
 16

BULGARIAN ACADEMY OF SCIENCES

CYBERNETICS AND INFORMATION TECHNOLOGIES Volume 16, No 2

Sofia 2016 Print ISSN: 1311-9702; Online ISSN: 1314-4081

DOI: 10.1515/cait-2016-0017

Hybridization of Expectation-Maximization and K-Means

Algorithms for Better Clustering Performance

D. Raja Kishor1, N. B. Venkateswarlu2
1Dept. of CSE, JNTU, Hyderabad, Telangana, India
2Dept. of CSE, AITAM, Tekkali, Andhra Pradesh, India

Emails: rajakishor@gmail.com venkat_ritch@yahoo.com

Abstract: The present work proposes hybridization of Expectation-Maximization

(EM) and K-means techniques as an attempt to speed-up the clustering process.

Even though both the K-means and EM techniques look into different areas,

K-means can be viewed as an approximate way to obtain maximum likelihood

estimates for the means. Along with the proposed algorithm for hybridization, the

present work also experiments with the Standard EM algorithm. Six different

datasets, three of which synthetic datasets, are used for the experiments. Clustering

fitness and Sum of Squared Errors (SSE) are computed for measuring the clustering

performance. In all the experiments it is observed that the proposed algorithm for

hybridization of EM and K-means techniques is consistently taking less execution

time with acceptable Clustering Fitness value and less SSE than the standard EM

algorithm. It is also observed that the proposed algorithm is producing better

clustering results than the Cluster package of Purdue University.

Keywords: Hybridization, clustering, K-means, mixture models, expectation

maximization, clustering fitness, sum of squared errors.

1. Introduction

The Expectation Maximization (EM) algorithm is a model-based clustering

technique, which attempts to optimize the fit between the given data and some

mathematical model. Such methods are often based on the assumption that the data

is generated by a mixture of underlying probability distributions [1].

The EM is an effective, popular technique for estimating mixture model

parameters (like cluster weights and means) [7-9]. When compared to other

clustering algorithms, the EM algorithm demands more computational efforts

although it produces exceptionally good results [20-22]. Many researchers

mailto:rajakishor@gmail.com
mailto:venkat_ritch@yahoo.com

 17

experimented on some variants (like Generalized EM (GEM), Expectation

Conditional Maximization (ECM), Sparse EM (SpEM), Lazy EM (LEM),

Expectation-Conditional Maximization Either (ECME) algorithm and the Space

Alternating Generalized Expectation (SAGE) maximization algorithms) in order to

reduce the execution time of EM algorithm [17, 18]. In [19], the use of Winograd’s

algorithm is proposed to reduce the computational efforts of E-step and M-step of

the standard EM algorithm. In [15], the use of multi-criteria models is proposed to

design clusters with the aim of improved clustering performance. All their

experiments aimed at the speed-up of the EM algorithm by yielding the same results

as the Standard EM algorithm or better results without sacrificing its simplicity and

stability.

As an attempt to speed up the clustering process, the present work proposes

the hybridization of EM and K-means algorithms. The K-means algorithm is a very

popular algorithm for data clustering, which aims at the local minimum of the

distortion [2, 23]. EM is a model based approach, which aims at finding clusters

such that maximum likelihood of each cluster’s parameters is obtained. In EM, each

observation belongs to each cluster with a certain probability [2]. The K-means

algorithm is the 2nd dominantly used data mining algorithm and the EM algorithm

is the 5th dominantly used data mining algorithm [3, 4, 24]. Though both

K-means and EM techniques look into different areas [2, 23], K-means can

be viewed as an approximate way to obtain maximum likelihood estimates

for the means, which is the goal of density estimation in EM [23, 24].
In the present work, along with the proposed algorithm for hybridization of

EM and K-means techniques, experiments are carried out with the standard EM

algorithm. In all the experiments, it is observed that the proposed algorithm for

hybridization of EM and K-means techniques is consistently taking less execution

time to produce the clustering results with acceptable clustering fitness value and

less SSE in comparison to the standard EM algorithm. The proposed algorithm is

also observed to produce clustering results with better performance than the Cluster

Package of Purdue University [26].

2. The Standard EM (StEM) algorithm

EM algorithm partitions the given data by calculating the maximum a posteriori

principle using the conditional probabilities [17]. Given a guess for the parameter

values, the EM algorithm calculates the probability that each point belongs to each

distribution and then uses these probabilities to compute a new estimate for the

parameter. The EM algorithm iteratively refines initial mixture model parameter

estimates to better fit the data and terminates at a locally optimal solution.

