
 80

BULGARIAN ACADEMY OF SCIENCES

CYBERNETICS AND INFORMATION TECHNOLOGIES Volume 16, No 1

Sofia 2016 Print ISSN: 1311-9702; Online ISSN: 1314-4081

DOI: 10.1515/cait-2016-0006

Strategy for Individuals Distribution by Incident Nodes

Participation in Star Topology of Distributed Evolutionary

Algorithms

Todor Balabanov, Iliyan Zankinski, Maria Barova

Institute of Information and Communication Technologies, BAS, 1113 Sofia, Bulgaria

Emails: todorb@iinf.bas.bg iliyan.zankinski@gmail.com maria_b88@abv.bg

Abstract: One of the strongest advantages of Distributed Evolutionary Algorithms

(DEAs) is that they can be implemented in distributed environment of

heterogeneous computing nodes. Usually such computing nodes differ in hardware

and operating systems. Distributed systems are limited by network latency. Some

Evolutionary Algorithms (EAs) are quite suitable for distributed computing

implementation, because of their high level of parallelism and relatively less

intensive network communication demands. One of the most widely used topologies

for distributed computing is the star topology. In a star topology there is a central

node with global EA population and many remote computation nodes which are

working on a local population (usually sub-population of the global population).

This model of distributed computing is also known as island model. What is

common for DEAs is an operation called migration that transfers some individuals

between local populations. In this paper, the term 'distribution' will be used instead

of the term 'migration', because it is more accurate for the model proposed. This

research proposes a strategy for distribution of EAs individuals in star topology

based on incident node participation (INP). Solving the Rubik's cube by a Genetic

Algorithm (GA) will be used as a benchmark. It is a combinatorial problem and

experiments are done with a C++ program which uses OpenMPI.

Keywords: Distributed evolutionary algorithms, migration strategy, incident nodes

participation.

1. Introduction

The efficiency of Evolutionary Algorithms (EАs), as search methods, comes from

the ideas of natural selection and recombination. EAs are applied successfully in

finding acceptable solutions to problems in business, engineering, and science

 81

[1, 2]. For complex problems EAs are used for finding good solutions in a

reasonable amount of time. Most of the problems can be solved on a single

machine, but when the problem is bigger or computationally harder, finding a

solution on a single machine becomes inefficient. A promising speedup of EAs

comes from the increasing popularity of distributed computing systems. There are

two main ways for representing Distributed Evolutionary Algorithms (DEAs)

population. In the first case there is only one global population and in the second

case the population is divided between different computing nodes. Strict

classification of distributed implementations can be found in literature [3, 4, 5]. In

the case of a distributed implementation of EAs the strategy for distributing

individuals is critical (how individuals migrate in the system).

When the global population is divided between many remote computing

nodes, each node has a fraction of individuals called subpopulation. In this kind of

organization recombination and fitness function evaluation are done locally.

Convergence process can be faster if there is an exchange of solutions between the

remote nodes. This process of solutions exchange is called migration or in the case

of INP individuals distribution. One of the algorithms, which was proposed recently

(Free Search [11]), uses the idea that search in the global space is locally restarted

on a fixed interval. INP idea builds on this proposal.

In this study a distribution strategy, based on incident node participation

(remote computing nodes are expected to join the system and contribute computing

power) is proposed. Computing nodes are organized as star topology and island

model [6, 7] for DEAs is applied. As benchmark GA based solver of Rubik's cube

is used. The implementation is in C++ with OpenMPI and can be found in public

source code repository [8].

The rest of this paper is organized as follows: Section 2 describes individuals

distribution strategy in details. Section 3 presents the proposed model put into

practical application. Section 4 is devoted to experiments and results. Finally,

Section 5 concludes and presents some ideas for further research.

2. Problem description

“Genetic algorithms are a robust adaptive optimization method based on biological

principles. A population of strings representing possible problem solutions is

maintained. Search proceeds by recombining strings in the population. The

theoretical foundations of genetic algorithms are based on the notion that selective

reproduction and recombination of binary strings changes the sampling rate of

hyperplanes in the search space so as to reflect the average fitness of strings that

reside in any particular hyperplane. Thus, genetic algorithms need not search along

the contours of the function being optimized and tend not to become trapped in

local minima.” [16] The place of GAs is better presented in Fig. 1.

