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Abstract: Because face images are naturally two-dimensional data, there have been 

several 2D feature extraction methods to deal with facial images while there are few 

2D effective classifiers. Meanwhile, there is an increasing interest in the multilinear 

subspace analysis and many methods have been proposed to operate directly on these 

tensorial data during the past several years. One of these popular unsupervised 

multilinear algorithms is Multilinear Principal Component Analysis (MPCA) while 

another of the supervised multilinear algorithm is Multilinear Discriminant Analysis 

(MDA). Then a MPCA+MDA method has been introduced to deal with the tensorial 

signal. However, due to the no convergence of MDA, it is difficult for MPCA+MDA 

to obtain a precise result. Hence, to overcome this limitation, a new MPCA plus 

General Tensor Discriminant Analysis (GTDA) solution with well convergence is 

presented for tensorial face images feature extraction in this paper. Several 

experiments are carried out to evaluate the performance of MPCA+GTDA on 

different databases and the results show that this method has the potential to achieve 

comparative effect as MPCA+MDA.  

Keywords: Feature extraction, tensor objects, face recognition, multilinear principal 

component analysis, general tensor discriminant analysis. 

1. Introduction 

On the account of face image being the most common visual pattern in our 

surrounding life, face recognition has attracted much attention from researchers over 

the past several years. It seems that facial image recognition is regarded as a 
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fundamental field of biometrics which has been applied to various areas [1]. 

Meanwhile, most biometric signals have multi-dimensional representation. For 

example, two-dimensional biometric signals include grey-level images of fingerprint, 

palmprint, ear, face and multichannel ElectroEncephaloGraphy (EEG) signals in 

neuroscience. Three-dimensional data includes colour biometric images, Gabor 

faces, silhouette sequences in gait analysis and grey video sequences in action 

recognition [2]. 

Principal Component Analysis (PCA) [3] and Liner Discriminative Analysis 

(LDA) [4] are two of the most popular classical subspace learning methods in many 

existing dimensionality reduction algorithms. PCA seeks an optimal projection 

direction of maximal variation while it does not take the label information of samples 

into account. In contrast, LDA is a supervised method which searches for the optimal 

discriminative subspace by maximizing the ratio between the between-class scatter 

and the within-class scatter. However, applying these linear subspace learning 

methods described above on tensor data need to reshape tensors into vectors first. 

This may lead to overtraining, high computational complexity, and large memory 

requirements. To overcome this shortcoming, several multilinear algorithms which 

can operate directly on the original tensorial data without the limitation of order have 

been proposed recently. 

Multilinear Principal Component Analysis (MPCA) [5], a tensor vision of PCA, 

performs dimensionality reduction in all tensor modes to capture most of the variation 

presented in the original tensors. By the same way, Multilinear Discriminant Analysis 

(MDA) [6], General Tensor Discriminant Analysis (GTDA) [7], Tensor Subspace 

Analysis (TSA) [8], apply LDA, Maximum Scatter Difference (MSD) [9] and LPP 

to transform each mode of the tensors respectively [10]. Moreover, to obtain better 

accuracy, a new method based on MPCA+MDA for face recognition has been 

proposed in reference [11-13]. In that paper, MPCA has been implemented in the 

tensorial data for dimensionality reduction, and then a new data set with a new 

dimension is generated. This new data set will be the inputs for the MDA algorithm 

to learn the most discriminative subspaces of the input samples. Due to the usage of 

MDA after applying the MPCA, not only is this method performed in a much lower-

dimension feature space than the traditional methods, such as LDA and PCA, but it 

can also overcome the small sample size problem [14]. However, like 2DLDA, the 

MDA algorithm does not converge either [5], because the optimization algorithm 

applied to MDA fails to converge. On account of the instability, a stable and precise 

accuracy is difficult to achieve by MDA. 

On the other hand, due to the converged alternating projection, GTDA can 

provide stable recognition accuracy whereas that of MDA cannot. By maximizing the 

between-class variance and minimizing the within-classes variance, GTDA 

decomposes tensors into core tensors and a series of discriminative matrices over 

every modality [15] just like MDA does. Moreover, from the empirical analysis on 

tensorial samples in [16], it is demonstrated that GTDA can achieve the comparative 

results of MDA. Consequently, GTDA can be used here to transform multilinear 

discriminative subspace from high dimensional and high order biometric signals. 