The standard EM [10, 11] for Gaussian Mixture Models (GMM) assumes that

the algorithm will estimate k class distributions Cj, j=1, …, k. For each of the input

vectors Xi, i =1, …, N, the algorithm calculates the probability P(Cj|Xi). The highest

probability will point to the vector’s class.

 18

The EM algorithm works iteratively by applying two steps: the Expectation

step (E-step) and the Maximization step (M-step). Formally,
^

() { (), (), ()}, 1,..., ,j j jt t t W t j k stands for successive parameter estimates.

Given a dataset of N, d-dimensional vectors, the EM algorithm has to cluster

them into k groups.

The multi-dimensional Gaussian distribution for the cluster Cj is parameterized

by the d-dimensional mean column vector j and d x d covariance matrix j is given

as follows [10]:

(1)
T 11

() () ()
2

1
(|) ,

(2) | |

i j j i jX X

i j
d

j

P X C e

where Xi is a sample column vector, the superscript T indicates transpose of a

column vector, |j| is the determinant of j, and (j)–1 is its matrix inverse of

covariance matrix j.

The mixture model probability density function [10] is

(2)
1

() (|),
k

i l i j

l

P X W P X C

where Wl is the weight of cluster Cl.

2.1. Termination condition

As the termination condition, percentage change is computed using the following

formula:

(3) 1| |
Percentage change * 100,t t

t

where t is the number of vectors assigned to new clusters in t-th iteration, and t+1

is the number of vectors assigned to new clusters in (t+1)-th iteration. The symbol *

indicates multiplication. The algorithm terminates when the percentage change < 3.

The EM algorithm for Gaussian Mixture Model [10] proceeds as follows:

Step 1. Initialize mixture model parameters: set the current iteration t=0; set

initial weights, W, to 1/k for all k clusters; select k vectors randomly from the

dataset as the initial cluster means, ; compute global covariance matrix for the

dataset and set it to be the initial covariance matrix, ∑, for all clusters.

Step 2 (E-step). Estimate the probability of each class Cj, j=1, 2, …, k, given a

certain vector Xi, i=1, 2, …, N, for current iteration t using the following formula

and assign Xi to the cluster with the maximum probability,

(4)

1/2

1/2

1

(|) | () | exp . ()
(|) ,

()
| () | exp . ()

j

l

j i j j j

j i k

i
l l

l

W P X C t W t
P C X

P X
t W t

where

 19

T 1

T 1

1
(()) ()(()),

2

1
(()) ()(()).

2

jj i j i j

ll i l i l

X t t X t

X t t X t

Each of the k clusters has its mean (j) and covariance (j), j = 1, 2, …, k; Wj is

the weight of j-th cluster.

Step 3 (M-step). Here, for j-th cluster, update the parameter estimation for the

iteration t+1 as follows:

(5) 1

1

(|)

(1) ,

(|)

N

j i i

i
j N

j i

i

P C X X

t

P C X

(6)

T

1

1

(|)(())(())

(1) ,

(|)

N

j i i j i j

i

Nj

j i

i

P C X X t X t

t

P C X

(7)
1

1
(1) (|).

N

t j i

i

W t P C X
N

Step 4. Compute percentage change using (3).

Step 5. Stop the process if the percentage change is < 3. Otherwise, set t=t+1

and repeat the Steps 2 up to 4 with the updated parameters.

3. Hybridization of EM and HbEMKM algorithms

Though an effectively used algorithm, the EM suffers from slow convergence as it

requires heavily on computational efforts involved in repeated computation of the

many parameters like covariance matrices, means and weights of the clusters and

repeated computation of the inverses of covariance matrices of the clusters

[3, 5, 24, 25]. On the other hand, the K-means algorithm can be used to simplify the

computation and accelerate convergence as it requires only one parameter to

compute, i.e., cluster means [23, 24]. While assigning points to the clusters, the EM

maximizes the likelihood and the K-means minimizes the distortion with respect to

the clusters [23].

The algorithm for conventional K-means is given below [12].

Algorithm K-means

Step 1. Select k vectors randomly from the dataset as the initial cluster means,

. Set the current iteration t=0.

Step 2. Repeat.

Step 3. Assign each vector Xi from the dataset to its closest cluster mean using

Euclidean distance,

(8) 2

1

dist(,) () ,
d

i j il lj

l

X x

 20

where Xi is the i-th vector in the dataset, j is the mean of the cluster j, and d is the

number of dimensions of a data point.