 82

Fig. 1. Metaherustics diagram

(http://upload.wikimedia.org/wikipedia/commons/c/c3/Metaheuristics_classification.svg)

In terms of metaheuristics, GA is inspired by the nature, it is a population

based and implicit method. The relation between GAs and Genetic Programming

(GP) is pretty close and it is used in this study as representation of Rubik's Cube

manipulation operations set as GAs chromosomes. When GAs are applied in

distributed computing environment, individuals exchange between distributed

computing nodes is as important as the other GA operators.

Because of the time consuming nature of EA-based combinatorial problems

solving, the computing nodes in the project are relatively autonomous. The

distributed system is organized as star topology with a central node and remote

computing nodes. As DEA implementation, island model is used. There is a global

EA population, located in the central node, and many local EA populations

distributed on the remote computing nodes. Each remote computing node can join

the system and leave the system at any moment in time, asynchronously (Fig. 2).

For each joining client the central node sends a subset of the global population. The

remote node evolves the local EA population as sequential EA.

The distribution of the individuals takes place only during the remote node

joining process. Locally, best found solutions are reported to the central node and

 83

eventually they migrate to the next remote node that joins. EA-based combinatorial

problems solving is relatively slow so such distribution strategy is very efficient.

Fig. 2. Incident node participation individuals’ distribution strategy

3. INP – practical application

As a benchmark problem a Rubik’s cube solver is presented [8]. The cube was

introduced by Erno Rubik in the late 70s of the 20th century. This is one of the most

famous combinatorial puzzle games. The original version of the game consists of

3×3×3 cube (Fig. 3).

Fig. 3. Rubik’s cube

 84

There are different colored stickers on each of the exposed squares of the

subcubes (cubies). Any 3×3×1 plane of the cube can be rotated or twisted in 90,

180, or 270 degrees, relative to the rest of the cube. In the initial state, all the

squares on each side of the cube are in the same color. The puzzle is scrambled by

making a number of random twists, and the task is to restore the cube to its original

state. The problem is quite difficult. The Saganesque slogan printed on the package,

saying that there are billions of combinations, is a considerable understatement. In

fact, there are 4.3252×1019 different states that can be reached from any given

configuration. By comparison, the 4×4 Fifteen Puzzle contains 1013 states, and the

5×5 Twenty-Four Puzzle generates 1025 states [12].

For a successful solution of the puzzle a sequence of moves should be

generated, such that all cubies go to a side with their color. According to [12] it is

estimated that such sequences use between 50 and 100 moves, when the puzzle is

randomly scrambled. In this research the problem of finding optimal or sub-optimal

solution by application of DEAs is addressed. In the experimental part two

strategies for exchanging individuals are examined. In the first case ring topology is

used and each traveler individual is sent to the neighbor node. In the second case

star topology is used and INP strategy is used for exchange of individuals.

First step in the proposed model is the digital representation of the cube. In this

research the cube was presented as 6 two-dimensional arrays (detailed description

can be found in [8]). Each 3×3 array holds integer numbers matched to the cube

colors. This is not the optimal cube representation as described in [12], but it is

more convenient form a programming point of view.

The second step is related to the definition of basic operators. In this research

six basic operators are used. They come from the theory of the minimal formal

grammars. Each cube side rotation on 90 degrees clockwise is marked with letters

as follows (a similar representation is used in [13]):

T (Top) – 90 degrees clockwise rotation of the top side;

L (Left) – 90 degrees clockwise rotation of the left side;

B (Back) – 90 degrees clockwise rotation of the back side;

R (Right) – 90 degrees clockwise rotation of the right side;

F (Front) – 90 degrees clockwise rotation of the front side;

D (Down) – 90 degrees clockwise rotation of the down side.

This set of six operations is the minimal fully functional grammar for the

Rubik’s Cube. Extended grammars are also possible, for example if counter-

clockwise operators are included (+T, +L, +B, +R, +F, +D, –T, –L, –B, –R, –F, –D).

Next level of extension is addition as number of turns (+1T, +2T, +3T, +1L, +2L,

+3L, +1B, +2B, +3B, +1R, +2R, +3R, +1F, +2F, +3F, +1D, +2D, +3D, –1T, –2T,

–3T, –1L, –2L, –3L, –1B, –2B, –3B, –1R, –2R, –3R, –1F, –2F, –3F, –1D, –2D, –3D).

