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Abstract: Feature selection is a vital problem which needs to be effectively solved in 

knowledge discovery in databases and pattern recognition due to two basic reasons: 

minimizing costs and accurately classifying data. Feature selection using rough set 

theory is also called attribute reduction. It has attracted a lot of attention from 

researchers and numerous potential results have been gained. However, most of them 

are applied on static data and attribute reduction in dynamic databases is still in its 

early stages. This paper focuses on developing incremental methods and algorithms 

to derive reducts, employing a distance measure when decision systems vary in 

condition attribute set. We also conduct experiments on UCI data sets and the 

experimental results show that the proposed algorithms are better in terms of time 

consumption and reducts’ cardinality in comparison with non-incremental heuristic 

algorithm and the incremental approach using information entropy proposed by 

authors in [17].    

Keywords: Rough set, decision systems, attribute reduction, reduct, metric. 

1. Introduction 

Feature selection plays a critical role in data mining and machine learning. It arises 

from the need to improve time consumption, the overburden when dealing with 

analysis large data and the abundance of data. Feature selection aims to decide on 

taking a subset consisting of most relevant attributes which preserve the interpretation 

as the original attribute set and to validate the subset with respect to the analysis goals.  
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Rough set theory by Professor Z d z i s l a w  P a w l a k  [13] right after its start-

up has been recognized as a mathematical tool for data analysis, especially vague 

data. The philosophy of rough set theory is to approximate unknown concepts by 

existing knowledge structure in a knowledge base. Rough set-based feature selection 

means to determine an appropriate subset of attributes that can preserve the ability to 

classify the set of objects without transformation the data.  

In the latest fifteen years, there is a rapid growth of interests to attribute 

reduction. Among proposed techniques, heuristic methods are the most popular.  The 

common points of heuristic methods typically consist of two steps:  the first one is to 

define evaluation criteria for chosen features and the second is to give strategies for 

searching [1, 2, 5-8, 12, 16, 17]. J. Liang and other authors (see [9, 18]) classify 

attribute reduction methods based on heuristic functions into four categories: 

positive-region reduction, Shannon’s entropy reduction, Liang’s entropy reduction 

and combination entropy reduction.  

However, the amount of research on dynamic databases is inadequate. 

Meanwhile, in the real world today, data usually is updated and changed with time. 

It can vary from adding or deleting objects or features to updating existing objects. 

In these cases a straightforward solution could be applied, that is to carry repeatedly 

the exist algorithms to finding new reduced feature subsets. Nevertheless, the time 

spent in re-computation is not trivial, especially when the number of objects or 

features being added, deleted or updated is large. This triggers research on new 

methods for dynamic information systems. Among them, the most effective 

techniques usually are incremental methods.  

Recent studies on incremental methods to find reducts on dynamic decision 

tables have employed different evaluation criteria. In [7, 8, 20], authors used positive 

region and discernibility matrix for reduction algorithms when adding new objects. 

W. Qian and other authors proposed an incremental algorithm for feature reduction 

in decision tables using dependency function in the case of adding or deleting a 

feature subset (see [16]). Using information entropy is a trend which has been 

mentioned in a number of studies. In [11, 17], authors constructed formulas for 

updating three entropies (Shannon’s entropy, Liang entropy and combination 

entropy) when adding or deleting objects. Using these entropies, they propose 

incremental algorithms for finding reducts. In [5], authors deal with the variation of 

decision tables from the angle of updating one object with a similar philosophy as 

methods in [11, 17]. However, the criteria proposed are quite complex in terms of 

representative formulas and have not yet completely dealt with dynamic decision 

tables. To deal with the variation of the decision tables and complex formulas, we 

propose using metric distance - a major effective approach to understand the different 

between two objects in algebra, geometry, set theory… L i a n g, L i  and Q i a n  [9] 

review the measures in rough set theory from the angle of distance. In this study, 

authors prove that most measures in rough set theory can be converted to distance 

measures. So that, using distance metric could be a potential trend for the simplicity 

in representation and computation but remain effective on rough set-based results. 

Up to date, according to our best knowledge, not many researches on distance-

based feature selection have been conducted. In [2], authors use variant Jaccard 
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distance for the reduct algorithm and prove that their methods belong to the group of 

Liang entropy methods mentioning above. However, this research is not completely 

different from entropy methods – in [2] authors note that the distance used in 

proposed algorithms actually is equal to the conditional Liang entropy [10]. In [12], 

authors construct a metric distance and propose the metric-based algorithm for 

attribute reduction. They also prove that the reducts are better to compare with 

Liang’s entropy methods in terms of cardinality of reducts. However, the method can 

only be applied for static decision tables. The potential of using metric in attribute 

reduction and the incompleteness of the work in [12] motivates us to develop the 

study. In this paper, we use the proposed distance to construct incremental algorithms 

for finding reducts in dynamic decision systems in cases of adding and deleting a 

subset of condition attributes. To corroborate advantages of the algorithms, 

experiments on UCI data sets are conducted to compare our method with two other 

cases: Re-implementing the reduct heuristic algorithm for the varied attribute set and 

the incremental method using entropies in [17].  

The paper is organized as follows. Basic concepts of rough set theory and metric 

based reduction [12] are recalled in Section 2. In Section 3, at first we work out the 

incremental formulas to infer the metric from the original one after a subset of 

condition attribute is added or deleted from decision systems. Then we suggest two 

algorithms for finding reducts. Experimental analysis is presented in Section 4. 

Section 5 is the conclusion of the paper and further points for research in the future. 

2. Preliminaries  

In this section we summary some basic concepts in rough set theory [13] and metric 

based attribute reduction [12]. 

