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Abstract: The present article models and examines k˅n systems, in particular Triple 

modular redundancy (2˅3) and 3˅5. The aim of the study is to derive mathematical 

models, which are used for determining the impact of structural redundancy  

(the number of channels n and the threshold of the quorum function k) on the 

reliability of the system. The probability of failure-free operation p and the Mean 

Time Between Failures (MTBF) are used as reliability indicators. 
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1. Formulation of the problem 

One class of systems for real-time control (Real Time Systems – RTS) with 

applications in various spheres of technology and life is intended for control of 

especially critical technological processes (Special Critical Technology Process or 

operation, SCTP). If SCTP go beyond their regulated functionality due to failures in 

their controlling systems, this may cause a loss of large human and material assets 

and/or inadmissible harming of the environment. Subject of enhanced requirements 

for reliability and safety is the hardware [1, 13] and software [2] of RTS of this class 

known as Safety Critical Systems (SCS). Special requirements are put also to the 

telecommunication systems, which must contain all necessary Safety related 

mechanisms [3, 4]. 

Depending on the nature of SCTP the technical solutions of SCS are subdivided 

into two main groups [5, 14]:  

 Systems with fail-safe behaviour. This group comprises systems for which a 

criterion for safe post-failure behaviour may be defined. Most often, according to this 
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criterion the functionality of the system is restricted or the controlled process is 

stopped.  These are interruptions of SCTP, during which the process stops and stays 

safely. A compulsion is created for removal of the failure and restoring operability 

so that the process could continue. These are known as systems with fail-safe 

behaviour, and their failures – as safe (Safety).  

 Fault-tolerance systems – systems in which a desired post-failure behaviour 

cannot be defined [7, 12]. In aviation, aerospace transport, life support systems, etc., 

the nature of SCTP is such that every stopping of the process is inadmissible. They 

are often subject of requirements for high availability and continuity, which are most 

frequently achieved through redundancy: structural, informational, temporal, 

functional, etc. [6, 8, 11]. By redundancy in this context is meant more than the 

necessary for the functioning of the system operable devices through which the errors 

and malfunctions of the elements are disguised.   

For both types of systems a common criterion for belonging to SCS is the limit 

of the risk ensuing from possible failure. Safety standards regularize the admissible 

risk [1]. The standards are generally applicable, irrelevant to the technical solution of 

the system. The limit value of the risk is very low and may be reached with high 

reliability [14, 15] or through safe behaviour.  

It is known that with redundancy a system can be built with randomly high pre-

defined reliability. The question is, at what price? Certainly, with the increase of 

redundancy the resources and the price increase proportionally. 

Subject of modeling and study in this paper is a class of computer-based 

systems from the second group, which have majoritarian fault-tolerance structure. 

Majoritarian structures are those consisting of n  subsystems (building blocks, 

channels) with the same designation, each of which has the functionality defined for 

the system and its operability depends on the so-called quorum-function. The 

quorum digit (the correctness criterion) nk   shows the number of the operable 

subsystems. The majoritarian system is operable when:   

(1)   ent 1,
2

n
k

 
  
 

 

where ent is “entire part of ” and  

(2)   r n k   

is structural redundancy. 

With majoritarian structures based on the output building block 

(microcomputer, controller, software program) high reliability is achieved, but with 

n -multiple higher hardware and/or software resource. How efficient is this structural 

redundancy depends on how much it improves reliability. Here, the effect is marked 

with   and it is introduced as a digit showing how reliable the system is in 

comparison to the building block that may perform the same function.  

When it comes to digital and computer-based majoritarian systems (Fig. 1), the 

input vector Xi(x1, x2,…, xv) is submitted at a given moment for processing of all n 

building blocks. The output results are in the form of binary vectors and are compared 

in the majoritating device M; if k of them, k = 1, 2, …, n, derive identical vectors Yi, 

the system validates the output vector Yi as correct. It is accepted as operable and 
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remains operable when after failure one, two or more channels drop out until reaching 

the n – k failure. In case of more failures the correctness criterion is breached and the 

majoritarian structure becomes inoperable. 

