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Abstract: The present work proposes hybridization of Expectation-Maximization 

(EM) and K-means techniques as an attempt to speed-up the clustering process. 

Even though both the K-means and EM techniques look into different areas,  

K-means can be viewed as an approximate way to obtain maximum likelihood 

estimates for the means. Along with the proposed algorithm for hybridization, the 

present work also experiments with the Standard EM algorithm. Six different 

datasets, three of which synthetic datasets, are used for the experiments. Clustering 

fitness and Sum of Squared Errors (SSE) are computed for measuring the clustering 

performance. In all the experiments it is observed that the proposed algorithm for 

hybridization of EM and K-means techniques is consistently taking less execution 

time with acceptable Clustering Fitness value and less SSE than the standard EM 

algorithm. It is also observed that the proposed algorithm is producing better 

clustering results than the Cluster package of Purdue University. 

Keywords: Hybridization, clustering, K-means, mixture models, expectation 

maximization, clustering fitness, sum of squared errors.  

1. Introduction 

The Expectation Maximization (EM) algorithm is a model-based clustering 

technique, which attempts to optimize the fit between the given data and some 

mathematical model. Such methods are often based on the assumption that the data 

is generated by a mixture of underlying probability distributions [1].  

The EM is an effective, popular technique for estimating mixture model 

parameters (like cluster weights and means) [7-9]. When compared to other 

clustering algorithms, the EM algorithm demands more computational efforts 

although it produces exceptionally good results [20-22]. Many researchers 
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experimented on some variants (like Generalized EM (GEM), Expectation 

Conditional Maximization (ECM), Sparse EM (SpEM), Lazy EM (LEM),  

Expectation-Conditional Maximization Either (ECME) algorithm and the Space 

Alternating Generalized Expectation (SAGE) maximization algorithms) in order to 

reduce the execution time of EM algorithm [17, 18]. In [19], the use of Winograd’s 

algorithm is proposed to reduce the computational efforts of E-step and M-step of 

the standard EM algorithm. In [15], the use of multi-criteria models is proposed to 

design clusters with the aim of improved clustering performance. All their 

experiments aimed at the speed-up of the EM algorithm by yielding the same results 

as the Standard EM algorithm or better results without sacrificing its simplicity and 

stability. 

As an attempt to speed up the clustering process, the present work proposes 

the hybridization of EM and K-means algorithms. The K-means algorithm is a very 

popular algorithm for data clustering, which aims at the local minimum of the 

distortion [2, 23]. EM is a model based approach, which aims at finding clusters 

such that maximum likelihood of each cluster’s parameters is obtained. In EM, each 

observation belongs to each cluster with a certain probability [2]. The K-means 

algorithm is the 2nd dominantly used data mining algorithm  and the EM algorithm 

is the 5th dominantly used data mining algorithm [3, 4, 24]. Though both  

K-means and EM techniques look into different areas [2, 23], K-means can 

be viewed as an approximate way to obtain maximum likelihood estimates 

for the means, which is the goal of density estimation in EM [23, 24].  
In the present work, along with the proposed algorithm for hybridization of 

EM and K-means techniques, experiments are carried out with the standard EM 

algorithm. In all the experiments, it is observed that the proposed algorithm for 

hybridization of EM and K-means techniques is consistently taking less execution 

time to produce the clustering results with acceptable clustering fitness value and 

less SSE in comparison to the standard EM algorithm. The proposed algorithm is 

also observed to produce clustering results with better performance than the Cluster 

Package of Purdue University [26]. 

2. The Standard EM (StEM) algorithm 

EM algorithm partitions the given data by calculating the maximum a posteriori 

principle using the conditional probabilities [17]. Given a guess for the parameter 

values, the EM algorithm calculates the probability that each point belongs to each 

distribution and then uses these probabilities to compute a new estimate for the 

parameter. The EM algorithm iteratively refines initial mixture model parameter 

estimates to better fit the data and terminates at a locally optimal solution. 

