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Abstract: Traditional wavelet denoising method cannot eliminate complex high-

pressure pipe signals effectively. In the updated wavelet adaptive algorithm, this 

thesis defines the constraints in order to reconstruct the signals accurately. 

According to the minimum mean square error criterion, the results predict the 

weight coefficient and get the optimal linear predictive value. Adopting the 

improved algorithm under the same condition, this thesis concluded that Db6 

increased the complexity of wavelet algorithm by 50% by comparative experiments. 

It will be more conducive to the realization of hardware and the feasibility of real-

time denoising. Dual adaptive wavelet denoising method improved SNR by 50%. 

This denoising method will play a key role in the detection rate of high-pressure 

pipe in the online leakage detection system. 

Keywords: acoustic emission, wavelet de-noising, leakage detection, wavelet 

analysis, acoustic emission signal. 

1. Introduction  

In the acoustic emission leak detection of heater in power plants, the acoustic 

emission signal contains abundant of information related to defect nature and 

various types of interference and noises simultaneously. It has long been a technical 

problem to identify the weak defect signal from the background noise. The impulse 

interference noise caused by occasional factors can be wiped off easily through 

amplitude limiting filter method, median filter method and arithmetic method [1-5]. 

But for complicated and special testing materials, it is difficult to detect defect for 

the randomly distributed background noise which is generated internally, especially 

in some noise material application such as carbon fiber composite, welded joint and 
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laminate material. This noise has a similar frequency distribution feature to acoustic 

emission wave in the reflection inside the material due to the internal structure of 

these materials. Thus it is hard to use the mentioned methods above to isolate the 

background noise from the frequency domain or time domain. Besides, noises are 

very easy to be brought in every links of the acoustic emission wave propagation. 

The noises include loop noise caused by detection system and other causes. And the 

electronic noise caused by pre-amplifier and the frictional noise caused by relative 

mechanical sliding in the loading procedure is more serious. These complicated 

noises have severer effects on acoustic emission signals. SNR deterioration is more 

prominent. Due to all this, the false drop rate and omission rate in acoustic emission 

detection increase. This has already been one of the key factors that influence the 

improvement of the reliability in acoustic emission detecting and evaluating 

technologies [5-8]. Therefore, acoustic emission signal de-noising is one important 

step of acoustic emission signal processing. It is helpful to adopt effective denoising 

pretreatment technology to increase SNR in order to improve the accuracy of 

subsequent acoustic emission signal processing. 

2. De-noising principle for acoustic emission signal based on wavelet 

analysis 

There are many methods to conduct the de-noising of digital signals which can be 

classified as time domain method, frequency domain method and time-frequency 

domain method. Every method has different range of application and application 

effect. For stable signal, frequency domain analysis is generally adopted. The 

frequency feature of signals is extracted through Fourier transform [9], and for 

unstable signal, wavelet analysis method is adopted in most situations [10-12]. 

Acoustic emission signal is featured with unstable randomness and it belongs 

to one-dimensional signals. The de-noising model of one-dimensional signals 

proposed by F u j i t a, M o r i k a z u and S h i n t a n i [13] is as follows: 

(1)    ( ) ( ) ( )x n s n u n   , 

where ( )x n  is the observed signal with noise, and ( )s n  is the true signal; ( )u n  is 

the Gaussian white noise signal, while   is the noise intensity; signal de-noising 

means to acquire the optimum value of assessment ˆ( )s n  of the original signal ( )s n  

from the observed signal ( )x n . 

This thesis adopts wavelet threshold value noise method to deal with the 

acoustic emission signal processing. Through scatter binary row wavelet 

transformation, conducted to acoustic emission signal and then wavelet threshold 

value de-noising method is also conducted to the acoustic emission signal de-

noising. The specific processes are: 1) confirm a wavelet basic function, conduct 

wavelet decomposition to signals at the appropriate decomposition dimension, 

calculate the wavelet decomposition coefficient of noise signal at this dimension;  

2) estimate the noise level of high-frequency coefficients at each dimension and 

then set up a threshold value, use the threshold value method to modify relevant 

wavelet coefficient; 3) conduct wavelet inverse transformation and signal re-
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construction to low-frequency coefficients and the modified high-frequency 

coefficients and thereafter gain the signal estimated value after de-noising process. 

