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Abstract: One of the strongest advantages of Distributed Evolutionary Algorithms 

(DEAs) is that they can be implemented in distributed environment of 

heterogeneous computing nodes. Usually such computing nodes differ in hardware 

and operating systems. Distributed systems are limited by network latency. Some 

Evolutionary Algorithms (EAs) are quite suitable for distributed computing 

implementation, because of their high level of parallelism and relatively less 

intensive network communication demands. One of the most widely used topologies 

for distributed computing is the star topology. In a star topology there is a central 

node with global EA population and many remote computation nodes which are 

working on a local population (usually sub-population of the global population). 

This model of distributed computing is also known as island model. What is 

common for DEAs is an operation called migration that transfers some individuals 

between local populations. In this paper, the term 'distribution' will be used instead 

of the term 'migration', because it is more accurate for the model proposed. This 

research proposes a strategy for distribution of EAs individuals in star topology 

based on incident node participation (INP). Solving the Rubik's cube by a Genetic 

Algorithm (GA) will be used as a benchmark. It is a combinatorial problem and 

experiments are done with a C++ program which uses OpenMPI.  

Keywords: Distributed evolutionary algorithms, migration strategy, incident nodes 

participation. 

1. Introduction 

The efficiency of Evolutionary Algorithms (EАs), as search methods, comes from 

the ideas of natural selection and recombination. EAs are applied successfully in 

finding acceptable solutions to problems in business, engineering, and science  
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[1, 2]. For complex problems EAs are used for finding good solutions in a 

reasonable amount of time. Most of the problems can be solved on a single 

machine, but when the problem is bigger or computationally harder, finding a 

solution on a single machine becomes inefficient. A promising speedup of EAs 

comes from the increasing popularity of distributed computing systems. There are 

two main ways for representing Distributed Evolutionary Algorithms (DEAs) 

population. In the first case there is only one global population and in the second 

case the population is divided between different computing nodes. Strict 

classification of distributed implementations can be found in literature [3, 4, 5]. In 

the case of a distributed implementation of EAs the strategy for distributing 

individuals is critical (how individuals migrate in the system).  

When the global population is divided between many remote computing 

nodes, each node has a fraction of individuals called subpopulation. In this kind of 

organization recombination and fitness function evaluation are done locally. 

Convergence process can be faster if there is an exchange of solutions between the 

remote nodes. This process of solutions exchange is called migration or in the case 

of INP individuals distribution. One of the algorithms, which was proposed recently 

(Free Search [11]), uses the idea that search in the global space is locally restarted 

on a fixed interval. INP idea builds on this proposal.  

In this study a distribution strategy, based on incident node participation 

(remote computing nodes are expected to join the system and contribute computing 

power) is proposed. Computing nodes are organized as star topology and island 

model [6, 7] for DEAs is applied. As benchmark GA based solver of Rubik's cube 

is used. The implementation is in C++ with OpenMPI and can be found in public 

source code repository [8]. 

The rest of this paper is organized as follows: Section 2 describes individuals 

distribution strategy in details. Section 3 presents the proposed model put into 

practical application. Section 4 is devoted to experiments and results. Finally, 

Section 5 concludes and presents some ideas for further research. 

2. Problem description 

“Genetic algorithms are a robust adaptive optimization method based on biological 

principles. A population of strings representing possible problem solutions is 

maintained. Search proceeds by recombining strings in the population. The 

theoretical foundations of genetic algorithms are based on the notion that selective 

reproduction and recombination of binary strings changes the sampling rate of 

hyperplanes in the search space so as to reflect the average fitness of strings that 

reside in any particular hyperplane. Thus, genetic algorithms need not search along 

the contours of the function being optimized and tend not to become trapped in 

local minima.” [16] The place of GAs is better presented in Fig. 1. 
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Fig. 1. Metaherustics diagram  

(http://upload.wikimedia.org/wikipedia/commons/c/c3/Metaheuristics_classification.svg) 

In terms of metaheuristics, GA is inspired by the nature, it is a population 

based and implicit method. The relation between GAs and Genetic Programming 

(GP) is pretty close and it is used in this study as representation of Rubik's Cube 

manipulation operations set as GAs chromosomes. When GAs are applied in 

distributed computing environment, individuals exchange between distributed 

computing nodes is as important as the other GA operators.  