The standard EM [10, 11] for Gaussian Mixture Models (GMM) assumes that 

the algorithm will estimate k class distributions Cj, j=1, …, k. For each of the input 

vectors Xi, i =1, …, N, the algorithm calculates the probability P(Cj|Xi). The highest 

probability will point to the vector’s class. 
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The EM algorithm works iteratively by applying two steps: the Expectation 

step (E-step) and the Maximization step (M-step). Formally, 
^

( ) { ( ), ( ), ( )}, 1,..., ,j j jt t t W t j k     stands for successive parameter estimates. 

Given a dataset of N, d-dimensional vectors, the EM algorithm has to cluster 

them into k groups. 

The multi-dimensional Gaussian distribution for the cluster Cj is parameterized 

by the d-dimensional mean column vector j and d x d covariance matrix j is given 

as follows [10]: 
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where Xi is a sample column vector, the superscript T indicates transpose of a 

column vector, |j| is the determinant of j, and (j)–1 is its matrix inverse of 

covariance matrix j. 

The mixture model probability density function [10] is  
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where Wl is the weight of cluster Cl. 

2.1. Termination condition 

As the termination condition, percentage change is computed using the following 

formula: 
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where t is the number of vectors assigned to new clusters in t-th iteration, and t+1 

is the number of vectors assigned to new clusters in (t+1)-th iteration. The symbol * 

indicates multiplication. The algorithm terminates when the percentage change < 3. 

The EM algorithm for Gaussian Mixture Model [10] proceeds as follows: 

Step 1. Initialize mixture model parameters: set the current iteration t=0; set 

initial weights, W, to 1/k for all k clusters; select k vectors randomly from the 

dataset as the initial cluster means, ; compute global covariance matrix for the 

dataset and set it to be the initial covariance matrix, ∑, for all clusters. 

Step 2 (E-step). Estimate the probability of each class Cj, j=1, 2, …, k, given a 

certain vector Xi, i=1, 2, …, N, for current iteration t using the following formula 

and assign Xi to the cluster with the maximum probability, 
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Each of the k clusters has its mean (j) and covariance (j), j = 1, 2, …, k; Wj is 

the weight of j-th cluster. 

Step 3 (M-step). Here, for j-th cluster, update the parameter estimation for the 

iteration t+1 as follows: 
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Step 4. Compute percentage change using (3).  

Step 5. Stop the process if the percentage change is < 3. Otherwise, set t=t+1 

and repeat the Steps 2 up to 4 with the updated parameters. 

3. Hybridization of EM and HbEMKM algorithms 

Though an effectively used algorithm, the EM suffers from slow convergence as it 

requires heavily on computational efforts involved in repeated computation of the 

many parameters like covariance matrices, means and weights of the clusters and 

repeated computation of the inverses of covariance matrices of the clusters  

[3, 5, 24, 25]. On the other hand, the K-means algorithm can be used to simplify the 

computation and accelerate convergence as it requires only one parameter to 

compute, i.e., cluster means [23, 24]. While assigning points to the clusters, the EM 

maximizes the likelihood and the K-means minimizes the distortion with respect to 

the clusters [23]. 

The algorithm for conventional K-means is given below [12]. 

Algorithm K-means 

Step 1. Select k vectors randomly from the dataset as the initial cluster means, 

. Set the current iteration t=0. 

Step 2. Repeat. 

Step 3. Assign each vector Xi from the dataset to its closest cluster mean using 

Euclidean distance, 

(8)  2

1
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where Xi is the i-th vector in the dataset, j is the mean of the cluster j, and d is the 

number of dimensions of a data point. 

Step 4. Re-compute the cluster means and set t=t+1. 

Step 5. Compute percentage change using (3). 

Step 6. Until percentage change is < 3. 

Step 7. End of K-means 

The present work, as an attempt to speed up the clustering process, 

experiments with the Hybridization of EM and K-Means algorithms (HbEMKM). 

Though both EM and K-means techniques look into different areas [2, 23],  

K-means can be viewed as an approximate way to obtain maximum likelihood 

estimates for the means, which is the goal of density estimation in EM [23, 24]. 