3. The lifting algorithm of wavelet denoising  

Since the construction of wavelet in time domain is directly realized, the complexity 

of lifting algorithm is only half of the original convolution method. The structure of 

the algorithm is simple and the calculation is speedy. Thus, the lifting method has 

become mainstream method of calculating scatter wavelet transformation [14-16]. 

The traditional wavelet transformation algorithm (Mallat algorithm) adopts a 

method of convoluting input signal and high plus low pass filters to realize 

separation of high frequency and low frequency information. However, the 

coefficients of wavelet filter are all decimals. Some results are decimals and upon 

taking the integer of decimals, tons of information will be lost and the re-

construction and de-composition will be irreversible. Consequently, reconstruction 

cannot be realized accurately. But in the lifting scheme, integer transformation is 

operable and it will not affect accurate reconstruction. 

Due to all these advantages mentioned above regarding the lifting algorithm 

and existing problems of acoustic emission wavelet de-noising method, this chapter 

proposed a de-noising algorithm based on lifting acoustic emission signal of 

wavelet. The steps are as follows: 

(1) Confirm the lifting frame type and lifting steps of signals, conduct lifting 

wavelet decomposition to the observed data; 

(2) Extract low frequency smooth signal and high frequency detail signal 

coefficient at each step, which is to acquire new approximate dimension coefficient 

and wavelet coefficient and then conduct condition analysis to wavelet coefficient 

which is to estimate noises of high-frequency coefficients at each step; 

(3) According to the noise estimation, combine the threshold value algorithm 

adopted, set up threshold value and modify high-frequency coefficients at each step;  

(4) Conduct lifting inverse calculation to low-frequency coefficients and 

modified high-frequency coefficients. The reconstructed signals include estimated 

values of noise signal. 

The process of acoustic emission signal lifting wavelet de-noising is as shown 

in Fig. 1. During the de-noising processes, selecting the proper framework type and 

optimizing the threshold value are two important factors in determining the de-

noising effect, like traditional scatter wavelet de-noising. During the de-noising 

process, picking threshold value and optimizing the threshold value are very 

important links. The selection of threshold form needs not only to remove the noise 

effectively, but also to protect useful signals from being harmed. This thesis adopts 

medium-soft threshold value method. This method can dispose wavelet coefficient 

with hard threshold value or soft threshold value respectively according to the 

practical acoustic emission data features. 
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Fig. 1. De-noising process based on lifting wavelet acoustic emission signal 

Besides, lifting steps also need to be considered comprehensively. During the 

lifting calculation process, the length of signal coefficient will be halved gradually 

as the lifting process goes on. After a certain number of steps, the number of signal 

coefficient declines to 1. So the number of steps should not be too large. And in the 

noise estimation of decomposition coefficient at each level, the length of signal 

should not be too short; otherwise the noise level would not be estimated correctly. 

Moreover, the number of lifting steps cannot be too small. 

Every framework structure in the lifting wavelet transform is like the wavelet 

basis function in the traditional wavelet analysis. Different framework structure will 

generate different results in the signal de-noising. Thus, the lifting frame should 

also be optimized when conducting wavelet de-noising. During this process, the 

number of lifting steps is three, and they all need the same threshold value 

calculation method. 

4. Dual self-adaptive lifting wavelet de-noising algorithm 

For one-dimensional acoustic emission signal, signals in different region have 

different features because of the diversity of its generation mechanism. For 

example, carbon fiber composite acoustic emission signal which needs to be 

disposed of in this thesis is unstable random signal. It has two models: bending 

wave and spreading wave. It includes smooth region and mutational region. 

Therefore, the selection of decision criterion should be appropriate. The forecasted 
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weighting coefficient should be adjusted to make weighting coefficient match 

feature region self-adaptively.  