Definition 1 (information system). An information system is a couple  

IS = (U, A) where U is a finite nonempty set of objects and A is a finite nonempty set 

of features. Each 𝑎 ∈ 𝐴 determines a map 𝑎: 𝑈 → 𝑉𝑎 where Va is the value set of a. 

Definition 2 (indiscernibility relation). Given information system IS = (U, A), 

for each 𝑃 ⊆ 𝐴 a binary relation IND(P) on U which is also called indiscernibility 

relation is defined as IND(𝑃) = {(𝑢, 𝑣) ∈ 𝑈 × 𝑈|∀𝑎 ∈ 𝑃, 𝑎(𝑢) = 𝑎(𝑣)}.  
IND(P) is an equivalence relation and determines a partition of U. Let U/IND(P) 

(briefly U/P) denotes a family of all equivalence classes of the relation IND(P) and 

[u]P = {v  U | (u, v)  IND(P) u  U}. Then, U/P = {[u]P | u  U}.  

Given an information system IS = (U, A), 𝐵 ⊆ 𝐴 and  𝑋 ⊆ 𝑈,  

𝐵𝑋 = {𝑢 ∈ 𝑈|[𝑢]𝐵 ⊆ 𝑋 and 𝐵𝑋 = {𝑢 ∈ 𝑈|[𝑢]𝐵 ∩ 𝑋 ≠ ∅} are respectively called  

B-lower approximation and B-upper approximation of X respect to B. These two sets 

are used to approximate the set X in rough set theory. 

A decision system (or decision table) is an information system (U, A), where A 

includes two separate subsets: condition attribute subset C and decision attribute 

subset D. So that, a Decision System (DS) could be written as DS = (𝑈, 𝐶 ∪ 𝐷) where  

𝐶 ∩ 𝐷 = ∅. 
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Assuming that DS = (𝑈, 𝐶 ∪ 𝐷) is a decision system, Di denotes an equivalence 

class of partition U/D, then U/D ={Di}. POS𝐶(𝐷) = ⋃ (𝐶𝐷𝑖)𝐷𝑖∈𝑈/𝐷  is called  

C-positive region of D. One can easily obtain that POS𝐶(𝐷) is a set of objects 

belonging to U which are partitioned by IND(C) right into decision classes of U/D.  

In an information system, not all the features are necessary for recognition or 

classification [3]. The concept of attribute reduction was first introduced by 

P a w l a k  [13] which targets to eliminate irrelevant or redundant features in such that 

the discernible ability of the attribute set is preserved. The remaining feature set after 

elimination is called a reduct [3, 4]. 

Research directions related to reduct in decision tables have attracted the interest 

of many researchers in recent years [14, 15] in which attribute reduction is one of 

important topics. Attribute reduction methods generally consists of two basic steps: 

Feature evaluation and searching mechanism. In the first step, up to now many 

proposals have been suggested while in the second step, most of searching strategies 

are heuristic. In the next, we briefly present the attribute reduction method using a 

metric as criteria for attribute evaluation in [12].  

Definition 3 [12]. Given a decision system DS = (𝑈, 𝐶 ∪ 𝐷), for each 𝑃 ⊆ 𝐶,  

𝐾(𝑃) = {[𝑢𝑖]𝑃|𝑢𝑖 ∈ 𝑈 is called a knowledge of P on U. Each element of K(P) is a 

class in 𝑈/𝑃, also referred as a knowledge granule. Let denote family of all knowledge 

on 𝑈 by K(𝑈). For any 𝐾(𝑃), 𝐾(𝑄)  K(𝑈), the metric between 𝐾(𝑃), 𝐾(𝑄) is defined 

as 

𝑑(𝐾(𝑃), 𝐾(𝑄)) = 1 −
1

|𝑈|
∑

|[𝑢𝑖]𝑃 ∩ [𝑢𝑖]𝑄|

|[𝑢𝑖]𝑃 ∪ [𝑢𝑖]𝑄|

|𝑈|

𝑖=1

. 

Proposition 1 [12]. Given a decision system DS = (𝑈, 𝐶 ∪ 𝐷). Note  

𝑈/𝐶 = {𝐶1, 𝐶2, … , 𝐶𝑚} and 𝑈/𝐷 = {𝐷1, 𝐷2, … , 𝐷𝑛}, then  

𝑑(𝐾(𝐶), 𝐾(𝐶 ∪ 𝐷)) = 1 − ∑ ∑
|𝐶𝑖 ∩ 𝐷𝑗|2

|𝑈||𝐶𝑖|

𝑛

𝑗=1

𝑚

𝑖=1

. 

Definition 4 [12]. Given a decision system DS = (𝑈, 𝐶 ∪ 𝐷) and 𝑅 ⊆ 𝐶. R is a 

reduct of C based on metric d if it satisfies two following conditions: 

(1)   𝑑(𝐾(𝑅), 𝐾(𝑅 ∪ 𝐷)) = 𝑑(𝐾(𝐶), 𝐾(𝐶 ∪ 𝐷));   

(2)   ∀𝑟 ∈ 𝑅𝑑(𝐾(𝑅 − {𝑟}), 𝐾(𝑅 − {𝑟} ∪ 𝐷)) ≠ 𝑑(𝐾(𝐶), 𝐾(𝐶 ∪ 𝐷)). 

Definition 5 [12]. Given a decision system DS = (𝑈, 𝐶 ∪ 𝐷), 𝐵 ⊆ 𝐶 and  

𝑏 ∈ 𝐶 − 𝐵.  The significance SIG𝐵(𝑏) of b with respect to B is  

SIG𝐵(𝑏) = 𝑑(𝐾(𝐵), 𝐾(𝐵 ∪ 𝐷)) − 𝑑(𝐾(𝐵 ∪ {𝑏}), 𝐾(𝐵 ∪ {𝑏} ∪ 𝐷)). 

