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Abstract: The washout position has great effects on the perception fidelity and the 

movement of the motion simulator. In this paper, the main square error of sensation 

between simulator and vehicle is determined, and the fidelity of the occupant and 

the platform motion performance as a basis to build a model for a single occupant 

optimal washout position measurement. Then, considering the features of the multi-

occupant motion simulator, a concept of the task’s master-crew is proposed, the 

multi-occupant optimal washout position measurement model is built. Then an anti-

aircraft simulator for three occupants is taken as an example of a multi-occupant 

simulator and the optimal washout position measurement model is studied. 

Considering that the basic PSO algorithm has shortcomings such as easy aging and 

falling into local extreme value, a modified algorithm is designed called Adaptive 

Chaos PSO algorithm and applied to the resolution of the models. The results 

showed that the optimal position can make the simulator trainer have a more 

realistic sensation and maintain the safety of the platform, and that the Adaptive 

chaos PSO algorithm can effectively solve the shortcomings of PSO and is very 

useful in the resolution of the model.  

Keywords: Motion Cueing algorithm, multi-occupant, washout position, ACPSO, 

simulator. 

1. Introduction 

The Stewart platform has the advantages of great rigidity, high-force-weight ratio, 

and a mobility of six degrees of freedom of movement. It has been widely used in 

motion simulator systems, such as flight simulators and vehicle simulators [1]. The 

goal of the motion simulator is the reproduction of dynamics such as accelerations 

and rotations. This is an intricate task because the motion hardware displacement is 

subject to limitations. Therefore washout algorithms (also called motion cueing 

algorithm) are required that translate the vehicle motion into valid simulator 
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displacements [1].  Several different types of washout algorithms exist, including 

the classical washout algorithm, the adaptive washout algorithm and the optimal 

washout algorithm. The classical washout algorithm is the most common approach 

and has been widely used [2, 3]. 

The washout position is a key factor for the effects of a motion simulator and 

is essential for the fidelity of the motion cueing. In the existing literature, there is 

not much research on how to choose the optimal washout position. For the single 

crew motion simulator, the washout position is generally considered as the centroid 

of platform or the crew’s vestibular place [4, 5], while with the double crew flight 

simulator is considered as the midpoint of the pilots’ head [6]. The reasons to 

choose these positions are some simple comparisons of several possible points that 

lack depth analysis and clear criteria. In addition, a simulator with three or more 

crew occupants, such as its own anti-aircraft gun, has not yet been specifically 

researched. For these multi-occupant systems, the occupant distribution in different 

positions and sensations may result in a larger variations, so the washout positions 

must be more accurate and rational.  

2. Washout filter and washout position 

The washout filter is a necessary linking part between the movements of the actual 

vehicle and the simulator, and the washout position is an important reference point 

between the parameters of actual movement and the washout algorithm input, 

having a great influence on the simulator [7]. 

2.1.  Classical washout filter 

Many related research projects on the washout filter have been presented in the past 

decades. The classical washout filter is one of the most commonly used, which is 

composed of a linear acceleration high-pass filter, a tilt coordinate low-pass filter 

and an angular velocity high-pass filter [8, 9]. The input signals are specific force 

and angular velocity in the washout position, and the output signal is the platform’s 

pose. The flow chart of a washout filter is shown in Fig. 1, and the details are 

discussed below. 
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Fig. 1. Classical washout filter flow chart  

The specific force xf , yf
 
and zf  

are computed by subtracting g  
from the 

given linear acceleration a. The high frequency components of the specific force are 

obtained by the following 3rd-order HPF: 
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This HPF filters out low-frequency motion signals which tend to cause large 

linear displacement that causes the platform to exceed its limits. The low frequency 

components of the specific force are obtained by the following 2nd-order LPF: 
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The output signals are set after LPF is realized by tilting the platform along the 

x and y axes, causing one to perceive it as a real specific force when the body tilts. 

This is called tilt coordination. In [16], the tilt rate was limited to –5° per 1 s 
preventing the person from perceiving the movement. The pitch angle and roll angle 

are set to 

(3)      LS LSθ ,    .q x p yf g f g    

The high-frequency components of the angular velocity are obtained by the 

following 2nd-order HPF and then integrated to set the angular displacement of the 

platform: 
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2.2.  Influences of washout position 

The motion parameters of the centre of gravity of the vehicle usually cannot be used 

directly and need to be converted to the washout position to balance the platform 

movement and the human sensation. According to the theory of rigid body 

kinematics, the linear acceleration and angular velocity of the washout position are: 

(5)     ,wwCGw rraa VVV
V 




   

,w V


  

where wr


 denotes the relative position vector between the washout position and CG 

(Centre of Gravity) of the vehicle; a  denotes linear acceleration and   denotes 

angular velocity; the subscript CG denotes the centre of gravity of the vehicle and w 

denotes the washout position.  