Self-adaptive lifting algorithm first analyzes the signal sequence, selecting 

corresponding updating operator and prediction operator according to the 

sequence’s local features. After that it disposes the signals. It is thus clear that this 

transformation method thinks completely from the perspective of signal, self-

adaptively choosing different filters according to signal features in de-noising 

processes. This method can conduct a complete reconstruction to the signals so that 

it can finish de-noising disposal to the signals effectively. Researches of Z h o u 

D o n g h u a  et al. [18] have proven this point and given an updated self-adaptive 

algorithm. 

In practical application, for some signals of fixed features, two methods can be 

adopted to realize the self-adaptive filtering to signals. The first one is the 

combination of fixed predictive filter and updated self-adaptive algorithm and the 

second one is the combination method of fixed updated algorithm and self-adaptive 

prediction filtering. The acoustic emission signal studied in this thesis shows non-

stationary characteristics vary with the change of time. The sampled signal in every 

experiment demonstrates a feature of randomness. So in order to acquire better de-

noising effects, a dual self-adaptive lifting wavelet transformation algorithm is 

adopted to conduct de-noising processing which is to adopt self-adaptive filtering 

method in both updating link and predicting link [19]. 

4.1. Updated self-adaptive algorithm 

The principle structure of the updated self-adaptive algorithm is  demonstrated in 

Fig. 2. 

 
Fig. 2. Self-adaptive updating principle 

In Fig. 2, ,x y  and xʹ, y  are low-frequency coefficients and high-frequency 

coefficients respectively before and after updating; D is decision function; dU  is 

update operator; d  is generalized additive operator. Being different from the 

updating process of standard lifting method, update operator dU  here and additive 

operator are not fixed. They are picked self-adaptively by the discrimination 

function D on the basis of information of odd-even sequence. Under this condition,  

the low-frequency coefficient is 

(2)         ' ( )d dx n x n U y n  ,  

(3)     ( , )nd D x y n . 
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Here nd  is the discriminant function value at n point. The definition of 

discrimination function ( , )D x y is 

(4)    
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Then the expression of update operator is 

(5)    
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From (4), it can be seen that the symbol of nd is determined by the value of 

equation        1x n y n x n y n    . The derivation from this is that the 

discrimination function is determined by the following gradient vectors: 

(6)                  , 1 ,x n w n x n y n y n x n    . 

Then 

(7)                    , , 1 ,D x y n d v n w n d x n y n y n x n     , 

where d represents mapping function, and different discrimination principles reflect 

different gradient values. 

Update operator dU is defined as 

(8)         ( ) ( 1 ) ( )d d dU y n y n y n    . 

Additive operator d is defined as 

(9)          ( ) ( ( ))d d d dx n U y n x n U y n   . 

Low-frequency coefficients are obtained according to Equations (2), (8)  

and (9): 

(10)          ' 1d d dx n x n y n y n      . 

Here define 1d d d     , 

(11)   
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The constraint conditions of equation (11) can ensure that the signals can be 

reconstructed accurately. 

4.2. Self-adaptive forecasting algorithm 

Forecasting algorithm predicts signal odd sequence through signal even sequence. 

The more accurate the forecasting is, the smaller are the high-frequency coefficients 

acquired and then the better is the forecasting effect. This method adopted in this 

thesis conducts updating first and then forecasting. The process of forecasting does 
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not have any effects on the updating process. So the accuracy of this algorithm can 

be improved on. 

The specific forecasting algorithm is 

(12)         2 1 2D n x n P x n   , 

where  D n  represents high-frequency coefficients in the lifting method. The 

definitions of operators P and  are: 

(13)        ( 2 ) ( 2 1 ) ( 2 )P x n x n x n    , 

(14)            2 1 ( 2 ) 2 1 ( 2 )x n P x n x n P x n     . 

By substituting Equations (13) and (14) into Equation (12), the linear 

prediction equation is acquired as below: 

(15)           2 1 2 2 2D n x n x n x n      . 