3. Proposed algorithms for finding the reduct based on metric when the 

condition attribute set is varied 

Proposed results are herein explained in terms of the following notions: Given a 

decision system DS = (𝑈, 𝐶 ∪ 𝐷). Assume that P is the conditional set which is added 

or deleted to DS and 𝑈/𝐶 = {𝐶1, 𝐶2, … , 𝐶𝑚};  𝑈/𝐷 = {𝐷1, 𝐷2, … , 𝐷𝑛 }.   
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3.1. Finding reduct in decision systems when adding a condition attribute set 

When adding P into C, the partition of U by 𝑃 ∪ 𝐶 is finer than the partition of U by 

C. We can assume in that case some equivalence classes are unchanged while the 

others are partitioned into smaller equivalence classes. Note 𝑈/(𝐶 ∪ 𝑃) =
{𝐶1,  𝐶2, , … 𝐶𝑘 , 𝑃1, 𝑃2, … , 𝑃𝑙}  where Pi is a subset of Cj, j = k+1, …, m.  

Proposition 2. The incremental formula for the metric d after adding condition 

attribute set P is  

𝑑(𝐾(𝐶 ∪ 𝑃), 𝐾(𝐶 ∪ 𝑃 ∪ 𝐷)) = 𝑑(𝐾(𝐶), 𝐾(𝐶 ∪ 𝐷)) − ∆, 

where ∆=
1

|𝑈|
(∑ ∑ ∑

|𝐶𝑖
𝑡∩𝐷𝑗|2

|𝐶𝑖
𝑡|

𝑡𝑖
𝑡=1

𝑛
𝑗=1

𝑚
𝑖=𝑘+1 − ∑ ∑

|𝐶𝑖∩𝐷𝑗|2

|𝐶𝑖|
𝑛
𝑗=1

𝑚
𝑖=𝑘+1 ). 

P r o o f :  According to Proposition 1,  

𝑑(𝐾(𝐶 ∪ 𝑃), 𝐾(𝐶 ∪ 𝑃 ∪ 𝐷)) = 1 −
1

|𝑈|
(∑ ∑

|𝐶𝑖 ∩ 𝐷𝑗|2

|𝐶𝑖|

𝑛

𝑗=1

𝑘

𝑖=1

+ ∑ ∑
|𝑃𝑖 ∩ 𝑌𝑗|2

|𝑃𝑖|

𝑛

𝑗=1

𝑙

𝑖=1

). 

Assume that each equivalence class Ci, i = k+1, …, m, is partitioned to ti classes: 

𝐶𝑖 = 𝐶𝑖
1 ∪ 𝐶𝑖

2 ∪ … ∪ 𝐶𝑖
𝑡𝑖. 