Step 4. Re-compute the cluster means and set t=t+1.

Step 5. Compute percentage change using (3).

Step 6. Until percentage change is < 3.

Step 7. End of K-means

The present work, as an attempt to speed up the clustering process,

experiments with the Hybridization of EM and K-Means algorithms (HbEMKM).

Though both EM and K-means techniques look into different areas [2, 23],

K-means can be viewed as an approximate way to obtain maximum likelihood

estimates for the means, which is the goal of density estimation in EM [23, 24].

Furthermore, K-means is formally equivalent to EM as K-means is a limiting case

of fitting data by a mixture of k Gaussians with identical, isotropic covariance

matrices (= 2I), when the soft assignments of data points to mixture components

are hardened to allocate each data point solely to the most likely component [3, 23].

A random space is isotropic if its covariance function depends on distance alone

[25]. In practice, there is often some conflation of the two algorithms that K-means

is sometimes used in density estimation applications due to its more rapid

convergence [23].

Also that selection of initial values is critical for EM, since it most likely

converges to local maxima around the initial values as EM uses maximum

likelihood [2]. It may be a good practice, if the results of K-means are used as initial

parameter values for a subsequent execution of EM for the more exact

computations [23, 24]. The present work also experiments on running the EM

algorithm on the results of K-Means algorithm (KMEM).

Along with the proposed algorithm for hybridization of EM and K-means

techniques, experiments are carried out with the standard EM algorithm and finally

performance comparison is made among the results of all experiments. In all the

experiments same termination condition, discussed Section 2.1, is used.

The pseudo code for the algorithm is given below. This algorithm performs

clustering using EM and K-means techniques in the alternative iterations till

termination. As part of the maximization step for EM, cluster weights, means and

covariance matrices are calculated using the results of K-means step.

Algorithm HbEMKM

N = number of samples in data

nj = number of samples in the j-th cluster

Xi = i-th sample in data

k = number of clusters

Wj = weight of j-th clusters

j = mean of j-th cluster

j = covariance matrix of j-th cluster

Select k vectors randomly from the input dataset as the initial cluster means, .

First, assign each data vector Xi to the closest cluster with mean, j using

Euclidean distance in the formula (8).

Set isProgress = true

 21

Repeat while (isProgress == true)

 M-Step. Compute means j and covariance matrices j for j = 1, …, k,

based on the results of K-Means step.

 Compute cluster weights Wj = nj/N for j = 1, …, k.

 E-Step. For each given data vector Xi (i = 1, 2, …, N), compute the cluster

probability P(Cj|Xi) for j = 1, …, k, using (4).

 Assign Xi to the cluster with Max{ (|); 1,..., }j i
j

P C X j k .

 Compute percentage change using (3).

 IF (percentage change >= 3)

Compute cluster means j for j = 1, …, k, using (5).

K-Means Step. Assign each data vector Xi to the closest cluster with mean, j

using Euclidean distance in the formula (8).

Compute percentage change using (3).

IF (percentage change >= 3)

 Set isProgress = true

ELSE

 Set isProgress = false

End of inner IF

 ELSE

Set isProgress = false

 End of outer IF

End of Repeat Loop

End of HbEMKM

4. Clustering performance measure

As a measure of clustering performance, the Clustering Fitness [13] is computed.

The calculation of Clustering Fitness involves intra-cluster similarity, inter-cluster

similarity, and the experiential knowledge, . The main objective of any clustering

algorithm is to generate clusters with higher intra-cluster similarity and lower inter-

cluster similarity [16]. So both the measures are taken into consideration for

computing Clustering Fitness. The computation of Clustering Fitness results in

higher values when the inter-cluster similarity is low and results in lower values for

when the inter-cluster similarity is high. To make the computation of Clustering

Fitness unbiased, the value of is taken as 0.5 [13].

4.1. Intracluster similarity for the cluster Cj

It can be quantified via some function of the reciprocals of intracluster radii within

each of the resulting clusters. The intracluster similarity of a cluster Cj, 1 = j = k,

denoted as Stra(Cj), is defined by

(9) tra

1

1
() .

1 dist(Centroid)
j

j

j n

l

n
S C

I

 22

Here, nj is the number of items in cluster Cj, 1 = l = nj, Il is the l-th item in cluster

Cl, and dist(Il, Centroid) calculates the distance between Il and the centroid of Cj,

which is the intracluster radius of Cj. To smooth the value of Stra(Cj) and allow for

possible singleton clusters 1 is added to the denominator and numerator.