Because of the time consuming nature of EA-based combinatorial problems 

solving, the computing nodes in the project are relatively autonomous. The 

distributed system is organized as star topology with a central node and remote 

computing nodes. As DEA implementation, island model is used. There is a global 

EA population, located in the central node, and many local EA populations 

distributed on the remote computing nodes. Each remote computing node can join 

the system and leave the system at any moment in time, asynchronously (Fig. 2). 

For each joining client the central node sends a subset of the global population. The 

remote node evolves the local EA population as sequential EA. 

The distribution of the individuals takes place only during the remote node 

joining process. Locally, best found solutions are reported to the central node and 
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eventually they migrate to the next remote node that joins. EA-based combinatorial 

problems solving is relatively slow so such distribution strategy is very efficient. 

 
Fig. 2. Incident node participation individuals’ distribution strategy 

3. INP – practical application 

As a benchmark problem a Rubik’s cube solver is presented [8]. The cube was 

introduced by Erno Rubik in the late 70s of the 20th century. This is one of the most 

famous combinatorial puzzle games. The original version of the game consists of 

3×3×3 cube (Fig. 3).  

 
Fig. 3. Rubik’s cube 
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There are different colored stickers on each of the exposed squares of the 

subcubes (cubies). Any 3×3×1 plane of the cube can be rotated or twisted in 90, 

180, or 270 degrees, relative to the rest of the cube. In the initial state, all the 

squares on each side of the cube are in the same color. The puzzle is scrambled by 

making a number of random twists, and the task is to restore the cube to its original 

state. The problem is quite difficult. The Saganesque slogan printed on the package, 

saying that there are billions of combinations, is a considerable understatement. In 

fact, there are 4.3252×1019 different states that can be reached from any given 

configuration. By comparison, the 4×4 Fifteen Puzzle contains 1013 states, and the 

5×5 Twenty-Four Puzzle generates 1025 states [12].  

For a successful solution of the puzzle a sequence of moves should be 

generated, such that all cubies go to a side with their color. According to [12] it is 

estimated that such sequences use between 50 and 100 moves, when the puzzle is 

randomly scrambled. In this research the problem of finding optimal or sub-optimal 

solution by application of DEAs is addressed. In the experimental part two 

strategies for exchanging individuals are examined. In the first case ring topology is 

used and each traveler individual is sent to the neighbor node. In the second case 

star topology is used and INP strategy is used for exchange of individuals. 

First step in the proposed model is the digital representation of the cube. In this 

research the cube was presented as 6 two-dimensional arrays (detailed description 

can be found in [8]). Each 3×3 array holds integer numbers matched to the cube 

colors. This is not the optimal cube representation as described in [12], but it is 

more convenient form a programming point of view.  

The second step is related to the definition of basic operators. In this research 

six basic operators are used. They come from the theory of the minimal formal 

grammars. Each cube side rotation on 90 degrees clockwise is marked with letters 

as follows (a similar representation is used in [13]): 

T (Top) – 90 degrees clockwise rotation of the top side; 

L (Left) – 90 degrees clockwise rotation of the left side; 

B (Back) – 90 degrees clockwise rotation of the back side; 

R (Right) – 90 degrees clockwise rotation of the right side; 

F (Front) – 90 degrees clockwise rotation of the front side; 

D (Down) – 90 degrees clockwise rotation of the down side. 

This set of six operations is the minimal fully functional grammar for the 

Rubik’s Cube. Extended grammars are also possible, for example if counter-

clockwise operators are included (+T, +L, +B, +R, +F, +D, –T, –L, –B, –R, –F, –D). 

Next level of extension is addition as number of turns (+1T, +2T, +3T, +1L, +2L, 

+3L, +1B, +2B, +3B, +1R, +2R, +3R, +1F, +2F, +3F, +1D, +2D, +3D, –1T, –2T,  

–3T, –1L, –2L, –3L, –1B, –2B, –3B, –1R, –2R, –3R, –1F, –2F, –3F, –1D, –2D, –3D). 