Then, 

𝑑(𝐾(𝐶 ∪ 𝑃), 𝐾(𝐶 ∪ 𝑃 ∪ 𝐷)) = 1 −
1

|𝑈|
(∑ ∑

|𝐶𝑖 ∩ 𝐷𝑗|2

|𝐶𝑖|

𝑛

𝑗=1

𝑘

𝑖=1

+ ∑ ∑
|𝑃𝑖 ∩ 𝑌𝑗|2

|𝑃𝑖|

𝑛

𝑗=1

𝑙

𝑖=1

) = 

= 1 −
1

|𝑈|
(∑ ∑

|𝐶𝑖∩𝐷𝑗|2

|𝐶𝑖|
+𝑛

𝑗=1
𝑘
𝑖=1 ∑ ∑

| ⋃ 𝐶𝑖
𝑡𝑡𝑖

𝑡=1 ∩𝐷𝑗|2

|⋃ 𝐶𝑖
𝑡𝑡𝑖

𝑡=1 |

𝑛
𝑗=1

𝑚
𝑖=𝑘+1 )= 

= 1 −
1

|𝑈|
(∑ ∑

|𝐶𝑖 ∩ 𝐷𝑗|2

|𝐶𝑖|
+

𝑛

𝑗=1

𝑘

𝑖=1

∑ ∑ ∑
|𝐶𝑖

𝑡 ∩ 𝐷𝑗|2

|𝐶𝑖
𝑡|

𝑡𝑖

𝑡=1

𝑛

𝑗=1

𝑚

𝑖=𝑘+1

) = 

= 1 −
1

|𝑈|
(∑ ∑

|𝐶𝑖 ∩ 𝐷𝑗|2

|𝐶𝑖|
+

𝑛

𝑗=1

𝑘

𝑖=1

∑ ∑
|𝐶𝑖 ∩ 𝐷𝑗|2

|𝐶𝑖|
+

𝑛

𝑗=1

𝑚

𝑖=𝑘+1

∑ ∑ ∑
|𝐶𝑖

𝑡 ∩ 𝐷𝑗|2

|𝐶𝑖
𝑡|

𝑡𝑖

𝑡=1

𝑛

𝑗=1

𝑚

𝑖=𝑘+1

− 

− ∑ ∑
|𝐶𝑖 ∩ 𝐷𝑗|2

|𝐶𝑖|

𝑛

𝑗=1

𝑚

𝑖=𝑘+1

) = 1 −
1

|𝑈|
(∑ ∑

|𝐶𝑖 ∩ 𝐷𝑗|2

|𝐶𝑖|
+

𝑛

𝑗=1

𝑘

𝑖=1

∑ ∑
|𝐶𝑖 ∩ 𝐷𝑗|2

|𝐶𝑖|

𝑛

𝑗=1

𝑚

𝑖=𝑘+1

) − 

−
1

|𝑈|
( ∑ ∑ ∑

|𝐶𝑖
𝑡 ∩ 𝐷𝑗|2

|𝐶𝑖
𝑡|

𝑡𝑖

𝑡=1

𝑛

𝑗=1

𝑚

𝑖=𝑘+1

− ∑ ∑
|𝐶𝑖 ∩ 𝐷𝑗|2

|𝐶𝑖|

𝑛

𝑗=1

𝑚

𝑖=𝑘+1

) = 𝑑(𝐾(𝐶), 𝐾(𝐶 ∪ 𝐷)) − ∆, 

where  

∆=
1

|𝑈|
(∑ ∑ ∑

|𝐶𝑖
𝑡∩𝐷𝑗|2

|𝐶𝑖
𝑡|

𝑡𝑖
𝑡=1

𝑛
𝑗=1

𝑚
𝑖=𝑘+1 − ∑ ∑

|𝐶𝑖∩𝐷𝑗|2

|𝐶𝑖|
𝑛
𝑗=1

𝑚
𝑖=𝑘+1 ). 

We show later a simple example to illustrate the incremental formula.  

Example 1. Consider DS = (𝑈, 𝐶 ∪ 𝐷) as in Table 1. P is incremental attribute 

set consisting of a1 and a2, 

𝑈/𝐷 = {{𝑥1, 𝑥5, 𝑥8}, {𝑥2, 𝑥4, 𝑥9}, {𝑥3, 𝑥6, 𝑥7},  

𝑈/𝐶 = {𝐶1 = {𝑥1, 𝑥4}, 𝐶2 = {𝑥2, 𝑥3, 𝑥5, 𝑥9}, 𝐶3 = {𝑥6}, 
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𝐶4 = {𝑥7}, 𝐶5 = {𝑥8}}; 𝑈/(𝐶 ∪ 𝑃) = {𝐶1
1 = {𝑥1}, 𝐶1

2 = {𝑥4}, 

𝐶2
1 = {𝑥2, 𝑥9}, 𝐶2

2 = {𝑥3, 𝑥5}, 𝐶3, 𝐶4, 𝐶5}; 𝑑(𝐾(𝐶), 𝐾(𝐶 ∪ 𝐷) =
7

18
. 

When adding P to C, three classes 𝐶3, 𝐶4, 𝐶5 are unchanged;𝐶1, 𝐶2 are 

partitioned to sub classes 𝐶1
1, 𝐶1

2 and 𝐶2
1, 𝐶2

2. Calculate ∆=
1

6
  thus 

𝑑(𝐾(𝐶 ∪ 𝑃),    𝐾(𝐶 ∪ 𝑃 ∪ 𝐷)) =
7

18
−

1

6
=

2

9
. 

Table 1. An example of incremental DS 

U 

P C 
D 

a1 a2 a3 a4 a5 

x1 1 0 0 1 0 2 

x2 0 1 0 1 1 1 

x3 0 0 0 1 1 0 

x4 0 0 0 1 0 1 

x5 1 0 0 1 1 2 

x6 1 0 0 0 0 0 

x7 1 1 0 0 1 0 

x8 1 0 1 0 0 2 

x9 0 1 0 1 1 1 
 

Base on Definition 8 of significance of attributes and the incremental formula 

in Proposition 2, we suggest an incremental algorithm for reduct computation as 

following.  

Algorithm 1. A metric-based Incremental Algorithm (IA) for attribute 

reduction in decision systems when adding a condition attribute set (IA_MBAR) 

Input: A decision system DS = (𝑈, 𝐶 ∪ 𝐷), Core(𝐶) set of C, Reduct set RC of 

C and added set P (P  C = ) 

Output: Reduct 𝑅 of 𝐶 ∪ 𝑃  

Step 1. Compute  

𝑈/(𝐶 ∪ 𝑃) =

= {𝐶1,  𝐶2, , … 𝐶𝑘 ,  𝐶𝑘+1
1 ,  𝐶𝑘+1

2 , … ,  𝐶𝑘+1
𝑡𝑘+1 ,  𝐶𝑘+2

1 ,  𝐶𝑘+2
2 , … , 𝐶𝑘+2

𝑡𝑘+2 , … ,  𝐶𝑚
1 ,  𝐶𝑚

2 , … , 𝐶𝑚
𝑡𝑚} 

Step 2. Compute 𝑑(𝐾(𝐶 ∪ 𝑃), 𝐾(𝐶 ∪ 𝑃 ∪ 𝐷))  

//According to Proposition 2 

Step 3. Core(𝑃) = ∅ 

Step 4. For each a  P  

Step 5. If 𝑑(𝐾(𝑃 − {𝑎}), 𝐾(𝑃 − {𝑎} ∪ 𝐷)) ≠ 𝑑(𝐾(𝑃), 𝐾(𝑃 ∪ 𝐷)) then  

Core(𝑃) = Core(𝑃) ∪ {𝑎}  
Step 6. 𝑅 = 𝑅𝐶 ∪ Core(𝑃) 

Step 7. If d(K(R), K(R  D)) = d(K(C  P), K(C  P  D) then go to Step 11 

Step 8. While d(K(R), K(R  D)) ≠ d(K(C  P), K(C  P  D) do 

Step 9. Begin 
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For each 𝑎 ∈ 𝐶 ∪ 𝑃 − 𝑅 compute SIG𝑅(𝑎) 