As can be seen, the washout position influences the input of the washout filter 

directly, and it also influences the displacement of the platform and the perception 

of the occupants in the simulator. So the washout position plays an important role in 

the simulator and needs to be determined precisely. 

3. Single occupant optimal washout position model 

The washout position is of great significance to the simulator, which is closely 

related to the occupants’ sensations and platform displacement. References [4, 10] 

show the chosen method and indicate that it can be chosen at any position on the 
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simulator and most often chosen at the drivers' vestibular center and the mass center 

of the motion platform. Reference [4] compares the washout effects of the 

commonly used washout positions and illustrates that mass center of the upper 

platform is the best position. However, the research above only focused on several 

specific positions without considering other possible positions. At the same time, 

the effect evaluation is mostly qualitative and macro rather than adhering to strict 

quantitative standards. Hence it is essential to make further research on the method 

of washout potion selection. 

3.1.  Optimal washout position measurement criteria of single occupant simulator 

Optimal washout position measurement criteria of the single occupant simulator 

must comprehensively take into account both the platform motion limits and 

occupants’ perception fidelity. The platform movement capacity means to get the 

platform to move as extensively as it can, according to the conditions within its 

actuators’ elongation. The actuator’s elongation il , i = 1, …, 6, can be calculated 

with an inverse kinematic model based on platform attitudes [11, 15] (Euler angles 

p  and displacement 
pS ). 

The fidelity of the occupants’ sensation is measured by two criteria; the 

correlation coefficient r  and the MSE (Mean Square Error) f between actual 

sensation in simulator and sensation of the real vehicle. The correlation coefficient 

is used to evaluate the trend consistency and the MSE is to evaluate the error [9]. 

The function of MSE is  

(6)     
2

0

t

zs ptf f f dt  , 

where zsf  and ptf  are the perception in the real vehicle and the simulator. 

When initial settings are constant, f  and r can be seen as the function of wr  

that denotes the vector of the washout position. The smaller the f and the larger the 

r, the higher the simulation fidelity. So, according to the analysis above, the 

problem of resolving the optimal washout position is a typical Multi-Objective 

Optimization Problem (MOOP) and the required optimization targets are three: 

1) The platform motion should be with less cost, 
6

1

min i

i
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 . 

2) Trends in the occupants’ sensation variation should be similar, namely the 

correlation coefficient should be larger, max(r). 

3) The MSE of the occupants’ perception between the real vehicle and the 

simulator should be a minimum, thus, min(f). 

The restricted condition is the platform movement within its limits, that is to 

say the actuators’ extension within limits: 
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For the problem with restricted conditions, the general method is to convert it 

to an unconstrained situation with a penalty function method, so define the function: 

(8)    
min

6 max

( ) ( ) 0,
 1, 2, , 6.

( ) ( ) 0,

i i

i i

g x l l x
i

g x l x l

  


  
 

Above all, the fitness value function with penalty function with SMUT method 

is 

(9)   

6 12
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1
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F x l x f x m g x
r x



 

     , 

where m  denotes the penalty factor, 1 2 3( , , )x x x x  denotes the vector of the 

parameters to be resolved. The best solution is the vector x that makes F the 

minimum value. 

3.2.  Steps of the single occupant mode algorithm 

The intelligence optimization algorithms are commonly used to solve the multi-

objective optimization problem, such as the Particle Swarm Optimization (PSO) 

algorithm. Aiming at this problem, the schematic diagram is shown in Fig. 2, and 

the concrete steps are seven. 

Step 1. Calculate the vehicle dynamic parameters at certain definite 

conditions, which are linear acceleration CG

Va , angular velocity V , and angular 

acceleration V . Then save them in the memory. 

Step 2. Calculate the sensation in the real vehicle. First, calculate the 

occupants’ motion parameters h  and ha  in the head position based on the relative 

position between occupants’ position and vehicle mass center. Next, transform ha  

to the specific force hf  in inertial frame. Finally, determine the motion sensation 

h  and hf  by letting h  and hf  through the vestibular model. 