The representation of the Rubik’s Cube operators leads to a natural

chromosome encoding in GAs. Each chromosome consists of six letters (presented

above) as strings of different length. Each chromosome is a set of instructions that

should be applied over the scrambled cube (more details can be found in [14]). In

this research a single cut point crossover is applied, but other approaches are also

possible as it is described in [15]. The simplest possible mutation is applied by

 85

replacing a single instruction letter in the chromosome sequence. Parent selection is

done at random and elitism rule is applied. Fitness value of individuals is calculated

by Euclidean distance between a scrambled cube and a solved cube. Calculation of

Euclidean distance is possible, because each cube’s color is matched to an integer

value. GA’s optimization target is the minimum value for the Euclidean distance.

4. Experiments and results

All experiments were done on an 8 core server machine – Intel(R) Xeon(R) CPU

E5504 @ 2.00 GHz, 64 GB RAM and Linux Version 3.13.0-24-generic, gcc

version 4.8.2 (Ubuntu 4.8.2-19ubuntu1). For the parallel implementation OpenMPI

is used.

“Open MPI represents more than a simple merger of LAM/MPI, LA-MPI and

FT-MPI. Although influenced by previous code bases, Open MPI is an all-new

implementation of the Message Passing Interface. Focusing on production

quality performance, the software implements the full MPI-1.2 IQ and MPI-2

specifications and fully supports concurrent, multi-threaded applications

(i.e., MPI_THREAD_MULTIPLE). To efficiently support a wide range of parallel

machines, high performance drivers for all established interconnects are currently

being developed.” [18]

GA parameters used are as listed in Table 1 and Constants.h source file

available at [8]. Parameters are selected according suggested values in [19].

Table 1. GA parameters

Para-

meter

Local

population

size

Crossover

rate

Mutation

rate

Generation

gap

Selection

strategy

Migration

interval

INP 50 0.95 1.00 100% Elitist 67
Ring 50 0.95 1.00 100% Elitist 67

Two individuals’ distribution strategies are tested and compared in three

different program runs (Figs 4-6). For each test execution 67 migrations were

performed. Between each migration 1 M local GA optimization cycles were

performed. The volume of exchanged data is the size of the local population, where

the length of the chromosomes can vary. In all experiments there are 67 times of

data exchange between the computing nodes (for more details RubiksCubeGA.cpp

file at [8]). Data exchange is controlled by the node with identifier 0 and all other

seven nodes communicate with it. There is no direct communication between nodes

with identifiers from 1 up to 7.

In the three independent program runs it is obvious that the INP distribution

strategy slightly outperforms the ring topology migration. On the y axis Euclidean

distance between optimized cube and solve cube is measured. The main

disadvantage, which is observed in ring topology experiments, is that sub-optimal

solutions are distributed across the computing nodes and in this way escape from

the local minima is harder. Better convergence of INP is based on the fact that

solutions exchange is better than in the ring topology next node migration.

 86

Fig. 4. Experiment 1

Fig. 5. Experiment 2

Fig. 6. Experiment 3

 87

5. Conclusions

As it was shown in the experiments section, the presented distribution strategy,

based on incident node participation outperforms ring topology distribution of

individuals in distributed computing environment. The benchmark problem used is

combinatorial and it is complex enough to represent the difference in convergence

between the individuals distribution strategies used. The evolutionary approach

seems a promising way of solving complex combinatorial problems. The best

advantage of EAs comes from their perfect ability to be parallelized in distributed

computing environment.

In further studies it would be interesting to observe if FPGA devices are tested

for better acceleration of the computation process (as it is described in [9]) and

hybrid evolutionary algorithms (presented in [17]). Another interesting direction for

further research can be made in the direction of Generalized Nets, which are

presented for solving similar problems [10].

Acknowledgements: This work was supported by a grant of the Bulgarian National Scientific Fund

under the grants DFNI 02/20 Efficient Parallel Algorithms for Large Scale Computational Problems

and DFNI 02/5 InterCriteria Analysis A New Approach to Decision Making.

R e f e r e n c e s

1. G o l d b e r g, D. E. Genetic and Evolutionary Algorithms Come of Age. – Communications of the

ACM, Vol. 37, 1994, No 3, pp. 113-119.

2. P a p p a, G., G. O c h o a, M. H y d e, A. F r e i t a s, J. W o o d w a r d, J. S w a n. Contrasting

Meta-Learning and Hyper-Heuristic Research: The Role of Evolutionary Algorithms. –

Genetic Programming and Evolvable Machines, Vol. 15, 2014, Issue 1, pp. 3-35.

3. A d a m i d i s, P. Review of Parallel Genetic Algorithms Bibliography. Tech. Rep. Version 1.

Aristotle University of Thessaloniki, Thessaloniki, Greece, 1994.