Furthermore, K-means is formally equivalent to EM as K-means is a limiting case 

of fitting data by a mixture of k Gaussians with identical, isotropic covariance 

matrices ( = 2I), when the soft assignments of data points to mixture components 

are hardened to allocate each data point solely to the most likely component [3, 23]. 

A random space is isotropic if its covariance function depends on distance alone 

[25]. In practice, there is often some conflation of the two algorithms that K-means 

is sometimes used in density estimation applications due to its more rapid 

convergence [23]. 

Also that selection of initial values is critical for EM, since it most likely 

converges to local maxima around the initial values as EM uses maximum 

likelihood [2]. It may be a good practice, if the results of K-means are used as initial 

parameter values for a subsequent execution of EM for the more exact 

computations [23, 24]. The present work also experiments on running the EM 

algorithm on the results of K-Means algorithm (KMEM).  

Along with the proposed algorithm for hybridization of EM and K-means 

techniques, experiments are carried out with the standard EM algorithm and finally 

performance comparison is made among the results of all experiments. In all the 

experiments same termination condition, discussed Section 2.1, is used. 

The pseudo code for the algorithm is given below. This algorithm performs 

clustering using EM and K-means techniques in the alternative iterations till 

termination. As part of the maximization step for EM, cluster weights, means and 

covariance matrices are calculated using the results of K-means step. 

Algorithm HbEMKM 

N = number of samples in data 

nj = number of samples in the j-th cluster 

Xi = i-th sample in data 

k = number of clusters 

Wj = weight of j-th clusters 

j = mean of j-th cluster 

j = covariance matrix of j-th cluster 

Select k vectors randomly from the input dataset as the initial cluster means, .  

First, assign each data vector Xi to the closest cluster with mean, j using 

Euclidean distance in the formula (8). 

Set isProgress = true 
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Repeat while (isProgress == true) 

 M-Step. Compute means j and covariance matrices j for j = 1, …, k, 

based on the results of K-Means step. 

 Compute cluster weights Wj = nj/N for j = 1, …, k. 

 E-Step. For each given data vector Xi (i = 1, 2, …, N), compute the cluster 

probability P(Cj|Xi) for j = 1, …, k, using (4). 

 Assign Xi to the cluster with Max{ ( | ); 1,..., }j i
j

P C X j k . 

 Compute percentage change using (3). 

 IF (percentage change >= 3) 

Compute cluster means j for j = 1, …, k, using (5). 

K-Means Step. Assign each data vector Xi to the closest cluster with mean, j 

using Euclidean distance in the formula (8). 

Compute percentage change using (3). 

IF (percentage change >= 3) 

   Set isProgress = true 

ELSE 

   Set isProgress = false 

End of inner IF 

 ELSE 

Set isProgress = false 

 End of outer IF 

End of Repeat Loop 

End of HbEMKM 

4. Clustering performance measure 

As a measure of clustering performance, the Clustering Fitness [13] is computed. 

The calculation of Clustering Fitness involves intra-cluster similarity, inter-cluster 

similarity, and the experiential knowledge, . The main objective of any clustering 

algorithm is to generate clusters with higher intra-cluster similarity and lower inter-

cluster similarity [16]. So both the measures are taken into consideration for 

computing Clustering Fitness. The computation of Clustering Fitness results in 

higher values when the inter-cluster similarity is low and results in lower values for 

when the inter-cluster similarity is high. To make the computation of Clustering 

Fitness unbiased, the value of  is taken as 0.5 [13]. 

4.1. Intracluster similarity for the cluster Cj 

It can be quantified via some function of the reciprocals of intracluster radii within 

each of the resulting clusters. The intracluster similarity of a cluster Cj, 1 = j = k, 

denoted as Stra(Cj), is defined by 

(9)  tra
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Here, nj is the number of items in cluster Cj, 1 = l = nj, Il is the l-th item in cluster 

Cl, and dist(Il, Centroid) calculates the distance between Il and the centroid of Cj, 

which is the intracluster radius of Cj. To smooth the value of Stra(Cj) and allow for 

possible singleton clusters 1 is added to the denominator and numerator.  