4.2. Intracluster similarity for one clustering result C

Denoted as Stra(C), Intracluster similarity for one clustering result C is defined by

(10)
tra1

tra

()
() .

k

jS C
S c

k

Here, k is the number of resulting clusters in C.

4.3. Intercluster similarity

It can be quantified via some function of the reciprocals of intercluster radii of the

clustering centroids. The intercluster similarity for one of the possible clustering

results C, denoted as Ster(C), is defined by

(11) ter 2

1

1
() .

1 dist(Centroid , Centroid)
k

j

n
S C

Here, k is the number of resulting clusters in C, 1 =j= k, Centroidj is the centroid of

the j-th cluster in C, Centroid2 is the centroid of all centroids of clusters in C. We

compute intercluster radius of Centroidj by calculating dist(Centroidj, Centroid2),

which is distance between Centroidj, and Centroid2. To smooth the value of Ster(C)

and allow for possible all-inclusive clustering result, 1 is added to the denominator

and the numerator.

4.4. Clustering fitness

The Clustering Fitness (CF) for one of the possible clustering results C is defined

by

(12)
tra

ter

1
CF * .S

S

Here, 0 < < 1 is an experiential weight. The symbol * indicates multiplication.

The present work considers =0.5.

4.5. Sum of squared errors

In the present work, Sum of Squared Errors (SSE) is also computed for all the

clustering results to measure the clustering performance [6]. The clustering

performance is considered to be good if the corresponding SSE is less when

compared to the other clustering techniques. The SSE is computed using the

following formula

(13)
1

1
SSE | |.

i j

k

i j

j X C

X
N

 23

Here, Xi is a vector from the dataset, j is the means of the cluster Cj, k is the

number of clusters and N is the number of vectors in the dataset. |Xi – j| denotes the

distance between Xi and j. The objective of clustering is to minimize the within-

cluster sum of squared errors. The lesser the SSE, the better the goodness of fit is.

5. Experiment and results

Experiments are carried out on the system with Intel(R) Core i7-3770 K with

3.50 GHz processor speed, 8GB RAM with 1666FSB, Windows 7 OS and using

JDK1.7.0_45. Separate modules are written for each algorithm to observe the CPU

time for clustering any dataset by keeping the same cluster seeds for all methods.

I/O operations are eliminated and time observed is strictly for clustering of the data

(Table 1).

Magic Gamma, Poker Hand, and Letter Recognition datasets are used for the

present work from UCI ML dataset repository [14]. An important issue in

evaluating data analysis algorithms is the availability of representative data. When

real-life data is hard to obtain or when its properties are hard to modify for testing

various algorithms, synthetic data becomes an appealing alternative. The present

work also uses three synthetic datasets that are generated by an algorithm for

generating multivariate normal random variables [27]. The first synthetic dataset is

generated assuming all clusters have different means and different covariance

matrices. The second synthetic dataset is generated assuming some clusters have the

same mean but different covariance matrices. The third synthetic dataset is

generated assuming some clusters have the same covariance matrix but different

means.

Table 1. Datasets

Data set Number of points Number of dimensions

Letter Recognition Data 20,000 16

Magic Gamma data 19,020 10

Poker Hand data 1,025,010 10

Synthetic data-1 50,000 10

Synthetic data-2 50,000 10

Synthetic data-3 50,000 10

All the algorithms are studied by executing on each dataset by varying number

of clusters (i.e., k=10, 11, 12, 13, 14, 15). The details of execution time, clustering

fitness and SSE of each algorithm are separately given in the tables below for each

dataset.

5.1. Observations on letter recognition dataset

The Tables 2, 3 and 4 consist of the execution time, the cluster fitness and Sum of

Squared Error (SSE), respectively, of algorithms discussed in sections 2 and 3 and

the Cluster Package of Purdue University performed on Letter Recognition dataset.

The observations are also shown in the Figs 1, 2 and 3.