With repairable  systems big redundancy (when n > 5) loses its meaning, 

because the running hours' time until failure MTBFk n
 (months, years) is hundreds 

and thousands of times greater than the recovery time of the failed unit вT  (one-two 

hours). For this short time failures are slightly probable to occur and inoperability to 

be reached, which may be prevented by deeper reservation. Therefore, structures with 

very big redundancy are not implemented in practice, since such redundancy, apart 

from everything else, increases the price of reliability.  

Most often n is brought down to the minimum limit of the majoritarian systems, 

the so-called Triple modular redundancy – system 2 3,  or in case of especially high 

requirements – system 3 5.  Therefore, the present analysis is limited within the 

systems 2 3  and 3 5.  

The objective of this study is to derive mathematical models through which to 

quantify the influence of the redundancy contained in the structure on the reliability 

indicators of the system by establishing explicit dependences of the reliability 

enhancement on the size of redundancy. 
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Fig. 1. Majoritarian structure 

2. Summary of what is known from research literature  

There are publications on modeling the reliability of majoritarian systems which 

allow to encompass and describe the systems characteristics [9, 10, 11]. This paper 

is based on known research results, and yet, it finds answers to problems of theoretical 

and practical significance that have not been yet investigated. 

In literature, it is found the mathematical model of the reliability ( )k nP t  of the 

studied systems depending on the probability of failure-free operation p, respectively, 

the probability of failure , and their structural units (they are assumed as 

equally reliable) [10]: 

(3)   2v3 ( )P t = p3 + qp 23 , 

(4)   3v5 ( )P t = 
5 4 3 25 10 ,p p q p q   

pq 1



 38 

where at intensity of failures const   and t running hours (time) of failure 

.( ) tp t e    

If calculations are made according to these formulas and graphs of 

dependences are drawn  ( ),k nP t  the curves in Fig. 2 are obtained. It is evident 

that after a certain point crt  the reliability of the system becomes smaller than 

that of the elements from which it is built. This is explained by the increasing 

influence of the large number of elements. 

Depending on the average life time MTBF of the elements formulas 

are derived for the median time for running hours to failure MTTFs of non-

repairable systems and the median time between failures MTBFs of repairable 

systems. In the context of this study attention should be paid to the results for 

repairable systems. It is established that in the general case the median time 

MTBFk n  between the failures of the system is “k from n”:  

(5)   
1

a a

1
,

!
(1 )

( )!( 1)!

k n
k n kn

K K
n k k

 
 




 

 

where aK  is the availability coefficient. 
 

 
Fig. 2. Dependence of the reliability function of a majoritarian structure on redundancy upon simple 

majoritating  
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(6)   2 3

s a a

1 MTBF
MTBF ,

6 (1 )H K K
  


 

and for the system 3 5  

(7)   3 5 2 2

a a

MTBF
MTBF .

30 (1 )K K



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3. Effect of the structural redundancy on the system’s availability  

The new investigations of this paper use already established research results from 

previous publications of the author, as well as such by other authors.  

The probability of failure-free operation p, respectively – for failure  

of the structural units of the majoritarian system is a probability for them to be in the 

respective state. If this probability is reviewed as availability, and after sufficient 

operation time, as availability coefficient aK , the availability parameters can be 

substituted in (3) and (4) and the formulas for repairable  systems can be obtained:  

Availability of the system 2 3  is 

(8)   а 2v3K = 
3

а 2v3K  + 
2

a a3 (1 ),K K  respectively: 
2

а 2v3 a a(3 2 ).K K K   

Availability of the system 53 : 

(9)   
5 4 3 2

3v5 a a a a a5 (1 ) 10 (1 ) .K K K K K K      

The enhancement of the availability а 2v3K  of the system as compared to the 

availability of the individual channel аK  can be established through their 

relationship:   

(10)    
2

a2 3 a a
a a a

a a

3 2
(3 2 )

.
K K K

K K
K K

  
     

The task to investigate the effect from the enhancement of fault tolerance is 

limited to studying the function (10) a( ),f K   shown in Fig. 3.  
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Fig. 3. Enhancement of availability through majoritating “2 of 3” 

The variables in this function are probabilities and change within the range 0-1. 