From the forecasting equation, the key to construct linear prediction filter is to 

calculate the values of prediction weighting coefficients and . To make sure that 

the forecast error is the least and then the high-frequency coefficients in the lifting 

algorithm are the least, so the odd sequence prediction must be accurate. According 

to the minimum mean square error principle, the optimized linear prediction value 

can be acquired. The follow should be satisfied: 

(16)           2 1 ( 2 2 ) 2 ) 0E x n x n x n x n      . 

From (16), the prediction weighting coefficients   and   can be calculated. 

To dispose acoustic emission signal, the absolute value of difference value 

between two adjacent sampling points are picked to be a criterion in this paper. The 

signal sequence is divided into smooth and mutational regions. Minimum mean 

square error calculation is conducted to the signal samplings in two regions 

respectively. Then the prediction weighting coefficients in these two regions are 

calculated as well. At last, the self-adaptive forecasting is realized. 

5. Simulation experiment and analysis 

In order to verify the effectiveness of the algorithm, traditional wavelet (Db6), 

lifting algorithm constructed wavelet (Db6) and dual self-adaptive lifting wavelet 

are adopted respectively to conduct de-noising experiments for the broken lead 

acoustic emission signal based on the acoustic emission signal de-noising steps 

discussed above in the paper. Table 1 and Fig. 3 give different wavelet de-noising 

algorithm results. 

Table1. Performance of different de-noising algorithms 
De-noising algorithm SNR RMSE 

Traditional wavelet (Db6) 8.9762 3.5182 

Lifting wavelet (Db6) 9.5485 2.6936 

Dual self-adaptive lifting wavelet 18.998 2.7853 
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From the data in Table 1, the signal to noise ratios of de-noising signals of 

noisy acoustic emission signal in traditional wavelet transformation and lifting 

algorithm (Db6) wavelet transformation are basically close, being 8.9762dB and 

9.5485dB respectively. The signal to noise ratio of signal de-noised by dual self-

adaptive lifting method is 18.998dB, being enhanced considerably. That proves that 

the dual self-adaptive lifting method has better de-noising effects than the other two 

methods. 

From Fig. 3, it can be seen that based on the combination method of lifting 

wavelet and medium-soft threshold value de-noising retains the peak value feature 

of composite acoustic emission signal effectively. The method also demonstrates 

good smooth feature in the process of tending to be steady. 

For wavelet basis function (Db6) of the same kind, adopting lifting algorithm 

wavelet and traditional wavelet have no obvious differences in enhancing signal to 

noise ratio. However, the complexity of lifting algorithm is only half of that of the 

Mallat algorithm. So, the lifting wavelet de-noising algorithm introduced in this 

thesis has advantages in calculation speed and storage space. It is in favor of 

hardware implementation. 

 
Fig. 3. De-noising results of different acoustic emission signals of wavelet: Original signal (a);  

de-noising of traditional wavelet Db6 (b); de-noising of lifting wavelet Db6 (c); de-noising of self-

adaptive wavelet (d) 

6. Conclusion 

This paper conducted a deep research to wavelet de-noising methods of acoustic 

emission signal which analyze the selection of threshold value function and 

optimization of threshold value in de-noising processes. It also analysed the key 

technologies such as confirmation of wavelet basis function and evaluation 

standards of de-noising effects. Moreover, it proposed a de-noising method for 
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acoustic emission based on lifting method to deal with problems that traditional 

wavelet de-noising method cannot. And considering the features of acoustic 

emission signal, the paper also proposed a combination method of least square 

method and wavelet de-noising to improve de-noising algorithm for acoustic 

emission signal of wavelet and adopted dual self-adaptive lifting algorithm to 

conduct de-noising of acoustic emission signal. Due to the flexibility of lifting 

algorithm, this de-noising algorithm is not constrained by the integral construction 

of signal but designs different wave filters to deal with features of different parts of 

signals during the signal disposal processes. In comparison with traditional wavelet 

transformation method, this method not only enhances signal to noise ratio 

effectively but also has advantageous features. The structure is simple; the 

calculation is fast. These features are good for the hardware implementation and are 

beneficial for the real-time online application in heater leakage fault detection. At 

the end of paper, the broken lead analogy simulation experiment has verified this 

analysis conclusion. 
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