 24

Table 2. Execution time of each clustering method (s)

K StEM KMEM HbEMKM Cluster 3.6.7

10 16.4120 5.9210 0.2440 17.5760

11 6.4330 11.4470 0.3360 20.0250

12 14.0750 6.5540 0.4930 26.4340

13 7.6010 5.8790 0.3880 24.1890

14 5.1380 8.9930 0.4240 30.7420

15 13.5860 6.1920 0.7500 41.3680

Fig. 1. Letter recognition dataset: Execution times

Table 3. Clustering fitness of each clustering method

K StEM KMEM HbEMKM Cluster 3.6.7

10 2.6258 2.7286 2.9425 2.7812

11 2.6063 2.9516 3.1282 2.7391

12 2.7610 2.8908 3.1003 2.7088

13 2.8867 3.1064 3.2270 2.9507

14 3.0719 3.3224 3.4473 2.8795

15 2.9324 3.0599 3.3460 3.0419

Fig. 2. Letter recognition dataset: Clustering fitness

Table 4. SSE of each clustering method

K StEM KMEM HbEMKM Cluster 3.6.7

10 58.31780253 54.90029903 46.79034965 59.54343871

11 56.81365607 50.53051120 43.76738443 59.06663898

12 55.26046620 49.59847946 43.60821184 55.55461758

13 52.24618292 47.06660999 41.57619654 54.98634779

14 52.43310568 46.24255323 39.85697243 53.61458606

15 52.74977604 47.52093477 39.76810321 51.85401078

 25

Fig. 3. Letter recognition dataset: Sum of squared errors

5.2. Observations on magic gamma dataset

Tables 5, 6 and 7 consist of the execution time, the cluster fitness and Sum of

Squared Error (SSE), respectively, of algorithms discussed in Sections 2 and 3 and

the Cluster Package of Purdue University performed on Magic Gamma dataset. The

observations are also shown in the Figs 4, 5 and 6.

Table 5. Execution time of each clustering method (s)

K StEM KMEM HbEMKM Cluster 3.6.7

10 3.5360 0.7920 0.1830 7.2890

11 3.7360 4.0920 0.1110 10.2680

12 3.2410 3.1720 0.2420 9.3120

13 3.2390 4.9610 0.2570 11.0620

14 6.8540 7.9350 0.4070 9.5590

15 5.9050 3.3490 0.5020 18.6780

Fig. 4. Magic gamma dataset: Execution times

Table 6. Clustering fitness of each clustering method

K StEM KMEM HbEMKM Cluster 3.6.7

10 29.8434 46.1219 50.8960 34.9529

11 35.9602 40.2215 46.6300 36.0443

12 37.5347 44.2417 57.5562 38.4638

13 34.8555 41.3342 52.9504 40.7634

14 33.7390 39.9490 52.9743 41.0526

15 42.8234 46.1663 61.7020 39.9385

 26

Fig. 5. Magic gamma dataset: Clustering fitness

Table 7. SSE of each clustering method

K StEM KMEM HbEMKM Cluster 3.6.7

10 10235.04311 6336.868507 5116.794358 9619.032540

11 9578.544208 8140.627114 5013.559560 8606.290689

12 9873.706092 7544.572959 4409.876943 8838.627792

13 9272.422300 8045.302214 4658.203266 8743.184190

14 9398.092913 7830.483924 4397.280683 8191.174528

15 8646.400371 6528.632337 3803.336041 8620.268594

Fig. 6. Magic gamma dataset: Sum of squared errors

5.3. Observations on Poker hand dataset

The tables 8, 9 and 10 consist of the execution time, the cluster fitness and Sum of

Squared Error (SSE), respectively, of algorithms discussed in Sections 2 and 3 and

the Cluster Package of Purdue University performed on Poker Hand dataset. The

observations are also shown in Figs 7, 8 and 9.

Table 8. Execution time of each clustering method (s)

K StEM KMEM HbEMKM Cluster 3.6.7

10 66.1490 224.7950 15.5420 1016.9140

11 74.0110 107.9470 23.3930 2557.5940

12 78.4610 82.4270 31.0430 3328.3360

13 85.2930 72.0570 29.0900 3434.1700

14 91.0140 332.3750 46.2370 3160.3870

15 117.2070 238.8700 28.6360 2809.5350

 27

Fig. 7. Poker hand dataset: Execution times

Table 9. Clustering fitness of each clustering method

K StEM KMEM HbEMKM Cluster 3.6.7

10 1.3840 2.7620 2.8951 1.2293

11 1.6828 2.8351 2.9882 1.8606

12 1.5570 2.9154 3.0631 1.3815

13 1.4044 2.9795 3.1120 1.0973

14 1.5571 3.0186 3.1739 1.5624

15 1.8413 3.0663 3.2148 1.0539

Fig. 8. Poker hand dataset: Clustering fitness

Table 10. SSE of each clustering method

K StEM KMEM HbEMKM Cluster 3.6.7

10 61.89049571 40.41746868 39.33511213 72.07099026

11 57.49226138 38.17264347 37.30469352 62.23416768

12 59.57113812 36.38456914 35.82492696 70.92287882

13 61.55035153 35.23419731 34.83422455 72.85375279

14 58.56628704 34.80452906 33.53945731 73.87162564

15 56.33032095 33.82117461 32.75190094 71.93356843

 28

Fig. 9. Poker hand dataset: Sum of squared errors

5.4. Observations on Synthetic dataset-1

Tables 11, 12 and 13 consist of the execution time, the cluster fitness and SSE,

respectively, of algorithms discussed in Sections 2 and 3 and the Cluster Package of