4.2. Intracluster similarity for one clustering result C 

Denoted as Stra(C), Intracluster similarity for one clustering result C is defined by  

(10) 
tra1
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( ) .

k

jS C
S c

k



 

Here, k is the number of resulting clusters in C. 

4.3. Intercluster similarity 

It can be quantified via some function of the reciprocals of intercluster radii of the 

clustering centroids. The intercluster similarity for one of the possible clustering 

results C, denoted as Ster(C), is defined by  
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Here, k is the number of resulting clusters in C, 1 =j= k, Centroidj is the centroid of 

the j-th cluster in C, Centroid2 is the centroid of all centroids of clusters in C. We 

compute intercluster radius of Centroidj by calculating dist(Centroidj, Centroid2), 

which is distance between Centroidj, and Centroid2. To smooth the value of Ster(C) 

and allow for possible all-inclusive clustering result, 1 is added to the denominator 

and the numerator. 

4.4. Clustering fitness 

The Clustering Fitness (CF) for one of the possible clustering results C is defined 

by  

(12)  
tra

ter

1
CF * .S

S





   

Here, 0 <  < 1 is an experiential weight. The symbol * indicates multiplication. 

The present work considers =0.5. 

4.5. Sum of squared errors 

In the present work, Sum of Squared Errors (SSE) is also computed for all the 

clustering results to measure the clustering performance [6]. The clustering 

performance is considered to be good if the corresponding SSE is less when 

compared to the other clustering techniques. The SSE is computed using the 

following formula 
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Here, Xi is a vector from the dataset, j is the means of the cluster Cj, k is the 

number of clusters and N is the number of vectors in the dataset. |Xi – j| denotes the 

distance between Xi and j. The objective of clustering is to minimize the within-

cluster  sum of squared  errors.  The lesser the SSE,  the better the goodness of fit is. 

5. Experiment and results 

Experiments are carried out on the system with Intel(R) Core i7-3770 K with  

3.50 GHz processor speed, 8GB RAM with 1666FSB, Windows 7 OS and using 

JDK1.7.0_45. Separate modules are written for each algorithm to observe the CPU 

time for clustering any dataset by keeping the same cluster seeds for all methods. 

I/O operations are eliminated and time observed is strictly for clustering of the data 

(Table 1).  

Magic Gamma, Poker Hand, and Letter Recognition datasets are used for the 

present work from UCI ML dataset repository [14]. An important issue in 

evaluating data analysis algorithms is the availability of representative data. When 

real-life data is hard to obtain or when its properties are hard to modify for testing 

various algorithms, synthetic data becomes an appealing alternative. The present 

work also uses three synthetic datasets that are generated by an algorithm for 

generating multivariate normal random variables [27]. The first synthetic dataset is 

generated assuming all clusters have different means and different covariance 

matrices. The second synthetic dataset is generated assuming some clusters have the 

same mean but different covariance matrices. The third synthetic dataset is 

generated assuming some clusters have the same covariance matrix but different 

means. 

Table 1. Datasets 

Data set Number of points Number of dimensions 

Letter Recognition Data 20,000 16 

Magic Gamma data 19,020 10 

Poker Hand data 1,025,010 10 

Synthetic data-1 50,000 10 

Synthetic data-2 50,000 10 

Synthetic data-3 50,000 10 

All the algorithms are studied by executing on each dataset by varying number 

of clusters (i.e., k=10, 11, 12, 13, 14, 15). The details of execution time, clustering 

fitness and SSE of each algorithm are separately given in the tables below for each 

dataset. 

5.1. Observations on letter recognition dataset 

The Tables 2, 3 and 4 consist of the execution time, the cluster fitness and Sum of 

Squared Error (SSE), respectively, of algorithms discussed in sections 2 and 3 and 

the Cluster Package of Purdue University performed on Letter Recognition dataset. 