It is evident that the effect from the fault tolerance devices (three instead of one 

information processing channels), depends on the availability of the individual 

elements. When the availability of the element, which is growing from 0, reaches a 

value a l ,K  the availability of the system grows and reaches that of the channel: 

a 2v3 a ,K K  then a 1.   Then it continues to grow and always remains bigger 

pq 1
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than that of the channel until reaching a maximum a max ,  after which it 

asymptotically decreases and at a 1K   it approximates 1. In order to find these 

characteristic points:  

1. A quadratic equation obtained from the condition a 1   is solved: 

(11)     a a3 2 1.K K   

It has roots: a l1K  = 1; a l2K = 0.5.     

This means that at availability Ka > 0.5  the system 32  becomes more reliable 

than each of the channels from which it is built. At Ka = 1 it equalizes to that of 

absolutely reliable channel, but the availability is already 1.  

2. The curve a( )f K  has a maximum that can be obtained through 

classical minimax method as the first differential quotient of the function (10) is 

equalized to zero: 

(12)    a

a

3 4 0.
d

K
dK


    

The derivation of the equation shows that the extreme of the curve will be 

obtained at:  

(13)    aext 0.75.K   

The value of enhancement under (10) at this value is   

(14)    a max 1.125.   

4. Modeling the effect of redundancy over the lifetime of majoritarian 

systems   

It is already noted, that a comparative quantity t  is introduced, in order to establish 

the effect of redundancy on the “lifetime” of the system. The comparative quantity is 

a digit defined as a relation of the average time MTBFk n  between the failures of the 

majoritarian system to the average time between the failures of its elements MTBF:  

(15)    t

MTBF
.

MTBF

k n   

The equation (16) is obtained for the general case by substituting from (3) in 

(15). It shows the effect of redundancy on the lifetime of the majoritarian system, that 

is, the introduced enhancement:  
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(16)    t

1

a a

1
.

(1 )

k n

k n k
n

kK K
k

 

 



 
 

 

 

Applied to the system 2 3,  this formula is reduced to: 

(17)    t2 3

1
.

6 (1 )a aK K
  


 

For the system 53 : 

(18)    t3 5 2 2

a a

1
.

30 (1 )K K
  


 

Let us study the functions 2 3 a( )K   and 3 5 a( ).K   

4.1. Study of 2 3 a( )K   

If the analytical expression of the enhancement of lifetime (17) is studied with the 

methods of mathematical analysis, it will be established that t 2 3 a( )K  decreases 

with the availability coefficient aK  of the elements from which the system is created. 

It is evident that the function is extreme: it has a minimum at a critical value of the 

availability coefficient of the element a crK  and values t 2 3   , when 
a 1K   

and 
a 0K  . In addition, at other two characteristic values of availability  

a r1(K  and a r2 )K  enhancement is nullified t 2 3( 1)   , which means that the lifetime 

of the system is equalized to that of the element.  

4.2. Determination of acrK  

In order to find the critical lowest value of availability acrK , equation (17) should be 

studied following the minimax method for determination of extreme. Easier, and yet 

equivalent, is the derivation through annulling the first differential quotient of the 

function in the denominator a a6 (1 ) :K K  

 a a

a

6 (1 )
0

d K K

dK


 , a a(1 )K K  0 .   a cr2 3K  = 0.5 is obtained. 