Step 3. Based on the position vector between the washout position that the 

optimization algorithm generated and the vehicle mass center, combined with the 

vehicle movement parameters stored in Step 1, calculate motion parameters w  and 

wa  at the washout position. 

Step 4. Calculate the platform motion parameters and the actuator elongation. 

The platform position and orientation can be acquired by letting motion parameters 

in the washout position, noted as p  and pS , through the washout filter, then 

further determine the actuator elongation pl  by the inverse kinematic model. 
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Fig. 2. Diagram of single occupant optimal washout position algorithm 

Step 5. Calculate the occupants’ sensation in the simulator. According to 

angular velocity p , angular acceleration p , and linear acceleration pa  of the 

platform acquired by derivative of p  and pS , combined with the relative position 

vector h_pr  between simulator occupants and upper-platform center and human 

vestibular model, we can determine the occupants’ simulator sensation h_p  and 

h_pf . 

Step 6. Calculate the fitness value of the washout position. According to the 

parameters obtained from the steps above, which are h , hf , h_p , h_pf  and pl , by 

function (9) we can calculate the fitness value F. 

Step 7. Determine the optimal washout position. The optimal position vector 

ix  is the vector that makes fitness value F the minimum, if the end condition is not 

met turn to Step 3 and continue the loop until the end term is met and output the 

optimal value.  
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4. Multi-occupant optimal washout position model 

The single occupant simulator only focuses on one trainer, while the multi-occupant 

simulator usually accommodates three or more trainers located 

in different positions, as well as in different tasks. So the way to obtain the optimal 

washout position for a multi-occupant simulator is different from the single 

occupant simulator. The multi-trainer mode washout position strategy needs to 

balance all the trainers’ sensations and the platform’s motion ability. For these 

reasons, we need to make further research on the optimal washout position model 

for a multi-occupant simulator. 

4.1. Optimal washout position measurement criteria of multi-occupant simulator 

Various simulators often have various trainer quantity and distribution styles, so the 

optimal washout position measurement criteria often have personalized 

characteristics, and the way to solve the problem can be used as reference for 

various types of multi occupant simulators. This section considers a Self-Propelled 

Anti-Aircraft Gun (SPAAG) simulator, which is shown in Fig. 3, as an example to 

resolve its optimal washout position. The approach can be extended to other types 

of multi-occupant simulators. 

Driver

Commander
Gunner

 
Fig. 3. Diagram of the three occupant anti-aircraft gun simulator 

The SPAAG simulator consists of three occupants who are driver, commander 

and gunner. The commander is responsible for commanding and target research. ; 

The gunner is responsible for tracking and shooting. The driver is responsible for 

driving. When performing different tasks, one of the crew tends to play a leading 

role, while the rest of the master crew perform a specific task, such as the driver in 

the driving task. 

The sensations of the trainers in the simulator are different for the distribution 

difference. To ensure the training’s effectiveness, we establish the optimal washout 

position measurement criteria of the multi-occupant simulator that is dominated by 

the training task. That is to say, the task’s master-crew has relatively high sensation 

fidelity while others also have some degree of sensation fidelity within the platform 

motion range. The method is specified by taking the drive task as an example. 

The drive task is an important training subject for the SPAAG simulator.  The 

driver is the master-crew, and the commander and gunner are secondary crew 

members. The measurement criteria must first meet the driver’s sensation fidelity 

and also give consideration to both the commander and gunner. To ensure sensation 

fidelity of all the trainers, the washout point is set at the common washout position 

(the center of the upper platform), demonstrated in [4, 10] as the general rule. The 
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requested measurement criteria under the condition that the commander, gunner and 

driver are no less than 75% and 85% of the sensation respectively, which makes the 

driver’s sensation fidelity the best. So, besides the function (7), the restricted 

sensation condition also needs to meet: 

(10)   s.t. .3,2,1,)(
_

 p
q

f
xf

zxp

p


 

For this restricted condition, the penalty function is defined as 

(11)    .3,2,1,0)()(
_

 p
q

f
xfxh

zxp

pp


  

where pf  and _p zxf  represent the MSE and rule MSE of a certain trainer’s 

sensation. When p  equals 1 or 2, it denotes the parameters for the commander and 

gunner, when the parameter q  is 0.75; if p  equals to 3, it denotes the parameters 

for the driver, when the parameter q  is 0.85. 