Purdue University performed on Synthetic dataset-1. The observations are also

shown in Figs 10, 11 and 12.

Table 11. Execution time of each clustering method (s)

K StEM KMEM HbEMKM Cluster 3.6.7

10 3.8230 3.3670 0.6580 43.3850

11 5.6100 2.9100 0.8740 46.5140

12 6.1160 3.9880 0.9400 59.1600

13 4.9520 4.2760 1.3410 70.7840

14 4.4550 3.7160 1.0860 87.9630

15 4.7690 6.8270 0.9680 106.1600

Fig. 10. Synthetic dataset-1: Execution times

Table 12. Clustering fitness of each clustering method

K StEM KMEM HbEMKM Cluster 3.6.7

10 582.8037 989.8852 1070.4906 862.1022

11 719.8391 1002.2908 1080.2918 901.5273

12 690.8997 1043.5350 1135.5673 897.9433

13 663.8376 1049.8692 1143.5548 380.6306

14 763.8713 1081.2933 1165.1284 443.3503

15 842.4782 1107.4315 1200.3491 361.4750

 29

Fig. 11. Synthetic dataset-1: Clustering fitness

Table 13. SSE of each clustering method

K StEM KMEM HbEMKM Cluster 3.6.7

10 14628710.78 11859786.85 11684878.89 14388425.51

11 14386916.86 11658179.86 11468010.80 13455719.67

12 13874673.81 11491360.59 11251086.05 13535376.15

13 14099367.22 11385248.64 11110137.28 20481277.55

14 13589123.08 11212795.22 11046519.80 25434272.93

15 13452374.50 11267402.97 10862782.33 21592712.96

Fig. 12. Synthetic dataset-1: Sum of squared errors

5.5. Observations on synthetic dataset-2

Tables 14, 15 and 16 consist of the execution time, the cluster fitness and Sum of

Squared Error (SSE), respectively, of algorithms discussed in sections 2 and 3 and

the Cluster Package of Purdue University performed on Synthetic dataset-2. The

observations are also shown in Figs 13, 14 and 15.

Table 14. Execution time of each clustering method (s)

K StEM KMEM HbEMKM Cluster 3.6.7

10 3.8420 2.6790 0.6660 30.8250

11 4.9020 2.9210 0.8630 51.8800

12 4.5760 3.9120 0.9290 49.4800

13 7.4250 5.1100 1.0130 64.8300

14 7.1170 3.6620 1.0750 87.2220

15 5.7130 3.9850 1.1530 88.0840

 30

Fig. 13. Synthetic dataset-2: Execution times

Table 15. Clustering fitness of each clustering method

K StEM KMEM HbEMKM Cluster 3.6.7

10 592.9165 985.5797 1064.7669 479.4660

11 705.1030 998.8906 1083.0545 505.4192

12 616.7459 1028.0205 1071.5066 391.3777

13 865.7343 1040.6712 1148.6615 435.4822

14 761.9546 1080.9615 1174.8407 321.3893

15 775.9452 1096.7161 1180.8662 412.5189

Fig. 14. Synthetic dataset-2: Clustering fitness

Table 16. SSE of each clustering method

K StEM KMEM HbEMKM Cluster 3.6.7

10 14439664.00 11760241.27 11598373.61 20164991.50

11 13902439.10 11528187.47 11355916.26 21276089.23

12 14232153.20 11421357.02 11287930.24 21633831.68

13 13415780.69 11319653.67 11024847.95 21181605.38

14 13336198.27 11100700.03 10882717.53 23815685.30

15 13320932.07 10941351.39 10743553.26 21087020.41

 31

Fig. 15. Synthetic dataset-2: Sum of squared errors

5.6. Observations on Synthetic dataset-3

Tables 17, 18 and 19 consist of the execution time, the cluster fitness and SSE,

respectively, of algorithms discussed in Sections 2 and 3 and the Cluster Package of

Purdue University performed on Synthetic dataset-3. The observations are also

shown in Figs 16, 17 and 18.