Select  𝑎𝑚 such that SIG𝑅(𝑎𝑚) = Max𝑎∈𝐶∪𝑃−𝑅{SIG𝑅(𝑎)} 

𝑅 = 𝑅 ∪ {𝑎𝑚} 
  End 

Step 10. For each 𝑎 ∈ 𝑅  Compute 𝑑(𝐾(𝑅 − {𝑎}), 𝐾(𝑅 − {𝑎} ∪ 𝐷)) 

If 𝑑(𝐾(𝑅 − {𝑎}), 𝐾(𝑅 − {𝑎} ∪ 𝐷)) = 𝑑(𝐾(𝐶 ∪ 𝑃), 𝐾(𝐶 ∪ 𝑃 ∪ 𝐷)) 

then 𝑅 = 𝑅 − {𝑎} 

Step 11. Return  R 

In Algorithm 1, the time complexity for computing 𝑈/(𝐶 ∪ 𝑃) is O(|C ∪ P||U|) 

according to the quick partition algorithm proposed by X u  et al. [19]. The time 

complexity of the incremental metric computation is O(|U|2); From Steps 3 to 6, time 

complexity for computing the Core is O(|P|2|U|). The time complexity for the While 

loop 8 is O(|U||C ∪ P|2). Step 10 to eliminate dispensable attributes from 𝑅 has time 

complexity of O(|U||C ∪ P|). So the time complexity of the Algorithm 1 is  

O((|U||C ∪ P|2 + |U|2). In case of repetition the Algorithm in [12] for the new condition 

attribute set C ∪ P, the time complexity is O(|U||C ∪ P|2 + |C ∪ P||U|2).  

In our later experiments, for the data set where C ∪ P is not large, time 

improvement seems little in comparison. However, in the large databases the 

improvement in time consumption is considerable. 

3.2. Finding reduct in decision systems when deleting a condition attribute set 

When deleting a set P from C (P  C), the partition of U by 𝑃 − 𝐶 is coarser than  

the partition of U by C. Assuming that some equivalence classes are unchanged  

while the others are united from several classes. Note  
𝑈

𝐶−𝑃
= {𝐶1,  𝐶2, … , 𝐶𝑟,  𝐶𝑟+1, 𝐶𝑟+2, … ,  𝐶𝑘}, 

where 𝐶𝑖 =∪ 𝐶𝑡 ,   𝑖 = 𝑟 + 1, … , 𝑘;    r + 1 ≤ t ≤ m; k ≤ m. 

Proposition 3. The incremental formula for the metric d after deleting condition 

attribute set P from C is: 

𝑑(𝐾(𝐶 − 𝑃), 𝐾(𝐶 − 𝑃 ∪ 𝐷)) = 𝑑(𝐾(𝐶), 𝐾(𝐶 ∪ 𝐷)) + ∆, 

where ∆=
1

|𝑈|
(∑ ∑

|𝐶∩𝑌𝑗|2

|𝐶𝑖|

𝑛
𝑗=1

𝑚
𝑖=𝑟+1 − ∑ ∑

|𝐶𝑖∩𝑌𝑗|2

|𝐶𝑖|

𝑛
𝑗=1

𝑘
𝑖=𝑟+1 ). 

P r o o f : Similarly implying as Proposition 2, we have  

𝑑(𝐾(𝐶 − 𝑃), 𝐾(𝐶 − 𝑃 ∪ 𝐷)) = 1 −
1

|𝑈|
∑ ∑

|𝐶𝑖 ∩ 𝐷𝑗|2

|𝐶𝑖|

𝑛

𝑗=1

𝑚

𝑖=1

= 

= 1 −
1

|𝑈|
(∑ ∑

|𝐶𝑖 ∩ 𝐷|2

|𝐶𝑖|

𝑛

𝑗=1

𝑟

𝑖=1

+ ∑ ∑
|𝐶𝑖 ∩ 𝐷𝑗|2

|𝐶𝑖|

𝑛

𝑗=1

𝑘

𝑖=𝑟+1

) = 
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= 1 −
1

|𝑈|
(∑ ∑

|𝐶𝑖 ∩ 𝐷|2

|𝐶𝑖|

𝑛

𝑗=1

𝑟

𝑖=1

+ ∑ ∑
|𝐶𝑖 ∩ 𝐷|2

|𝐶𝑖|

𝑛

𝑗=1

𝑚

𝑖=𝑟+1

+ ∑ ∑
|𝐶𝑖 ∩ 𝐷𝑗|2

|𝐶𝑖|

𝑛

𝑗=1

𝑘

𝑖=𝑟+1

− 

− ∑ ∑
|𝐶𝑖∩𝐷|2

|𝐶𝑖|
𝑛
𝑗=1

𝑚
𝑖=𝑟+1 ) = 1 −

1

|𝑈|
(∑ ∑

|𝐶𝑖∩𝐷|2

|𝐶𝑖|
𝑛
𝑗=1

𝑚
𝑖=1 ) +

+
1

|𝑈|
(∑ ∑

|𝐶𝑖∩𝐷|2

|𝐶𝑖|
𝑛
𝑗=1

𝑚
𝑖=𝑟+1 − ∑ ∑

|𝐶𝑖∩𝐷𝑗|2

|𝐶𝑖|

𝑛
𝑗=1

𝑘
𝑖=𝑟+1 ) = 

= 𝑑(𝐾(𝐶), 𝐾(𝐶 ∪ 𝐷)) + ∆, 

where  ∆=
1

|𝑈|
(∑ ∑

|𝐶𝑖∩𝐷|2

|𝐶𝑖|
𝑛
𝑗=1

𝑚
𝑖=𝑟+1 − ∑ ∑

|𝐶𝑖∩𝐷𝑗|2

|𝐶𝑖|

𝑛
𝑗=1

𝑘
𝑖=𝑟+1 ). 