Motivated by the works briefly reviewed above, in this paper, we introduce a new 
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MPCA plus GTDA algorithm to deal with tensorial data instead of MPCA+MDA, 

and expect this novel method to be a better choice. As both MPCA and GTDA 

represent multilinear algorithm, lower dimensionality dilemma and better correct 

recognition rate can be captured. To the best of our knowledge, this is the first study 

that addresses MPCA+GTDA on feature extraction and dimensionality reduction for 

tensor object. 

The remainder of the paper is organized as follows: Section 2 provides a brief 

introduction of multilinear algebra for dimensionality reduction. In Section 3, the 

algorithm of MPCA and GTDA are summarized and discussed in detail firstly. In 

Section 4, we analyse experiment results on several databases to verify the properties 

of the proposed method and compares performance against with the other algorithms. 

Finally, the major findings and conclusions are drawn in Section 5. 

2. Tensor fundamentals 

The notation in this chapter follows the conventions in multilinear algebra, such as 

the notation in [17]. Vectors are denoted by lowercase boldface letters, e.g., x; 

matrices by uppercase boldface, e.g., U; and tensors by calligraphic letters, e.g., A . 

An N-th-order tensor is denoted as 1 2 NI I I  
A R . Their elements are addressed by 

N indices ni , n = 1, …, N, and each ni  addresses the n-mode of A. 

The n-mode unfolding of A  is defined as the nI  dimensional vectors are 

denoted as 

(1)     
 1 1 1n n n NI I I I I

n

      
A R ,  

where the column vectors of  n
A  are gained from A  by varying its index ni  while 

keeping all the other indices fixed. 

The n-mode product of a tensor A  by a matrix U n nJ I
R , denoted by A×nU, 

is a tensor defined as 

(2)              1 1 1 1 2U , , , , , , , , , U , .
n

n n n n N N n n

i

i i j i i i i i j i   A A    

One of the most commonly used tensor decompositions is Tucker, which can be 

regarded as higher-order generalization of the matrix Singular Value Decomposition 

(SVD). Let 1 2 NI I I  
A R  denotes a N-th order tensor, then the Tucker 

decomposition is defined as  

(3)     A = S ×1U(1) ×2U(2)… ×NU(N), 

where 1 2 NP P P  
S R  with n nP I  denotes the core tensor and

       
1 2U u u u

n

n n n n

P
 
 

 is an n nI P  matrix. 

The scalar product of two tensors 1 2, NI I I  
A B R

 
is defined as 

(4)       
1

1 2 1 2, , , , , , , .
N

N Ni i
i i i i i i  A B A B  

The Frobenius norm of 𝒜 is defined as 
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(5)    
 

1 2

1 2

1 2

2

F
1 1 1

, .
N

N

N

II I

i i in
i i i

a
  

    A A A A  

3. Multilinear principal component analysis and general tensor 

discriminant analysis 

As a high-order extension of PCA, MPCA is an unsupervised Multilinear Subspace 

Learning (MSL) algorithm for general tensors targeting variation maximization by 

solving a Tensor-to-Tensor Projection (TTP). Meanwhile, as a multilinear extension 

of MSD, GTDA is a supervised MSL algorithm for performing discriminant analysis 

on general tensor inputs by solving a TTP too. Motivated by Fisherface [4] and 

MPCA+MDA algorithm, we use MPCA algorithm for face image feature extraction 

and dimension reduction and then applying GTDA on the low dimensionality 

features. Finally, nearest neighbor classifier is implemented to classify the computed 

GTDA features. 

3.1. Multilinear principal component analysis 

In this section, the MPCA algorithm is introduced in detail based on the analysis 

introduced in [5]. A set of M tensor object samples  1 2, , , MX X X are available 

for training and each tensor object 1 2 NI I I

m

  
X R . The MPCA objective is the 

determination of the N projection matrices 
  U , 1, ,n n
n I P

n N


 R  that 

maximize the total tensor scatter Y , 

(6)     
  

     

2

F
U U 1

U arg max arg max
n n

M
n

m

m

   Y Y Y , 

where Ym = Xm× Nnn
1

)( T

U   according to Equation (6), .Y
1

Y
1





M

m

m
M

 The 

dimensionality nP
 
for each mode 

 
U

n

 should be known before. 

