2m , 6m  

and replicated backup copies for the rest of data. In this schedule, the deallocated 

backup copy of data 2m  is overlapping with that of data 6m  at Steps 7 and 8 on bus 

2B  to reduce the scheduling length. 

 

Fig. 6. Optimal fault-tolerant schedule with only replicated backups copies 

An optimal fault-tolerant schedule with only replicated backup copies, with a 

length equal to 10 time units, is shown in Fig. 6. 

An optimal fault-tolerant schedule with only deallocated backup copies is 

show in Fig. 7, the scheduling length is 17 time units. In this schedule, 
Del

2m  and 
Del

1m  are overlapping at Steps 4 and 5 on bus 2B , 
Del

3m
 

and 
Del

4m  are also 

overlapping at Steps 10 and 11, on the bus 1B . There is at least 1 time unit delay for 

messageA  between data im  and its deallocated backup copies 
Del

im . If the primary 

copy is sent successfully, the activation message messageA cancels its deallocated 

backup copy. 
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Fig. 7. Optimal fault-tolerant schedule with only deallocatted backups copies 

In this example, the optimal schedule with both deallocation and replication 

has 47.05% reduction over deallocation only in scheduling length, when he loses 

only 12.5% compared to a non-fault tolerant solution. And it also reduces the 

scheduling length by 10% comparing with the optimal schedule with replication 

only. The performance is improved significantly. 

4. The proposed approach 

In this section, we define the scheduling problem as an optimization problem and 

we use the linear programming to find the optimal scheduling of data dependency 

with their backup copies to tolerate one-bus fault, with minimal length. 

As our solution is based on a hybrid approach that combines both passive and 

active redundancy we use two types of backup copies, replicated and deallocated. 

We model data dependencies scheduling with a binary variables to determine the 

order of data. Pr

, ,i t jM  is a binary variable such that Pr

, ,i t jM = 1 if and only if the 

primary copy of data im  was successfully sent on bus jB  at step t. Similarly, the 

binary variables Rep

, ,i t jM  and Del

, ,i t jM  are used for the replicated and deallocated backup 

copies. 

(1)   
     

 

bus sch

Pr Rep Del

1 1 1

0 1i,t, j i,t, j i,t, j

i , , n , j , ,n t , ,L ,

M ,M ,M , ,

     


 

Lsch is an upper bound of the scheduling length. 

The objective function of our linear problem is the minimization of the 

scheduling length, which can be mathematically formulated as  

(2)   
sch bus

Pr

out, ,

1 1

Minimize ,
L n

t j

t j

tM
 

  

where mout is a fictitious node added to data model (DAG), to compute total 

scheduling length (Fig. 8).  
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Fig. 8. The fictitious node add to the DAG 

The minimization of the total length of the scheduling is given under the 

following constraints: 

Data mapping constraint. The primary copy of each data is scheduled once 

and only once, 

(3)    
sch bus

Pr

, ,

1 1

1, , 1.
L n

i t j

t j

i n M
 

    

The backup copy of each data is scheduled once and only once, 

(4)    
sch bus

Rep Del

, , , ,

1 1

1, , 1.
L n

i t j i t j

t j

i n M M
 

     

At any time, a bus xB is used either for the transmission of a primary copy of 

data or its replicated backup copy, 

(5)       Pr Rep

sch bus , , , ,

1

1, , , 1, , 1.
n

i t j i t j

i

t L k n M M


       

In a multi-bus system, to tolerate one-bus fault, we can use only one backup 

copy for each data dependency. This backup copy can be either replicated or 

deallocated. 

Dependency constraint. Backup copies must meet the same precedence 

relationships as their primary copies. 

Pmm ki   means that data km  require data im  to be calculated; data km  

cannot be send until data im  was received and used to calculate km :  

(6)    
sch bus sch bus

Rep Rep

, , , ,

1 1 1 1

, 1, ,  * Exe( ) * .
L n L n

i t j i k t j

t j t j

i k n t M m t M
   

      

For each Pmm ki  , a new directed acyclic graph that represents all 

dependencies between possible backup copies and their primary copies is generated. 