Under the restricted conditions above, besides the single mode optimization 

target (1), the optimization targets must also meet the conditions below:  

1) The correlation coefficient of all occupants’ senses should be the maximum, 

that is 

(12)   
3

1

1
max )

( )j jr x

 
  
 
 , 

where ( )jr x  denotes the correlation coefficient and when subscript j  equals to 1, 

2, and 3, it signifies the parameters of the commander, gunner, and driver 

respectively. 

2) The MSE of the driver’s sensation should be the minimum –  min ,jsyf
 

where jsyf  denotes the MSE of the driver. 

Above all, the fitness calculation function constructed with a penalty function 

is 

(13)  
6 3 12 3

1 1

p

1 1 1 1
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where m  and n  denote the penalty factor, x  denotes the vector of the parameters 

to be solved. 

4.2. Steps of the multi occupant mode algorithm 

The process of the multi occupant mode algorithm is shown in Fig. 4. Most of 

parameter calculation methods have been discussed above, so we shall not go into 

further discussion. The main steps are six.  

Step 1. Calculate the vehicle dynamic parameters on a certain condition and 

then save them in the memory. 

Step 2. Calculate the sensations of all occupants in the real vehicle based on 

their position. 
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Step 3. Calculate the sensations of all trainers in the simulator and the 

actuator's elongation based on the trainer’s position and the current washout 

position. 

Step 4. Calculate the correlation coefficients and MSE of all occupants. 

Step 5. Calculate the fitness value based on the parameters above and the 

fitness function of each corresponding to the task. 

Step 6. Define the optimal washout position according to the ending condition 

and if not met, turn to Step 3 and continue the loop until it is met. 
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Fig. 4. Diagram of the multi-occupant optimal washout position algorithm 

5. Adaptive chaos PSO algorithm 

PSO algorithm is a kind of intelligence algorithm that simulates swarm intelligence 

behaviour of nature [187, 198]. The basic and the improved series algorithms can be 

used in the optimal washout position algorithm model. 

5.1.  Theory of adaptive chaos PSO 

The PSO algorithm takes every potential solution as a particle with fitness value 

based on the optimization situation in the D dimension space. Each particle has a 

certain speed that determines its direction and displacement [12]. Particles search 

for the optimal solution in solution space through iterative, the speed and position 

of which is updated by their personal extremum and global extremum. For the i-th 

particle, the speed and position update rule [11] are 
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where k
idx  and k

idv  denote position and speed, k
idbp _  and k

dbg _  denote the personal 

extremum and local extremum,   denotes the inertial factor. The subscript id 

indicates the i-th particle in the d-th dimension; the superscript k  denotes the k-th 

iteration. 

The basic PSO algorithm has a problem of too fast a convergence and being 

too susceptible to fall into local minimum [16]. To improve the performance of the 

PSO algorithm, a modified PSO algorithm with inertial factor adjusted adaptively 

[17] and particles movement following chaos algorithm was proposed which is 

called Adaptive Chaos PSO (ACPSO) algorithm. The main improvements are two. 

1) The inertial factor adjustment strategy is changed from a simple linear 

update strategy to an adaptive update strategy that is based on individual fitness 

value and group average fitness value. The specific contents are: assume the particle 

swarm size is n, and the i-th particle’s fitness value is if , so the average fitness 

value is 
avg

1

1
.

n

i

i

f f
n 

   

The inertial factor adaptive update rules are: 

1.1. if avgif f , the i-th particle has a better performance in swarm so the 

inertial factor can be decreased to accelerate the convergence, the adjusted rule is 

(15)    min
min max min

avg min

( ) if f

f f
   


  


. 

1.2. If avgif f , the i-th particle has a less successful performance in the 

swarm, the inertial factor can be increased to enlarge the search scope, the adjusted 

rule is 

(16)      min
max min

avg min

( ) if f

f f
   


  


, 

where max  and min  are the maximum and minimum value of inertial factor. 

2) To overcome the shortcomings and allow particles to escape from local 

extremum, the chaos theory [13, 14] which has a good random and ergotis character 

was introduced to the particles’ update process.  

When updating the particles, 30 % of the best particles are kept to take the 

chaos search and then the new better particles replace the original old particles. The 

remaining 70 % of particles are regenerated randomly. By doing this the good 

characteristics of chaos algorithm can be used to help the particles which are 

trapped in the local extremum escape and improve the search precision. The chaos 

system model uses the typical logistic mapping equation and the iterative formula is 

(17)     iter 1 iter iter
4 1 , iter 0, 1, 2z z z
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5.2.  Steps of the adaptive chaos PSO algorithm 

According to the discussion above, the steps of the ACPSO algorithm are shown 

below. 