The observations are also shown in the Figs 1, 2 and 3. 
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Table 2. Execution time of each clustering method (s)  

K StEM KMEM HbEMKM Cluster 3.6.7 

10 16.4120 5.9210 0.2440 17.5760 

11 6.4330 11.4470 0.3360 20.0250 

12 14.0750 6.5540 0.4930 26.4340 

13 7.6010 5.8790 0.3880 24.1890 

14 5.1380 8.9930 0.4240 30.7420 

15 13.5860 6.1920 0.7500 41.3680 

 
Fig. 1. Letter recognition dataset: Execution times 

Table 3. Clustering fitness of each clustering method 

K StEM KMEM HbEMKM Cluster 3.6.7 

10 2.6258 2.7286 2.9425 2.7812 

11 2.6063 2.9516 3.1282 2.7391 

12 2.7610 2.8908 3.1003 2.7088 

13 2.8867 3.1064 3.2270 2.9507 

14 3.0719 3.3224 3.4473 2.8795 

15 2.9324 3.0599 3.3460 3.0419 

 
Fig. 2. Letter recognition dataset: Clustering fitness 

Table 4. SSE of each clustering method 

K StEM KMEM HbEMKM Cluster 3.6.7 

10 58.31780253 54.90029903 46.79034965 59.54343871 

11 56.81365607 50.53051120 43.76738443 59.06663898 

12 55.26046620 49.59847946 43.60821184 55.55461758 

13 52.24618292 47.06660999 41.57619654 54.98634779 

14 52.43310568 46.24255323 39.85697243 53.61458606 

15 52.74977604 47.52093477 39.76810321 51.85401078 
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Fig. 3. Letter recognition dataset: Sum of squared errors 

5.2. Observations on magic gamma dataset 

Tables 5, 6 and 7 consist of the execution time, the cluster fitness and Sum of 

Squared Error (SSE), respectively, of algorithms discussed in Sections 2 and 3 and 

the Cluster Package of Purdue University performed on Magic Gamma dataset. The 

observations are also shown in the Figs 4, 5 and 6. 

Table 5. Execution time of each clustering method (s)  

K StEM KMEM HbEMKM Cluster 3.6.7 

10 3.5360 0.7920 0.1830 7.2890 

11 3.7360 4.0920 0.1110 10.2680 

12 3.2410 3.1720 0.2420 9.3120 

13 3.2390 4.9610 0.2570 11.0620 

14 6.8540 7.9350 0.4070 9.5590 

15 5.9050 3.3490 0.5020 18.6780 

 
Fig. 4. Magic gamma dataset: Execution times 

Table 6. Clustering fitness of each clustering method 

K StEM KMEM HbEMKM Cluster 3.6.7 

10 29.8434 46.1219 50.8960 34.9529 

11 35.9602 40.2215 46.6300 36.0443 

12 37.5347 44.2417 57.5562 38.4638 

13 34.8555 41.3342 52.9504 40.7634 

14 33.7390 39.9490 52.9743 41.0526 

15 42.8234 46.1663 61.7020 39.9385 
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Fig. 5. Magic gamma dataset: Clustering fitness 

Table 7. SSE of each clustering method 

K StEM KMEM HbEMKM Cluster 3.6.7 

10 10235.04311 6336.868507 5116.794358 9619.032540 

11 9578.544208 8140.627114 5013.559560 8606.290689 

12 9873.706092 7544.572959 4409.876943 8838.627792 

13 9272.422300 8045.302214 4658.203266 8743.184190 

14 9398.092913 7830.483924 4397.280683 8191.174528 

15 8646.400371 6528.632337 3803.336041 8620.268594 

 
Fig. 6. Magic gamma dataset: Sum of squared errors 

5.3. Observations on Poker hand dataset 

The tables 8, 9 and 10 consist of the execution time, the cluster fitness and Sum of 

Squared Error (SSE), respectively, of algorithms discussed in Sections 2 and 3 and 

the Cluster Package of Purdue University performed on Poker Hand dataset. The 

observations are also shown in Figs 7, 8 and 9. 