The N optimization subproblems are solved by finding the mode-n projection 

matrix 
 

U
n

 that maximizes the mode-n total scatter conditioned on the projection 

matrices in all the other modes. Let 
  U , 1, ,
n

n N  be the answer to Equation 

(6), and 
        1 1 1

U , , U , U , , U
n n N 

 be all the other known projection 

matrices, the nP  eigenvectors reside in the matrix 
 

U
n

 corresponding to the largest 

nP  eigen values of the matrix 
 n

 . 

(7)      
 

             
T

T

1

X X U U X Xn n

M
n

m n n m n n
m

 


    , 



 150 

where  
X

m n
 is the mode-n unfolding of mX  and  

(8)     

            1 2 1 2 1
U U U U U U Un

n n N n  


       . 

The projection matrices 
  U
n

are initialized through the Full Projection 

Truncation (FPT) described in [5] and updated one by one with all the others fixed. 

3.2. General tensor discriminant analysis 

GTDA aims to maximize a multilinear extension of the scatter-difference based 

discriminant criterion in [7]. GTDA intends to solve for a TTP 
  U , , 1, ,n n
n I P

n nP I n N


  R  that projects a tensor 1 2 NI I I

m

  
X R  to a 

low-dimensional tensor 1 2 NP P P

m

  
Y R . 

A set of M labelled tensor data samples  1 2, , , MX X X  in

1 2 NII I
 R R R  are available for training with class label cRM. The class label 

for the m-th samples mX
 
is cm = c(m) and there are C classes in total. The between-

class scatter matrix of these tensors is defined as 

(9)       
1

C

B c c

c

M


  Y
Y Y , 

and the within-class scatter of these tensors is defined as 

(10)     
1

m

M

W m c

m

  Y
Y Y , 

where 
  

T

1

U
N

n

m m
n

 Y X , cM  is the number of samples for class c, mc  is the 

class label for the m-th sample mX , the overall mean tensor 



M

m

m
M 1

Y
1

Y  and the 

class mean 
,

1

m
c mm c c

cM 
 Y Y . The objective function of GTDA can be written as 

(11)       
     U U

U arg max arg max
difn n

n

W     
Y YY B

, 

where   is a tuning parameter and is automatically selected during the training 

procedure according to [7]. First, the input tensors (that are the outputs of MPCA) 

should be solved with the mode-n projection matrix conditioned on the projection 

matrices in all the other modes which defined in Equation (5), and then all the new 

tensors are unfolded into a matrix along the n-th-mode. 

The mode-n between-class and within-class scatter matrices can be obtained 

from  
Ŷ

m n
 which is the mode-n unfolding of 

 ˆ n

mY : 
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(12)     
 

         
T

1

S Y Y Y Y
C

n

B c c n n c n n
c

M


  
Y

, 

(13)    
 

         
T

1

ˆ ˆS Y Y Y Y
m m

M
n

W m n c n m n c n
m

  
Y

, 

respectively, where 
   

1

1 ˆY Y
M

n m n
mM 

   and 
   

1,

1 ˆY Y
m

M

c n m n
m c ccM  

  . 

Following Equation (11), the mode-n projection matrix 
 

U
n

 in this conditional 

optimization problem are solved as 

(14)     
 

    )()()()()(

B

)(

U

)( USUtr.USUtrmaxargU
~

Ŷ

T

Ŷ

T

)(

nn

W

nnnnn

n
  

 
  .US.SUtrmaxarg )()()(

B

)(

U ŶŶ

T

)(

nn

W

nn

n
  

This can be treated as an eigenvalue problem and the objective function above 

is maximized only if 
 

U
n

 consists of the nP  eigenvectors of the total tensor scatter-

difference 
   

ˆ ˆ
S S

n n

W 
Y Y

B  associated with the nP  largest eigenvalues. 

As described above, similar to MDA, GTDA aims to maximize the between-

class variation while minimize the within-class variation to achieve the best class 

separation. The difference is that MDA maximizes the ratio of the between-class 

scatter over the within-class scatter while GTDA maximizes a tensor-based scatter 

difference criterion and the projection matrices in GTDA have orthonormal columns. 

3.3. Feature extraction and classification using MPCA plus GTDA 

In the problem of tensor samples recognition, the input training sample  mX  in 

1 2 NII I
 R R R  is projected through MPCA and GTDA for feature extraction. 