Table 17. Execution time of each clustering method (s)

K StEM KMEM HbEMKM Cluster 3.6.7

10 8.2650 2.0130 0.8030 31.9960

11 4.1960 3.6610 0.7170 60.8990

12 4.5890 2.4560 0.7870 48.1750

13 5.7860 4.2670 1.0130 70.2460

14 6.2350 8.0820 0.7250 62.2360

15 5.7190 4.9670 0.9640 95.2090

Fig. 16. Synthetic dataset-3: Execution times

Table 18. Clustering fitness of each clustering method

K StEM KMEM HbEMKM Cluster 3.6.7

10 623.6250 972.4719 1048.2655 500.3920

11 671.4153 982.1240 1066.9712 391.8017

12 670.1226 1026.8664 1106.1198 419.4653

13 797.2359 1039.7200 1116.5491 372.0694

14 872.9962 1048.6642 1157.4691 397.6201

15 685.2117 1075.6261 1149.7448 332.1400

 32

Fig. 17. Synthetic dataset-3: Clustering fitness

Table 19. SSE of each clustering method

K StEM KMEM HbEMKM Cluster 3.6.7

10 13456811.43 11348281.15 11197451.26 19005111.06

11 13810971.74 11258784.69 11072963.24 19915617.9

12 13190851.64 10946003.08 10842930.4 19915392.35

13 13235505.84 10976305.12 10717404.62 21071287.76

14 12527770.20 11236068.19 10616547.71 19920287.74

15 13107521.88 10636008.11 10406779.38 21017062.74

Fig. 18. Synthetic dataset-3: Sum of squared errors

6. Conclusion

The proposed algorithm for Hybridization of EM and K-means is consistently

taking less computational time with all the tested datasets. The algorithm also takes

less computational time when compared to the Cluster-3.6.7 package from Purdue

University. The proposed algorithm also produces the results with higher clustering

fitness values than the other algorithms including Cluster-3.6.7. It is also observed

that the proposed algorithm produces the clustering results with lesser SSE values

than the other algorithms including the Cluster-3.6.7 package. Therefore, the

present work proposes Hybridization of EM and K-means algorithms as a faster

clustering technique with improved performance.

 33

R e f e r e n c e s

1. F r a l e y, C., A. E. R a f t e r y. Model-Based Clustering, Discriminant Analysis, and Density

Estimation. – Journal of the American Statistical Association, Vol. 97, 2002, No 458, p. 611.

2. A d e b i s i, A. A., O. E. O l u s a y o, O. S. O l a t u n d e. An Exploratory Study of K-Means and

Expectation Maximization Algorithms. – British Journal of Mathematics & Computer

Science, Vol. 2, 2012, No 2, pp. 62-71.

3. W u, X., V. K u m a r, J. R. Q u i n l a n, J. G h o s h, Q. Y a n g, H. M o t o d a, G. J. M c L a c h l a n,

A. N g, B. L i u, P. S. Y u, Z.-H. Z h o u, M. S t e i n b a c h, D. J. H a n d, D. S t e i n b e r g.

Survey Paper: Top 10 Algorithms in Data Mining. – Knowledge and Information Systems,

Vol. 14, 2008, pp. 1-37.

4. M a c Q u e e n, J. Some Methods for Classification and Analysis of Multivariate Observations. – In:

Proc. of 5th Berkeley Symposium on Mathematics, Statistics and Probability, Vol. 1, 1967,

pp. 281-296.

5. M c L a c h l a n, G. J., T. K r i s h n a n. The EM Algorithm and Extensions, 2/e. John Wiley &

Sons, Inc., 2007.

6. H a n, J., M. K a m b e r. Data Mining Concepts and Techniques, 2/e. New Delhi, India, Elsevier,

Inc., 2007.

7. T a n, P.-N., M. S t e i n b a c h, V. K u m a r. Introduction to Data Mining, 1/e. Pearson Education,

2007.

8. Y e u n g, K. Y., C. F r a l e y, A. M u r u a, A. E. R a f t e r y, W. L. R u z z o. Model-Based

Clustering and Data Transformations for Gene Expression Data. – Bioinformatics, Vol. 17,

2010, No 10, pp. 977-987.

9. B r a d l e y, P. S., U. M. F a y y a d, C. A. R e i n a. Scaling EM (Expectation-Maximization)

Clustering to Large Databases. Technical Report, Microsoft Research, MSR-TR-98-35,

1999.