Table 8. Execution time of each clustering method (s)  

K StEM KMEM HbEMKM Cluster 3.6.7 

10 66.1490 224.7950 15.5420 1016.9140 

11 74.0110 107.9470 23.3930 2557.5940 

12 78.4610 82.4270 31.0430 3328.3360 

13 85.2930 72.0570 29.0900 3434.1700 

14 91.0140 332.3750 46.2370 3160.3870 

15 117.2070 238.8700 28.6360 2809.5350 
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Fig. 7. Poker hand dataset: Execution times 

Table 9. Clustering fitness of each clustering method 

K StEM KMEM HbEMKM Cluster 3.6.7 

10 1.3840 2.7620 2.8951 1.2293 

11 1.6828 2.8351 2.9882 1.8606 

12 1.5570 2.9154 3.0631 1.3815 

13 1.4044 2.9795 3.1120 1.0973 

14 1.5571 3.0186 3.1739 1.5624 

15 1.8413 3.0663 3.2148 1.0539 

 
Fig. 8. Poker hand dataset: Clustering fitness 

Table 10. SSE of each clustering method 

K StEM KMEM HbEMKM Cluster 3.6.7 

10 61.89049571 40.41746868 39.33511213 72.07099026 

11 57.49226138 38.17264347 37.30469352 62.23416768 

12 59.57113812 36.38456914 35.82492696 70.92287882 

13 61.55035153 35.23419731 34.83422455 72.85375279 

14 58.56628704 34.80452906 33.53945731 73.87162564 

15 56.33032095 33.82117461 32.75190094 71.93356843 
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Fig. 9. Poker hand dataset: Sum of squared errors 

5.4. Observations on Synthetic dataset-1 

Tables 11, 12 and 13 consist of the execution time, the cluster fitness and SSE, 

respectively, of algorithms discussed in Sections 2 and 3 and the Cluster Package of 

Purdue University performed on Synthetic dataset-1. The observations are also 

shown in Figs 10, 11 and 12. 

Table 11. Execution time of each clustering method (s)  

K StEM KMEM HbEMKM Cluster 3.6.7 

10 3.8230 3.3670 0.6580 43.3850 

11 5.6100 2.9100 0.8740 46.5140 

12 6.1160 3.9880 0.9400 59.1600 

13 4.9520 4.2760 1.3410 70.7840 

14 4.4550 3.7160 1.0860 87.9630 

15 4.7690 6.8270 0.9680 106.1600 

 
Fig. 10. Synthetic dataset-1: Execution times 

Table 12. Clustering fitness of each clustering method 

K StEM KMEM HbEMKM Cluster 3.6.7 

10 582.8037 989.8852 1070.4906 862.1022 

11 719.8391 1002.2908 1080.2918 901.5273 

12 690.8997 1043.5350 1135.5673 897.9433 

13 663.8376 1049.8692 1143.5548 380.6306 

14 763.8713 1081.2933 1165.1284 443.3503 

15 842.4782 1107.4315 1200.3491 361.4750 
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Fig. 11. Synthetic dataset-1: Clustering fitness 

Table 13. SSE of each clustering method 

K StEM KMEM HbEMKM Cluster 3.6.7 

10 14628710.78 11859786.85 11684878.89 14388425.51 

11 14386916.86 11658179.86 11468010.80 13455719.67 

12 13874673.81 11491360.59 11251086.05 13535376.15 

13 14099367.22 11385248.64 11110137.28 20481277.55 

14 13589123.08 11212795.22 11046519.80 25434272.93 

15 13452374.50 11267402.97 10862782.33 21592712.96 

 
Fig. 12. Synthetic dataset-1: Sum of squared errors 

5.5. Observations on synthetic dataset-2 

Tables 14, 15 and 16 consist of the execution time, the cluster fitness and Sum of 

Squared Error (SSE), respectively, of algorithms discussed in sections 2 and 3 and 

the Cluster Package of Purdue University performed on Synthetic dataset-2. The 

observations are also shown in Figs 13, 14 and 15. 