With the learned 
  U n n
n I P
R , a series of tensor mY  in a lower-dimensional tensor 

space 1 2 NPP P
 R R R  can be obtained with

     
T T T

1 2

1 2U U U
N

m m N   Y X . Then the nearest-neighbor method can be 

used for the final classification throughout all the experiments owing to its simplicity 

in computation. The algorithmic procedure for MPCA+GTDA is shown in  

Algorithm 1. 

Algorithm 1. The procedure of MPCA+GTDA 

Input: A series of Nth order tensors  1 2 , 1, ,NI I I

m m M
  

 X R , the 

dimension  of feature subspace  , 1, 2, ,nP n N , the tuning parameter in GTDA 

 , and the number of iteration K. 

Output: Low-dimensional representations  1 2 NP P P

m

  
Y R

 
of the input 

samples. 
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Step 1. Pre-processing: Center the input samples as  

 , 1, ,m m m M  X X X ,  where 
1

1 M

m

mM 

 X X . 

Step 2. Initialization: Compute the eigen-decomposition of 

 
   

T

1

M
n

T m n m n
m

 S X XX
, and initialize 

  n
U

 
with the eigenvectors corresponding to 

the most significant nP  eigenvalues of 
 n

TS X . 

Step 3.  Local optimization: 

for 1k  to K do 

    for 1n  to N do 

            for 1m   to M do 

            Calculate the mode-n partial multilinear projection of input tensors  
  ˆ , 1, ,
n

m m MY . 

         end for 

(1) Calculate the mode-n unfolding scatter matrices 

 
         

T

ˆ

1

ˆ ˆ ˆ ˆ
M

n

m n n m n nT
m

S


   Y Y Y Y
Y

, 

(2) Solve for the 
  n

U
 
with the eigenvectors corresponding to the most 

significant nP  eigenvalues of 
 
ˆ

n

T
S

Y
. 

    end for 

If a maximum number of iterations K attains, break and output the current 
  n

U .  

end for 

Compute the feature tensor  

𝒜𝑚 = 𝒳𝑚 ×1 𝐔(1)T
×2 𝐔(2)T

× ⋯ ×𝑁 𝐔(𝑁)T
. 

for 𝑘 = 1 to 𝐾 𝐝𝐨 

    for 𝑛 = 1  to  𝑁  𝐝𝐨 
            for m=1 to M do 

              Calculate the mode-n unfolding local multilinear projection matrices: 
   

 
 

 
 

 
 T T T T1 1 1

1 1 1

n n n N

m m n n N

 

 
    U U U UY X . 

end for 

(1) Calculate mode-n between-class and within-class scatter matrices of 
 n

mY  in Equation (12) and Equation (13), 

(2) Set the 
 n

U with the eigenvectors corresponding to the most 

significant nP  eigenvalues of  
   n n

B
 S S

Y WY
. 

 end for 
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If a maximum number of iterations K attains, break and output the current 
  n

U . 

end for 
Output the feature tensor after projection  

     
T T T

1 2

1 2

N

m m N    U U UY A . 

4. Experiments and results 

In this section, two experiments are designed to evaluate the performance of the 

proposed algorithm. The first one is using ORL face database which obtains 400 face 

images to discuss the effects of the convergence of GTDA. The following 

experiments, which are carried out on face and gait databases, illustrate the efficacy 

of proposed MPCA+GTDA in tensor object recognition and compare its performance 

against state-of-the-art algorithm. All experiments on the Microsoft Windows XP 64-

bits version machine with 2.66 GHz Intel CPU and 32GB memory. For tensor 

operations, we used the tensor toolbox developed by B a d e r  and K o l d a  [21] in 

Matlab. 

4.1. Convergence of GTDA  on ORL database  

The ORL database with 400 different face images is applied. The gray-level face 

images from the ORL database have a resolution of 11292, and 40 subjects with 10 

images each included in the database. Those images of individuals have been taken 

by different characteristics, such as with or without glasses, different facial 

expressions, and facial details. 