4. G o r d o n, V. S., D. W h i t l e y. Serial and Parallel Genetic Algorithms as Function Optimizers. –

In: S. Forrest, Ed. Proc. of 5th International Conference on Genetic Algorithms, Morgan

Kaufmann (San Mateo, CA), 1993, pp. 177-183.

5. L i n, S.-C., W. P u n c h, E. G o o d m a n. Coarse-Grain Parallel Genetic Algorithms –

Categorization and New Approach. – In: Proc. of 6th IEEE Symposium on Parallel and

Distributed Processing, IEEE Computer Society Press, 1994, Los Alamitos, CA.

6. T a n e s e, R. Distributed Genetic Algorithms. – In: J. D. Schaer, Ed., Proc. of 3rd International

Conference on Genetic Algorithms, Morgan Kaufmann, 1989, pp. 434-439.

7. U c h i d a, T., T. M a t s u z a w a, Y. I n o g u c h i. The Inuence of Elitism Strategy on Migration

Intervals of a Distributed Genetic Algorithm. – Proceedings in Adaptation, Learning and

Optimization, Vol. 2, 2015, pp. 363-374.

8. B a l a b a n o v, T. MPI Parallel Implementation of Genetic Algorithm Based Rubik’s Cube

Solver.

https://github.com/TodorBalabanov/RubiksCubeGeneticAlgorithmsSolver
9. I v a n o v, V. Using a PicoBlaze Processor to Traffic Light Control. – Cybernetics and Information

Technologies, 2015, pp. 131-139.

10. T a s h e v, T., V. M o n o v. Modeling of the Hotspot Load Traffic for Crossbar Switch Node by

Means of Generalized Nets. – In: Proc. of 6th IEEE International Conference Intelligent

Systems, 2012, Sofia, Bulgaria, pp.187-191.

11. P e n e v, K. Free Search in Multidimensional Space II. – Numerical Methods and Applications

Lecture Notes in Computer Science, Vol. 8962, 2015, pp. 103-111.

https://github.com/TodorBalabanov/RubiksCubeGeneticAlgorithmsSolver

 88

12. K o r f, R. Finding Optimal Solutions to Rubik’s Cube Using Pattern Databases. – In: Proc.

AAAI-98, Madison, WI, AAAI Press, Menlo Park, CA, 1998, pp. 700-705.

13. R a n d a l l, К. Cilk: Efficient Multithreaded Computing. Doctor of Philosophy in Computer

Science and Engineering, Massachusetts Institute of Technology, 1998.

14. A n t o n i s s e, H. A Grammar-Based Genetic Algorithm. Foundations of Genetic Algorithms,

Indiana University, Bloomington, USA, 1991, pp. 193-204.

15. P o l i, R., J. K o z a. Genetic Programming. – Search Methodologies, 2014, pp. 143-185.

16. W h i t l e y, D., T. S t a r k w e a t h e r, C. B o g a r t. Genetic Algorithms and Neural Networks:

Optimizing Connections and Connectivity. – Parallel Computing, Vol. 3, 1990, Issue 3,

pp. 347-361.

17. G u l i a s h k i, V., L. K i r i l o v. Hybrid Evolutionary Algorithm for Multiple Objective Convex

Integer Problems. – In: Proc. of 28th International Conference on Information Technologies

(InfoTech-2014), Varna, St. St. Constantine and Elena Resort, Bulgaria, 2014, pp. 19-28.

18. G a b r i e l, E., G. F a g g, G. B o s i l c a, T. A n g s k u n, J. D o n g a r r a, J. S q u y r e s,

V. S a h a y, P. K a m b a d u r, B. B a r r e t t, A. L u m s d a i n e, R. C a s t a i n, D. D a n i e l,

R. G r a h a m, T. W o o d a l l. Open MPI: Goals, Concept, and Design of a Next Generation

MPI Implementation, Recent Advances in Parallel Virtual Machine and Message Passing

Interface. – In: Lecture Notes in Computer Science, Vol. 3241, 2004, pp. 97-104.

19. B o n i s s o n e, P. Genetic Algorithms Parameter Settings, GE Corporate Research &

Development.

http://homepages.rpi.edu/~bonisp/fuzzy-course/99/L10/ga+flc_app_4printer.pdf

http://homepages.rpi.edu/~bonisp/fuzzy-course/99/L10/ga+flc_app_4printer.pdf