Fig. 9 presents the part of DAG for ki mm  . 
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Fig. 9. The new DAG for mi→mk 

Fig. 10 presents the complete DAG for the data model in Fig. 3. 

 

Fig. 10. The complete DAG for data model of our example 

But for our example we have chose deallocated backup copies for 2m  and 

6m , and replicated backup copies for 1m , 3m , 4m , 5m  and 7m , so Fig. 11 presents 

the reduced DAG respecting this choice. 

 

 

Fig. 11. The reduced DAG 

 

Fault tolerant constraint: the primary copy and its backup copy should not, in 

no case, be assigned to the same bus: 

(7)   

   
sch

bus

Pr Pep Del

, , , , , ,

1

1, ,  , 1, , 

1.
L

i t j i t j i t j

t

i n j n

M M M


   

  
 



 79 

Execution constraint: For the tasks dependencies zyx ttt   (as it is shown 

in Fig. 12) the data bm can’t be scheduled until data am  was successfully received 

by task yt  and this latter was completely executed, 

(8)     Pr Pr

bus , , task , ',1, , * Exe ( ) ' .i t j y i t jj n t M t t M     

 
Fig. 12. Execution constraint 

 

The same can be said for all other combinations, in our case we can count nine 

possibilities: (Pr, Pr), (Pr, Rep), (Pr, Del), (Rep, Pr), (Rep, Rep), (Rep, Del),  

(Del, Pr), (Del, Rep), (Del, Del). 

Overlapping and resource constraint. The overlapping of two deallocated 

backup copies or more must respect the following conditions: their primary copies 

must be assigned to different buses and must be completely independent, i.e., they 

have no dependency. 

Only, the deallocated backup copies, may overlap. If there are two deallocated 

backup copies Del

, ,i t jM  and Del

, ,k t jM  overlapping on the same bus jB , then their 

primary copies are assigned to two others different buses than jB : 

(9)    
sch

Del Del Pr Pr

, , , , , , , ,

1

, 1, ,  1 0,
L

i t j k t j i t j k t j

t

i k n M M M M


        

(10)      
sch

Pr Pr

bus , , , ,

1

, 1, ,  , 1, , 0.
L

i t j k t j

t

i k n j n M M


       

The solution obtained is thus the best result, but since the problem is NP-hard, 

this formulation generally takes a long time to obtain an optimal solution, and for 

some cases we cannot find a feasible solution in an acceptable time. That is why we 

propose our second solution, based on a heuristic algorithm called FTA-RD. The 

aims of this algorithm are twofold, first, maximize the reliability of the system; 

secondly, minimize the length of the whole generated schedule in both presence and 

absence of faults. 

Our scheduling algorithm is a greedy list scheduling heuristic, which schedules 

one operation at each step. The input to our algorithm is an instance of the tasks 

graph task task( , , Exe )G T E  and the architecture graph ),(arch BPG  , and the time 

cost of the activate message messageA ; it generates a distributed static schedule of 

a given task model onto a given architecture model, which minimizes the system's 

run-time, and tolerates one bus fault. It is obvious that the FTA-RD algorithm's time 

complexity is polynomial time. 
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The FTA-RD scheduling algorithm is shown in Fig. 13. 

 
Fig. 13. The FTA-RD scheduling algorithm 
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FTA-RD operates as follows: 

1. First, it examines the data dependencies one by one to determine when and 

which bus each will be sent to. It finds the bus with the earliest available time and 

the least used one (the use of a bus is measured by the total time of transmission of 

all data assigned to that bus); therefore, this assignment, so made, ensures load 

balancing. 

2. Once the primary copy is scheduled, the algorithm attempts to schedule the 

backup copy, first of all it tries to overlap with an existing deallocated backup copy, 

if not, it allocates a new replicated or a new deallocated backup copy according to 

the typeBACKuP . 