In order to study the convergence of MDA and GTDA, the total scatter ratio of 

the between-class scatter over the within-class scatter Ydif after MDA and the total 

scatter difference Ydif after GTDA are plotted against the number of iterations, as a 

function of dimensionality reduction determined by Q [5]. As mentioned earlier, 

MDA algorithm does not converge during the iteration. This result can be seen from 

Fig. 1 that not only the ratio of the between-class scatter over the within-class scatter 

is not the same after every iteration (from 1 to 30), but also the alternating procedure 

for the ratio during the iteration is not monotonic. In contrast, as indicated in Fig. 2, 

applying GTDA on ORL database can obtain well convergence within four iterations. 

Furthermore, simulation results show that there is no observably difference in the 

obtained Ydif when 0.5Q  , while there is a gap when a small Q (Q=0.1) is used. 

This observation demonstrates that the smaller of Q then the convergence of GTDA 

is poorer. Therefore, the number of iteration is set to be three in the following 

experiments. 
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Fig. 1. Evolution of the total scatter ratio Ydif over iterations when MDA is applied in ORL database 

with different 𝑄 

 
Fig. 2. Evolution of the total scatter difference Ydif over iterations when GTDA is applied in ORL 

database with different 𝑄 

4.2. MPCA plus GTDA based face recognition on FERET database 

In this section, the performance of the proposed MPCA+GTDA algorithm is tested 

to compare with that of other methods on the FERFT database. The Facial 

Recognition Technology (FERFT) database [18] which comprises 14126 gray-scale 

face images acquired from 1199 subjects is widely used for evaluating face 

recognition problem. In this experiment, a subset of 1400 faces from 200 subjects is 

selected from the FERET database, seven face images per subject with a resolution 

of80 80 pixels. Fig. 3 depicts some face images from two subjects in FERET 

database. 
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Fig. 3. Sample images of two individual from the FERET database 

A set of experiment are conducted to compare the Face Recognition (FR) 

performance of MPCA+GTDA against PCA+LDA, 2DPCA+2DLDA, MPCA, 

MDA, GTDA and MPCA+MDA. Because of gray-level images are natively second-

order tensors, they are input directly to the multilinear algorithms as 80 80 tensors, 

while for PCA+LDA, they need to be vectorized first. For each subject in a FR 

experiment, L samples are selected randomly from each subject to form the training 

set and the remaining images are used for testing. In order to fairly evaluate the 

effectiveness of the proposed algorithm, we report the recognition accuracies 

averaged by over ten such random repetitions. Taking the fair comparison and 

computational issue in to consideration, all the iterative algorithms (MPCA, MDA 

and GTDA) are terminated by setting the maximum number of iterations K to be 

three. Meanwhile, the FPT initialization and the most descriptive P features are 

selected for recognition. Finally, the simple nearest neighbor classifier with 

Euclidean distance measures is applied for classification of these P extracted features. 

It is easy to understand from Equation (9) and Equation (10), B
Y

 and W
Y

can not be calculated with only one element, so the number of training sample L and 

the number of selected feature P cannot be set to one. In the first test, three images 

per subject were randomly selected for training and the remaining samples were used 

for testing. Fig. 4 shows the recognition accuracy for the PCA+LDA, 

2DPCA+2DLDA, MPCA, MDA, MPCA+MDA, and MPCA+GTDA algorithm 

against P from 2 up to 40. 

From the detailed results, it can be observed that MPCA+MDA and 

MPCA+GTDA methods outperform other algorithms across all dimensionality. 

Besides, when the number of selected feature is small  

( 10P  ), the accuracy of MPCA+MDA is slightly higher than that of 

MPCA+GTDA, and they tend to obtain a comparative results as P increases. This is 

because the difference value has less discrimination than ratio. Therefore, the value 

Q which is used to determine the subspace dimension should be carefully selected to 

capture an appropriate P. Moreover, as supervised method, MDA and GTDA perform 

better than MPCA, and they also gain an analogous correct rate just like the 

conclusion in [16], while PCA+LDA performs the worst. 
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Fig. 4. The recognition rate over dimensions of feature on the FERET face database 

5. Conclusion 

In this paper, a new MPCA+GTDA framework has been proposed for supervised 

dimensionality reduction in face images. This algorithm overcomes the limitation of 

MPCA+MDA and a better convergence and recognition accuracy can be captured. 

The experimental results of comparing with the state-of-the-art algorithms indicated 

that the MPCA+GTDA method is a promising tool for face recognition in research 

and applications. 
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