The function t 2 3 a( )K   is graphically interpreted in Fig. 4. In case of high 

reliability of the structural unit a 1K   it has a very high value t 2 3   . At  

aK = 0.5 the relation reaches its minimal value t 2 3 0.666    and again grows 

symmetrically relative to this minimal point. Due to the small values of the 
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availability a 0.5,K   which are not often found in practice, the curve is not of 

practical interest in its subsequent course.   

 
Fig. 4. Increase of the lifetime of the majoritarian system depending on the availability  

of structurally building element  
 

The strongest effect of the redundancy, hundreds of thousands of times “longer 

life”, is obtained at values closer to 1, i.e., at very high availability of the building 

element. Since with the linear scale on Fig. 4 this cannot be accounted, on Fig. 5 this 

part of the curves is shown in decimal logarithmic scale, in which t 2 3 a( )K   becomes 

almost linear dependence with a slant increasing pro rata to the majoritarian  

threshold k . 

4.3. Determination of a 1rK  and a 2rK  

The effect of the redundancy 132   is zero when in equation (17) 

a a6 (1 ) 1K K   is put. This is the condition under which 2 3MTBF   MTBF.  The 

values of availability when this condition is fulfilled can be found. The expression is 

reduced to the quadratic equation:  

(19)    
2

a a6 6 1 0K K   ,  

the roots of which are: a 1rK = 0.789 and a 2rK = 0.211. At these values median time 

is reached between the failures of the system equaling that of the elements: 

2 3MTBF MTBF.    
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Fig. 5. t 2 3 ( )aK   in logarithmic scale 

The enhancement is t 2 3 166    at values of the availability typical for 

computer-based structural elements aK = 0.999, i.e., by such number of times longer 

life. Enhancement also drops abruptly irrespective of this very strong effect of 

enhancement at high reliability, when availability decreases. Enhancement is the 

lowest at the critical value a crK . 

5. Study of system 3 5  

The study of t3 5 ( )aK  is performed following the same order.  

5.1. Determination of a crK  

The extreme points of the denominator of (18) are sought, 

 2 2

a a

a

30 (1 )
0,

d K K

dK


  

2 2

a a a a30.2 (1 ) 30 2.(1 ) 0;K K K K     (1 ) 0,a aK K    

(20)    a cr3 5K  = 0.5. 

That is, the critical point is at the same value of the availability. By substituting 

in (18) we find that the minimum point, which the relation will reach, is 

t3 5 0.533.    

5.2. Determination of the critical points 

An equation of the fourth degree is derived: 
2 2

a a a30 (1 2 ) 1 0,K K K     

Only the roots of the quadratic equation are of interest:  
4 3 2

a a a60 30 1 0.K K K     
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They are: a 1rK   0.2111, a 2rK   0.7889. The other two roots are imaginary.  

Based on the performed investigations, it is evident that both majoritarian 

systems have one and the same qualities and do not differ in principle. By increasing 

the redundancy from 32  to 53  particular characteristics are strengthened: the 

effect of enhancement grows, but only at the high values of the reliability of the 

building component, whereas at low values it deteriorates below that of 32 .  

6. Inferences  

1. The smaller the availability of the element is, the weaker the effect of the 

redundancy will be. At small values of the availability of the building element the 

reliability of the system decreases and becomes lower than the latter. At a 0.5K   

such result is reached that system 2 3  becomes more efficient than system 3 5.  

2. At high availability coefficient a 0.9999K   the lifetime of a majoritarian 

system as compared to that of its building components is increased by several orders: 

for t 2 3 1666.8,     t3 5 3 334 000.    

7. Conclusion 

Result of the conducted research is the analysis of the effect of structural redundancy 

in majoritarian systems, which have been established. Some new dependences are 

studied, which allow for drawing the conclusion that majoritarian systems have 

substantial effect for increasing reliability. The expenses for structural redundancy 

are beneficial only when the initial reliability of the building blocks constituting such 

systems is sufficiently high. The quantitative values of the effect allow the experts, 

developers, designers, specialists designing SCS of this class to optimize their 

solutions and defend their designs.   
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