10. K ö r t i n g, T. S., L. V. D u t r a, L. M. G. F o n s e c a, G. J. E r t h a l. Assessment of a Modified

Version of the EM Algorithm for Remote Sensing Data Classification. – In: Proc. of

Iberoamerican Congress on Pattern Recognition (CIARP). São Paulo, Brazil, LNCS 6419,

2010, pp. 476-483.

11. K ö r t i n g, T. S., L. V. D u t r a, L. M. G. F o n s e c a, G. E r t h a l, F. C. da S i l v a.

Improvements to Expectation-Maximization Approach for Unsupervised Classification of

Remote Sensing Data. GeoINFO, Campos do Jordão, SP, Brazil, 2007.

12. A g g a r w a l, N., K. A g g a r w a l. A Mid-Point Based K-Mean Clustering Algorithm for Data

Mining. – International Journal on Computer Science and Engineering, Vol. 4, 2012, No 6,

pp. 1174-1180.

13. H a n, X., T. Z h a o. Auto-K Dynamic Clustering Algorithm. – Journal of Animal and Veterinary

Advances, Vol. 4, 2005, No 5, pp. 535-539.

14. UCL Machine Learning Repository

http://archive.ics.uci.edu/ml/datasets.html

15. R a d e v a, I. Multi-Criteria Models for Clusters Design. – Cybernetics and Information

Technology, Vol. 13, 2013, No 1, pp. 18-33.

16. R a o, V. S. H., M. V. J o n n a l a g e d d a. Insurance Dynamics – A Data Mining Approach for

Customer Retention in Health Care Insurance Industry. – Cybernetics and Information

Technologies, Vol. 12, 2012, No 1, pp. 49-60.

17. J o l l o i s, F. X., M. N a d i f. Speed-up for the Expectation-Maximization Algorithm for

Clustering Categorical Data. – J. Glob Optim, Vol. 37, 2007, pp. 513-525.

18. M e n g, X.-L., D. V a n D y k. The EM Algorithm – An Old Folk-Song Sung to a Fast New Tune.

– Journal of the Royal Statistical Society, Vol. 59, 1997, No 3, pp. 511-567.

19. N a g e n d r a, K. D. J., J. V. R. M u r t h y, N. B. V e n k a t e s w a r l u. Fast Expectation

Maximization Clustering Algorithm. – International Journal of Computational Intelligence

Research, Vol. 8, 2012, No 2, pp. 71-94.

20. J o l l o i s, F.-X., M. N a d i f. Speed-up for the Expectation-Maximization Algorithm for

Clustering Categorical Data. – Journal of Global Optimization, Vol. 37, 2007, No 4,

pp. 513-525.

http://archive.ics.uci.edu/ml/datasets.html

 34

21. N e a l, R., G. E. H i n t o n. A View of the EM Algorithm That Justifies Incremental, Sparse, and

Other Variants, Learning in Graphical Models. MA, USA, Kluwer Academic Publishers,

1998.

22. X u, R., D. W u n s c h II. Survey of Clustering Algorithms. – IEEE Transactions on Neural

Networks, Vol. 16, 2005, No 3, pp. 645-678.

23. K e a r n s , M., Y. M a n s o u r, A. N g. An Information-Theoretic Analysis of Hard and Soft

Assignment Methods for Clustering, Uncertainty in Artificial Intelligence. – In: Proc. of 13th

Conference Annual Conference on Uncertainty in Artificial Intelligence (UAI-97), San

Francisco, CA, Morgan Kaufmann, 1997, pp. 282-293.

24. D u d a, R. O., P. E. H a r t, D. G. S t o r k. Pattern Classification, 2/e. New Delhi, Wiley-India

Edition, 2007.

25. P o r c u, E m i l i o, M o n t e r o, J o s e-M a r t a, S c h l a t h e r, M a r t i n. Advances and

Challenges in Space-Time Modelling of Natural Events. – In: Lecture Notes in Statistics.

Vol. 207. Berlin, Heidelberg, Springer-Verlag, 2012.

26. Purdue University Cluster Software.

https://engineering.purdue.edu/~bouman/ software/cluster/

27. A m i t a v a, G., H. S. W. K. P i n n a d u w a. A FORTRAN Program for Generation of

Multivariate Normally Distributed Random Variables. – Computers & Geosciences, Vol. 13,

1987, No 3, pp. 221-233.

https://engineering.purdue.edu/~bouman/%20software/cluster/