Step 1. Initialize the particle swarm, mainly including the number of particles 

n, dimension of solution space D , and the particles’ speed 
iv  and position ix . Then 

calculate and initialize personal extremum 
bestp  and global extremum 

bestg . 

Step 2. Update particles’ speed and position as function (14), also update 

inertial factor based on function (15) and (16). 

Step 3. Calculate each particle’s fitness value iF . 

Step 4. Take the chaos search and update particles based on the second 

improvement rules. 

Step 5. Update personal and global extremum. For personal extremum, if 

besti
F p , then 

best i
p F ; choose the best bestp  as the global extremum bestg . 

Step 6. According to the end condition, which means the global extremum is 

adequate or meet the maximum number of iteration, determine whether the 

algorithm end or not. If we meet the end conditions then output the results or turn to 

Step 2 and continue the loop. 

6. Results and discussion 

The washout algorithm model is first verified. Then the optimal washout position 

algorithm is simulated and tested, both single mode and multi-mode, and the result 

of the optimal washout position are compared with the common washout position to 

prove the superiority of the optimal washout position algorithm that we propose. 

Lastly, the performance of the PSO and ACPSO used for resolving the proposed 

model are simulated and analysed. 

6.1.  Results of washout algorithm 

The input signals are: the acceleration along x axis direction which is a unit step 

signal and lasts 10 s from 2 up to 12 s, and the signals along other directions are all 

0. The simulation result is shown in Fig. 5. 

Fig. 5a is the platform acceleration along x axis direction, as can be seen in the 

rising edge of the input signal, the platform has a positive sudden acceleration, and 

the falling edge is a reverse sudden acceleration, which means the washout 

algorithm can exactly simulate the sudden movement at the edges of the input 

signal. Fig. 5b is the movement of motion platform showing the platform can timely 

return to neutral so as to ensure sufficient space for the next movement. Fig. 5c is 

the pitch angle of the platform where it can be seen that the platform has a constant 

pitch motion which means that the washout algorithm can accurately simulate the 

sustained acceleration with platform tilt-coordinate strategy. In Fig. 5d, the solid 

line is input specific force and the dotted line is output specific force, and two 

http://dict.youdao.com/search?q=performance&keyfrom=E2Ctranslation
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curves can be seen showing a similar trend and size. So the washout algorithm can 

ensure the trainer’s sensation is the same as the input sensation. 
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            (a)                                    (b)                                  (c)                                     (d)  

Fig. 5. Washout algorithm results: Acceleration (a); displacement (b); pitch angle (c); specific  

force (d) 

6.2.  Simulations and analysis of the optimal washout position algorithm  

The object to be simulated is a certain anti-aircraft gun simulator being built. The 

input signal is shown in Fig. 6 which reveals in Fig. 6a the longitudinal acceleration 

is a unit step signal lasts 10 s; Fig. 6b is pitch angular acceleration signal that shows 

from 2 up to 5.5 s and from 12.5 up to 16 s the value is 2° per 1 s, from 5.5 up to 

12.5 s is –2° per 1 s; inputs signals along other directions are all zero. 

                 
                            (a)                                                        (b)  

Fig. 6. The input test signals: Longitudinal acceleration (a); pitch angular (b) 

Fig. 7 shows the contrasts of the master occupant’s sensations in both single 

and multi-occupant modes. As is shown in the figure, curve A denotes the output 

specific force in the common washout position, curve B denotes the output specific 

force in the real vehicle, curve C denotes the output specific force in the optimal 

washout position. Curves B has similar tendency and size with curve C, which 

means the perception in the two washout positions can both generate the real 

sensation for the trainer or master trainer no matter single or multi occupant mode. 

Compared to the common washout position, the optimal washout position can 

generate a larger signal near the peak, which means the simulation degree is 

relatively higher, about 5 %  higher than the common washout position. 

http://dict.youdao.com/w/longitudinal/
http://dict.youdao.com/w/acceleration/
http://dict.youdao.com/w/longitudinal/
http://dict.youdao.com/w/acceleration/
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Fig. 7. Contrast curves of the occupant sensation:  Single occupant mode (a); multi occupant mode (b) 

Fig. 8 is the contrast curve of the sum of the actuators’ elongation in the multi 

occupant mode, that is 
6

1

(x)
i

i

l


 . The solid line is the curve of the common washout 

position and the dotted curve is the optimal washout position. From the figure it can 

be seen that at both washout position, the curves finally get to zero which means the 

platform returns to the neutral position that meets the actual requirement. 