3. Finally, to reduce the scheduling length, the backup type for the last data is 

redefined. 

5. Simulations, results and discussion 

In this section, we present the result of simulations, we compare the proposed 

scheduling algorithm FTA-RD with solution based on linear programming 

formulation, and solutions based only on replication or deallocation, in scheduling 

length. We have applied the FTA-RD heuristic to an example of an architecture 

graph composed of five processors and three buses. The failure rates of the 

processors are respectively 10-5, 10-5, 10-4, 10-5 and 10-6, and the failure rate of the 

Buses SAMMP1, SAMMP2, and SAMMP3 are respectively 10-6, 10-5 and 10-4. 

The algorithms graphs used are those of DSP benchmark from the DSPstone 

[13], the number of tasks and data dependencies in each benchmark is listed in 

Table 1. 

Table 1.  Benchmarks Information 

Benchmark I Tasks Data-dependencies 

FIR filter 12 8 

2-motiv 12 9 

2 iir filter 17 13 

2-deq filter 24 20 

IIR biquad section 36 31 

2-rls-lat 28 33 

8latiir 46 38 

We use Simulation Tool for Real time Multiprocessor scheduling (STORM) to 

calculate the data length. From the specification of the characteristics of software 

architecture (the tasks to schedule), hardware architecture (the resources for 

implementing these tasks) and the choice of a scheduling policy, the tool simulates 

the execution of these tasks on these resources according to the rules of this policy 

[14]. Fig. 14 shows the task model and the allocation of buses in STORM editor. 
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Fig. 14. Task model and bus’s allocation 

Results show that the FTA-RD heuristic with both the replicated and 

deallocated backup copies performs better than the one with replicated and 

deallocated heuristics only, in all benchmarks. We can see that FTA-RD heuristic 

can reduce the scheduling length by 6.19% on an average when compared to only-

replication heuristic (Fig. 15), and 19.29% on average when compared to only-

dealocation heuristic (Fig. 16). We can see also that our heuristic loses 8.41% on 

average in the scheduling length compared to the optimal solution obtained by 

linear programming formulation (Fig. 17). 

 
Fig. 15. Scheduling length of FTA-RD heuristic and only-replication heuristic 

 
Fig. 16. Scheduling length of FTA-RD heuristic and only-deallocation heuristic 
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We can see from the results that: 

 When the number of data dependencies is a small one, the algorithm that 

uses only the replicated backup copies is more efficient than one that uses 

deallocated backup copies. This is explained by the fact that when the number of 

data is low, the opportunity for backup overlapping is also low. 

 When the number of data dependencies is more important, more deallocated 

backup copies can be overlapped, which allows reduction of scheduling length. 

 
Fig. 17. Scheduling length of FTA-RD heuristic and LP-formulation solution 

 

Also, delay due to the activation message, may have a negative effect on the 

schedule length. 

The use of both replicated and deallocated backup copies allows the best 

results, that in the case of the use of only one types of backup copies. 

The results obtained by the linear programming formulation are better than 

those obtained by the FTA-RD heuristic, the problem is that in many cases, the 

calculation time of this formulation is too long to produce results. The advantage of 

the FTA-RD heuristic is that it has a polynomial running time. 

6. Conclusion 

In this paper, we have studied the problem of fault-tolerance in embedded real-time 

systems and proposed a software implemented fault-tolerance solution for multi-

buses architectures based on software redundancy. We have proposed a new 

scheduling heuristic, called FTA-RD, which produces automatically a static 

distributed fault-tolerant schedule when data dependencies are represented by 

directed acyclic graphs with two types of backup copies under the assumption that 

there will be at most one bus fault. The simulations show a significant improvement 

compared to algorithms with only one type of backup copy. Finally, we plan to 

carry out an experiment involving our method on an electric autonomous vehicle, 

with a 5-processor multi-buses architecture. 
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