Algorithm 2. A metric-based incremental algorithm for attribute reduction in 

decision systems when deleting a condition attribute set 

Input: A decision system DS = (𝑈, 𝐶 ∪ 𝐷), Core(𝐶) set of C, reduct set RC on 

C and deleted set P 

Output: Reduct 𝑅 of 𝐶 − 𝑃  

Step 1. 𝑅 = 𝑅𝐶  

Step 2. If 𝑃 ∩ 𝑅 = ∅ go to Step 9 

Step 3. 𝑅 = 𝑅 − 𝑃 

Step 4. Compute 𝑈/(𝐶 − 𝑃) = {𝐶1, 𝐶2, … , 𝐶𝑟, 𝐶𝑟+1, 𝐶𝑟+2, … , 𝐶𝑘}. Compute 

𝑑(𝐾(𝐶 − 𝑃), 𝐾(𝐶 − 𝑃 ∪ 𝐷))  

//According to Proposition 3 

Step 5. If 𝑑((𝐾(𝑅), 𝐾(𝑅 ∪ 𝐷)) = 𝑑((𝐾(𝐶 − 𝑃), 𝐾(𝐶 − 𝑃 ∪ 𝐷)) go to Step 9 

Step 6. While 𝑑((𝐾(𝑅), 𝐾(𝑅 ∪ 𝐷)) ≠ 𝑑((𝐾(𝐶 − 𝑃), 𝐾(𝐶 − 𝑃 ∪ 𝐷)) do 

Step 7. Begin 

For each 𝑎 ∈ 𝐶 − 𝑃 − 𝑅 compute SIG𝑅(𝑎) 

Select 𝑎𝑚 such that SIG𝑅(𝑎𝑚) = Max𝑎∈𝐶−𝑃−𝑅{SIG𝑅(𝑎)} 

R = R ∪ {am} 

     End 

Step 8. For each 𝑎 ∈ 𝑅  

Compute 𝑑(𝐾(𝑅 − {𝑎}), 𝐾(𝑅 − {𝑎} ∪ 𝐷)) 

If 𝑑(𝐾(𝑅 − {𝑎}), 𝐾(𝑅 − {𝑎} ∪ 𝐷)) = 𝑑(𝐾(𝐶 − 𝑃), 𝐾(𝐶 − 𝑃 ∪ 𝐷)) then 

𝑅 = 𝑅 − {𝑎} 

Step 9. Return  R 

By similar inducements, the time complexity for the Algorithm 2 when deleting 

a condition attribute set P from a decision system is O(|U|2 + |C – P|2|U|). 

In theory, the two incremental algorithms are not dramatically improved in time 

consumption. However, in reality, when just some classes are changed during the 

variant of the condition attribute set, the time improvement is considerable. 
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4. Experimental analysis 

Our experiments aim to two goals: First, to evaluate the performance of Algorithm 1 

in comparison to non-incremental algorithm [12]; second, to evaluate the 

effectiveness of Algorithm 1 in comparison with incremental algorithms for reducts 

in [17]. The reason we choose proposed algorithms in [17] since using information 

entropy for attribute reduction is quite well known in research works. 

To conduct the experiments, we get six data sets from UCI databases which are 

briefly described in Table 2. In the data sets, condition attributes will be denoted by 

1, 2, 3,… /C/. Experiments are carried out on Windows 7 PCs with configuration is 

Intel(R) Core (TM) i3, CPU (2.66 GHz), 4.00 GB of RAM. Algorithms are 

programmed with C# on Microsoft Visual Studio 2010. 

Table 2. Experimental data files 

Order Data files 
Number 

of objects 

Number of condition 

attributes 

Number 

of classes 

1 Hepatitis.data 155 19 3 

2 Lung-cancer.data 32 56 4 

3 Import-85.data 205 25 6 

4 kr-vs-kp.data 3196 36 2 

5 Dermatology.data 366 34 6 

6 Backup-large.data 307 35 19 

4.1. Experiments to evaluate the performance of the proposed incremental algorithms 

IA_MBAR in comparison with non-incremental Algorithm [12] 

For each data set in the Table 2, we carry out followings: 

Select 50% condition attributes (from attribute 1 upward) and decision attributes 

as the start decision system and run the algorithm in [12] on this data for the reduct. 

For the last 50% condition attributes, at first time we get 50% attributes as the 

additional set. Then, we put the whole set (100%) for the second addition. Run the 

algorithm [12] and IA_MBAR on incremental data for the results showed in the  

Table 3. 
 

Table 3. Experimental results comparing the MBAR algorithm and IA_MBAR algorithm 

Data files 

Adding 

incremental 

condition 

attributes, % 

Algorithm [12] IA_MBAR algorithm 

Reducts Time, s Reducts Time, s 

Hepatitis. 