Additionally, the dotted line mostly has a larger absolute value than the solid line, 

which means that in the optimal washout position the platform movement cost is 

less and maintains the platform movement within its limits. In about 12 seconds the 

optimal position is larger than the common position, which is approximately the 

circle zone. This is because the longitudinal acceleration at this time shifts from  

1 m/s2 to 0, so the platform needs a larger sudden movement to simulate this signal. 

The larger movement means the simulation of the sudden movement is more 

realistic. This phenomenon also proves the advantages of the optimal washout 

position in another side. 

0 5 10 15 20 25
0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

time/s

s
ig

m
a
li
/m

 

 

Optimal position

Common position

 
Fig. 8.  Contrast of the sum of the actuators’ elongation 

Fig. 9 shows the contrast curves of the fitness value with a different searching 

optimization algorithm. The left one is the signal occupant mode and the right one 

is the multi-occupant mode. The solid line curve indicates the result of the PSO 

algorithm and the dotted line curve indicates the result of the ACPSO. Experimental 

results show that the two kinds of optimization algorithms can each find a relatively 

optimal extremum. The ACPSO algorithm eventually has smaller fitness values 

relative to the PSO algorithm, which means that it can effectively jump out of the 

local extremum and further search the global feasible solution space, so the 

optimization effect is better than the PSO algorithm.   

In order to further test the performance of the ACPSO optimization algorithm 

proposed in this paper, the ACPSO optimization algorithm and the PSO 

http://dict.youdao.com/w/longitudinal/
http://dict.youdao.com/w/acceleration/
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optimization algorithm are simulated 10 times each. The maximum iteration for a 

simulation is 50 and the results are shown in Table 1. 

0 5 10 15 20 25 30 35 40 45 50
2.477

2.478

2.479

2.48

2.481

2.482

2.483

2.484

2.485

2.486

Single occupant

 

 

PSO

ACPSO

                        
0 5 10 15 20 25 30 35 40 45 50

0.655

0.66

0.665

0.67

0.675

0.68

0.685

0.69

0.695

Multiple Occupant

 

 

PSO

ACPSO

 
                                   (a)                                                                      (b)  

Fig. 9. Contrast of the fitness value with PSO and ACPSO algorithm: Fitness value of single occupant 

mode (a); fitness value of multi occupant mode (b) 

Table 1 shows the difference between the optimal solution at the 5th 

simulation and the average optimal solution. This is because the solution accuracy 

of the PSO algorithm is related to the initial particle position, and can easily fall 

into local optimal value. The two kinds of results of the ACPSO algorithm are 

basically identical, which means the effectiveness of the ACPSO algorithm is less 

affected by the initial particles’ position and will not reach the local optimal point. 

So, compared to the PSO algorithm, the ACPSO algorithm can achieve better 

global optimal solution with higher precision and has a better performance. 

Table 1. Solutions of the PSO and ACPSO 

Mode 
Optimal solution at 5th simulation Average optimal solution 

PSO ACPSO PSO ACPSO 

Single  
occupant 

[1.8521 0.2633 0.5137] [1.9619 0.2633 0.5919] [1.8736 0.2593 0.4851] [1.9619 0.2634 0.5919] 

Multi- 

occupant  
(drive task) 

[1.9213 0.4644 0.4305] [1.9836 0.9641 0.3806] [1.8321 0.4073 0.4327] [1.9836 0.9641 0.3807] 

7. Conclusion 

The washout algorithm can produce sensations, similar to the actual movement for 

the simulator crew. The washout position is a key factor for motion simulator. In 

this paper, the single occupant optimal washout position model is first proposed 

according to the occupant’s sensation fidelity and motion platform performance. 

Then, based on the single occupant mode, the multi-occupant optimal washout 

position algorithm model is presented based on executed tasks, combined with the 

measurement criteria with specific tasks. Lastly, combined with the chaos 

algorithm, an improved adaptive chaos particle swarm optimization algorithm is 

proposed and applied to the resolution of the proposed models. The simulation 

result shows the efficiency of the items above. The survey above regarding motion 

simulator, especially the multi-occupant motion simulator, is of great significance. 

The proposed ACPSO algorithm can also be used in the study of other multi-

objective optimization problems. 
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