Table 14. Execution time of each clustering method (s)  

K StEM KMEM HbEMKM Cluster 3.6.7 

10 3.8420 2.6790 0.6660 30.8250 

11 4.9020 2.9210 0.8630 51.8800 

12 4.5760 3.9120 0.9290 49.4800 

13 7.4250 5.1100 1.0130 64.8300 

14 7.1170 3.6620 1.0750 87.2220 

15 5.7130 3.9850 1.1530 88.0840 
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Fig. 13. Synthetic dataset-2: Execution times 

Table 15. Clustering fitness of each clustering method 

K StEM KMEM HbEMKM Cluster 3.6.7 

10 592.9165 985.5797 1064.7669 479.4660 

11 705.1030 998.8906 1083.0545 505.4192 

12 616.7459 1028.0205 1071.5066 391.3777 

13 865.7343 1040.6712 1148.6615 435.4822 

14 761.9546 1080.9615 1174.8407 321.3893 

15 775.9452 1096.7161 1180.8662 412.5189 

 
Fig. 14. Synthetic dataset-2: Clustering fitness 

Table 16. SSE of each clustering method 

K StEM KMEM HbEMKM Cluster 3.6.7 

10 14439664.00 11760241.27 11598373.61 20164991.50 

11 13902439.10 11528187.47 11355916.26 21276089.23 

12 14232153.20 11421357.02 11287930.24 21633831.68 

13 13415780.69 11319653.67 11024847.95 21181605.38 

14 13336198.27 11100700.03 10882717.53 23815685.30 

15 13320932.07 10941351.39 10743553.26 21087020.41 
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Fig. 15. Synthetic dataset-2: Sum of squared errors 

5.6. Observations on Synthetic dataset-3 

Tables 17, 18 and 19 consist of the execution time, the cluster fitness and SSE, 

respectively, of algorithms discussed in Sections 2 and 3 and the Cluster Package of 

Purdue University performed on Synthetic dataset-3. The observations are also 

shown in Figs 16, 17 and 18. 

Table 17. Execution time of each clustering method (s)  

K StEM KMEM HbEMKM Cluster 3.6.7 

10 8.2650 2.0130 0.8030 31.9960 

11 4.1960 3.6610 0.7170 60.8990 

12 4.5890 2.4560 0.7870 48.1750 

13 5.7860 4.2670 1.0130 70.2460 

14 6.2350 8.0820 0.7250 62.2360 

15 5.7190 4.9670 0.9640 95.2090 

 
Fig. 16. Synthetic dataset-3: Execution times 

Table 18. Clustering fitness of each clustering method 

K StEM KMEM HbEMKM Cluster 3.6.7 

10 623.6250 972.4719 1048.2655 500.3920 

11 671.4153 982.1240 1066.9712 391.8017 

12 670.1226 1026.8664 1106.1198 419.4653 

13 797.2359 1039.7200 1116.5491 372.0694 

14 872.9962 1048.6642 1157.4691 397.6201 

15 685.2117 1075.6261 1149.7448 332.1400 
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Fig. 17. Synthetic dataset-3: Clustering fitness 

Table 19. SSE of each clustering method 

K StEM KMEM HbEMKM Cluster 3.6.7 

10 13456811.43 11348281.15 11197451.26 19005111.06 

11 13810971.74 11258784.69 11072963.24 19915617.9 

12 13190851.64 10946003.08 10842930.4 19915392.35 

13 13235505.84 10976305.12 10717404.62 21071287.76 

14 12527770.20 11236068.19 10616547.71 19920287.74 

15 13107521.88 10636008.11 10406779.38 21017062.74 

 

 
Fig. 18. Synthetic dataset-3: Sum of squared errors 

6. Conclusion 

The proposed algorithm for Hybridization of EM and K-means is consistently 

taking less computational time with all the tested datasets. The algorithm also takes 

less computational time when compared to the Cluster-3.6.7 package from Purdue 

University. The proposed algorithm also produces the results with higher clustering 

fitness values than the other algorithms including Cluster-3.6.7. It is also observed 

that the proposed algorithm produces the clustering results with lesser SSE values 

than the other algorithms including the Cluster-3.6.7 package. Therefore, the 

present work proposes Hybridization of EM and K-means algorithms as a faster 

clustering technique with improved performance. 
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