data 

50 

100 

2, 3, 15 

2, 15, 16 

0.310 

0.327 

2, 3, 15 

2, 15, 16 

0.012 

0.015 

Lung-

cancer. data 

50 

100 

3, 4, 9, 25, 32 

3, 4, 9, 43 

0.582 

0.620 

3, 4, 9, 25, 32 

3, 4, 9, 43 

0.040 

0.052 

Import-

85.data 

50 

100 

1, 2, 7, 11, 14, 16 

1, 2, 7, 14, 20, 21 

2.342 

2.839 

1, 2, 7, 11, 14, 16 

1, 2, 7, 14, 20, 21 

0.386 

0.422 

kr-vs-kp 
.data 

50 
100 

1- 8, 10- 13, 15-18, 20, 

21, 23-27 
1, 3- 7, 10- 13, 15- 18,  

20-28, 30, 31, 33-36 

206.232 
219.250 

1-8, 10-13, 15-18, 20, 21, 

23-27 
1, 3-7, 10-13, 15-18,  

20-28, 30, 31, 33- 36 

19.254 

 
23.256 

Dermato-
logy.data 

50 
100 

1-4, 9, 14, 15, 22 
1, 4, 9, 15, 22, 33, 34 

3.286 
3.853 

1-4, 9, 14, 15, 22 
1, 4, 9, 15, 22, 33, 34 

0.414 
0.462 

Backup-

large.data 

50 

100 

1-4, 6, 7, 8, 10, 16, 22 

1, 3, 4, 6, 7, 8, 10, 16, 29 

1.422 

1.840 

1-4, 6, 7, 8, 10, 16, 22 

1, 3, 4, 6, 7, 8, 10, 16, 29 

0.124 

0.162 
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Results in Table 3 show that the reducts are the same for both algorithms but the 

running time of the incremental algorithm is decreased, especially when the data is 

large (such as in kr-vs-kp.data). The results illustrate effectiveness and efficiency of 

the incremental approach for finding reducts.   

4.2. Experiments to compare the IA_MBAR algorithm with DIA_RED algorithm 

using entropies in [17] 

The target of the experiments is to evaluate the efficiency of the proposed incremental 

algorithm IA_MBAR in comparison with the other incremental algorithm DIA_RED 

in [17] using Liang entropy, Shannon’s entropy and combination entropy. In our 

experiments, six data sets are employed as in Table 2 and similar to the experiments 

above, at first we choose 50% condition attributes from 1 upward and the decision 

attributes as the start decision systems. Then we divide the last 50% attributes into 

two parts as incremental sets and conduct experiments on the new decision system 

after adding these sets with both DIA_RED and IA_MBAR algorithms. 

4.2.1. Results of the experiments to compare the IA_MBAR algorithm with the 

DIA_RED algorithm using Shannon’s entropy 

Results in Table 4 show that the two reducts in both algorithms are identical in cases 

of adding 50 or 100% incremental set. These outcomes clearly illustrate the 

theoretical results which proved in [12] that Shannon’s entropy based reduct is the 

same as metric based reduct. However, the running time for our proposed incremental 

algorithm IA_MBAR is less than the running time of the algorithm DIA_RED. This 

is more obvious in large data (such as in kr-vs-kp.data). 

Table 4. Experimental results when running IA_MBAR and DIA_RED using Shannon’s entropy 

Data files 

Adding 

incremental 
condition 

attributes, 

% 

DIA_RED (using Shannon’s entropy) IA_MBAR 

Reducts Time, s Reducts Time, s 

Hepatitis.
data 

50 
100 

2, 3, 15 
2, 15, 16 

0.018 
0.022 

2, 3, 15 
2, 15, 16 

0.012 
0.015 

Lung-

cancer. 
data 

50 

100 

3, 4, 9, 25, 32 

3, 4, 9, 43 

0.042 

0.067 

3, 4, 9, 25, 32 

3, 4, 9, 43 

0.040 

0.052 

Import-

85.data 

50 

100 

1, 2, 7, 11, 14, 16 

1, 2, 7, 14, 20, 21 

0.426 

0.612 

1, 2, 7, 11, 14, 16 

1, 2, 7, 14, 20, 21 

0.386 

0.422 

kr-vs-kp 
.data 

50 
 

100 

1-8, 10-13, 15-18, 20, 21, 
23-27 

1, 3-7, 10-13, 15-18, 20-

28, 30, 31, 33-36 

22.254 
 

28.256 

1-8, 10-13, 15-18, 20, 
21, 23-27 

1, 3-7, 10-13, 15-18,   

20-28, 30, 31, 33-36 

19.254 
 

23.256 

Dermato-

logy.data 

50 

100 

1-4, 9, 14, 15, 22 

1, 4, 9, 15, 22, 33, 34 

0.418 

0.486 

1-4, 9, 14, 15, 22 

1, 4, 9, 15, 22, 33, 34 

0.408 

0.462 

Backup-

large.data 

50 

100 

1-4, 6, 7, 8, 10, 16, 22 

1, 3, 4, 6, 7, 8, 10, 16, 29 

0.186 

0.210 

1-4, 6, 7, 8, 10, 16, 22 

1, 3, 4, 6, 7, 8, 10, 16, 29 

0.124 

0.162 
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Table 5. Experimental results when running IA_MBAR and DIA_RED using Liang’s entropy in [17] 

Data files 

Adding 

incremental 
condition 

attributes, % 

DIA_RED using Liang’s entropy 

(complementary entropy) 
IA_MBAR 

Reducts Time, s Reducts Time, s 

Hepatitis.

data 

50 

100 

2, 3, 15 

2, 15, 16 

0.010 

0.016 

2, 3, 15 

2, 15, 16 

0.012 

0.015 

Lung-

cancer. 