The representation of the Rubik’s Cube operators leads to a natural 

chromosome encoding in GAs. Each chromosome consists of six letters (presented 

above) as strings of different length. Each chromosome is a set of instructions that 

should be applied over the scrambled cube (more details can be found in [14]). In 

this research a single cut point crossover is applied, but other approaches are also 

possible as it is described in [15]. The simplest possible mutation is applied by 
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replacing a single instruction letter in the chromosome sequence. Parent selection is 

done at random and elitism rule is applied. Fitness value of individuals is calculated 

by Euclidean distance between a scrambled cube and a solved cube. Calculation of 

Euclidean distance is possible, because each cube’s color is matched to an integer 

value. GA’s optimization target is the minimum value for the Euclidean distance.  

4. Experiments and results 

All experiments were done on an 8 core server machine – Intel(R) Xeon(R) CPU 

E5504 @ 2.00 GHz, 64 GB RAM and Linux Version 3.13.0-24-generic, gcc 

version 4.8.2 (Ubuntu 4.8.2-19ubuntu1). For the parallel implementation OpenMPI 

is used. 

“Open MPI represents more than a simple merger of LAM/MPI, LA-MPI and 

FT-MPI. Although influenced by previous code bases, Open MPI is an all-new 

implementation of the Message Passing Interface. Focusing on production  

quality performance, the software implements the full MPI-1.2 IQ and MPI-2 

specifications and fully supports concurrent, multi-threaded applications  

(i.e., MPI_THREAD_MULTIPLE). To efficiently support a wide range of parallel 

machines, high performance drivers for all established interconnects are currently 

being developed.” [18] 

GA parameters used are as listed in Table 1 and Constants.h source file 

available at [8]. Parameters are selected according suggested values in [19]. 

Table 1. GA parameters 

Para-

meter 

Local 

population 

size 

Crossover 

rate 

Mutation 

rate 

Generation 

gap 

Selection 

strategy 

Migration 

interval 

INP 50 0.95 1.00 100% Elitist 67 
Ring 50 0.95 1.00 100% Elitist 67 

Two individuals’ distribution strategies are tested and compared in three 

different program runs (Figs 4-6). For each test execution 67 migrations were 

performed. Between each migration 1 M local GA optimization cycles were 

performed. The volume of exchanged data is the size of the local population, where 

the length of the chromosomes can vary. In all experiments there are 67 times of 

data exchange between the computing nodes (for more details RubiksCubeGA.cpp 

file at [8]). Data exchange is controlled by the node with identifier 0 and all other 

seven nodes communicate with it. There is no direct communication between nodes 

with identifiers from 1 up to 7.  

In the three independent program runs it is obvious that the INP distribution 

strategy slightly outperforms the ring topology migration. On the y axis Euclidean 

distance between optimized cube and solve cube is measured. The main 

disadvantage, which is observed in ring topology experiments, is that sub-optimal 

solutions are distributed across the computing nodes and in this way escape from 

the local minima is harder. Better convergence of INP is based on the fact that 

solutions exchange is better than in the ring topology next node migration. 
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Fig. 4. Experiment 1 

 
Fig. 5. Experiment 2 

 
Fig. 6. Experiment 3 
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5. Conclusions 

As it was shown in the experiments section, the presented distribution strategy, 

based on incident node participation outperforms ring topology distribution of 

individuals in distributed computing environment. The benchmark problem used is 

combinatorial and it is complex enough to represent the difference in convergence 

between the individuals distribution strategies used. The evolutionary approach 

seems a promising way of solving complex combinatorial problems. The best 

advantage of EAs comes from their perfect ability to be parallelized in distributed 

computing environment.  

In further studies it would be interesting to observe if FPGA devices are tested 

for better acceleration of the computation process (as it is described in [9]) and 

hybrid evolutionary algorithms (presented in [17]). Another interesting direction for 

further research can be made in the direction of Generalized Nets, which are 

presented for solving similar problems [10]. 
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