data 

50 

100 

3, 4, 9, 25, 32, 38, 41 

3, 4, 9, 43, 46, 54 

0.038 

0.050 

3, 4, 9, 25, 32 

3, 4, 9, 43 

0.040 

0.052 

Import-

85.data 

50 

100 

1, 2, 6, 7, 11, 14, 15, 16 

1, 2, 7, 14, 18, 20, 21 

0.410 

0.432 

1, 2, 7, 11, 14, 16 

1, 2, 7, 14, 20, 21 

0.386 

0.422 

kr-vs-kp 

.data 

50 

 
100 

1- 8, 10-13, 15-18, 20, 

21, 23-27 
1, 3-7, 10-13, 15-18, 20-

28, 30, 31, 33-36 

20.186 

 
24.128 

1-8, 10-13, 15-18, 20, 

21, 23- 27 
1, 3-7, 10-13, 15-18, 20-

28, 30, 31, 33-36 

19.254 

 
23.256 

Dermato-
logy.data 

50 
100 

1-5, 9, 14, 15, 19, 22 
1, 4, 5, 9, 15, 22, 33, 34 

0.398 
0.406 

1-4, 9, 14, 15, 22 
1, 4, 9, 15, 22, 33, 34 

0.408 
0.462 

Backup-

large.data 

50 

100 

1-4, 6, 7, 8, 10, 16, 22 

1, 3, 4, 6, 7, 8, 10, 16, 29 

0.126 

0.174 

1-4, 6, 7, 8, 10, 16, 22 

1, 3, 4, 6, 7, 8, 10, 16, 29 

0.124 

0.162 

 

4.2.2. Results of the experiments to compare the IA_MBAR algorithm with the 

DIA_RED algorithm using Liang’s entropy (complementary entropy) 

Results in Table 5 show that, for the data set Hepatitis.data, kr-vs-kp.data two 

algorithms give the same reducts. For the last data sets, the reducts obtained by our 

algorithm have smaller cardinality than those ones obtained by DIA_RED. This 

experimental results illustrate for the theoretically proof in [18]. For the running time, 

it can be considered as the same for both algorithms.  

4.2.3. Results of the experiments to compare the IA_MBAR algorithm with the 

DIA_RED algorithm using combination entropy  

Table 6. Experimental results when running IA_MBAR and DIA_RED using combination entropy  

in [17] 

Data files 

Adding 
incremental 

condition 
attributes, % 

DIA_RED (using combination 
entropy) 

IA_MBAR 

Reducts Time, s Reducts Time, s 

Hepatitis.data 50 

100 

2, 3, 15 

2, 15, 16 

0.008 

0.014 

2, 3, 15 

2, 15, 16 

0.012 

0.015 

Lung-cancer. 

data 

50 

100 

3, 4, 9, 25, 32, 38, 41 

3, 4, 9, 43, 46, 54 

0.034 

0.054 

3, 4, 9, 25, 32 

3, 4, 9, 43 

0.040 

0.052 

Import-

85.data 

50 

100 

1, 2, 6, 7, 11, 14, 15, 16 

1, 2, 7, 14, 18, 20, 21 

0.398 

0.424 

1, 2, 7, 11, 14, 16 

1, 2, 7, 14, 20, 21 

0.386 

0.422 

kr-vs-kp.data 50 
 

100 

1-8, 10-13, 15-18, 20, 
21, 23-27 

1, 3-7, 10-13, 15-18, 20-

28, 30, 31, 33-36 

18.258 
 

22.568 

1-8, 10-13, 15-18, 20, 21, 
23-27 

1, 3-7, 10-13, 15-18, 20-

28, 30, 31, 33-36 

19.254 
 

23.256 

Dermatology.
data 

50 
100 

1-5, 9, 14, 15, 19, 22 
1, 4, 5, 9, 15, 22, 33, 34 

0.386 
0.428 

1- 4, 9, 14, 15, 22 
1, 4, 9, 15, 22, 33, 34 

0.408 
0.462 

Backup-

large.data 

50 

100 

1- 4, 6, 7, 8, 10, 16, 22 

1, 3, 4, 6, 7, 8, 10, 16, 29 

0.118 

0.168 

1- 4, 6, 7, 8, 10, 16, 22 

1, 3, 4, 6, 7, 8, 10, 16, 29 

0.124 

0.162 

 

The results in Table 6 show that, the data set Hepatitis.data, kr-vs-kp.data and 

Backup-large.data have the same reducts. For the last four data files, the reducts 
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obtained by our algorithm have smaller cardinality than those ones obtained by 

DIA_RED.  

4.3. Result discussions 

For the experimental results gaining above, we have some discussions as followings: 

Our incremental algorithm IA_MBAR is much more effective in running time 

in comparison with the non-incremental algorithm in [12]. 

To compare with others incremental algorithms, we choose entropy method 

group [17] since these algorithms are quite popular recently as mentioned in the 

introduction of this paper. From the experimental results showed in Tables 4, 5, 6 we 

can conclude that in the case of incremental Shannon’s entropy based reduction our 

reducts is better in terms of running time. For the last two situations of using Liang’s 

and combination entropy, our method give the better reducts in terms of the number 

of attributes. Moreover, these results also consolidate the theoretical research in [18] 

so that to choose our method for gaining reducts in dynamic decision systems when 

condition attribute set varied could be considered, especially when the data is large. 

5. Conclusions 

In the real world today, databases usually grow, change and update. To propose 

effective methods in order to optimize time consumption for carrying algorithms 

finding reducts as well as get the best reduct is a goal of researchers. In this paper, 

we construct mechanisms for updating the metric used in attribute reduction 

algorithms and propose two heuristic algorithms to work out the reducts in the case 

of adding or deleting a condition attribute set from decision systems. Since suggested 

algorithms are not re-implemented on the varied database so that we improve 

calculating time for finding reducts. Experiments on UCI data sets show that the 

algorithms are effectively reduce consuming time in comparison with apply directly 

the non-incremental algorithm  for the varied decision systems. We also do 

comparisons to other incremental method proposing in [17], the results show that our 

method are better in terms of the number of attributes in reducts. Furthermore, we 

have dealt with the case of deleting a set of condition attributes which is not solved 

in the [17]. Besides, employing distance in difference measuring is well known for 

its simplicity and effectiveness and we gained that in this work. Our next step in 

research could be using metric to constructing algorithms for finding reducts in case 

of multi objects varied.  
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